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Background. Kidney renal clear cell carcinoma (KIRC) is considered as a highly immune infiltrative tumor. Necroptosis is an
inflammatory programmed cell death associated with a wide range of diseases. Long noncoding RNAs (lncRNAs) play
important roles in gene regulation and immune function. lncRNA associated with necroptosis could systematically explore the
prognostic value, regulate tumor microenvironment (TME), etc. Method. The patients’ data was collected from TCGA datasets.
We used the univariate Cox regression (UCR) to select prediction lncRNAs that are related to necroptosis. Meanwhile, risk
models were constructed using LASSO Cox regression (LCR). Kaplan–Meier (KM) analysis, accompanied with receiver
operating characteristic (ROC) curves, was performed to assess the independent risk factors of different clinical characteristics.
The evaluated factors are age, gender, disease staging, grade, and their related risk score. Databases such as Gene Ontology
(GO), Kyoto encyclopedia of genes and genomes (KEGG), and Gene set enrichment analysis (GSEA) were used to search the
probable biological characteristics that could influence the risk groups, containing signaling pathway and immue-related
pathways. The single-sample gene set enrichment analysis (ssGSEA) was chosen to perform gene set variation analysis
(GSVA), and the GSEABase package was selected to detect the immune and inflammatory infiltration profiles. The TIDE and I
C50 evaluation were used to estimate the effectiveness of clinical treatment on KIRC. Results. Based on the above analysis, we
have got a conclusion that patients who show high risk had higher immune infiltration, immune checkpoint expression, and
poorer prognosis. We identified 19 novel prognostic necroptosis-related lncRNAs, which could offer opinions for a deeper
study of KIRC. Conclusion. The risk model we constructed makes it possible to predict the prognosis of KIRC patients and
offers directions for further research on the prognostication and treatment strategies for KIRC.

1. Introduction

Renal cell carcinoma (RCC) is a branch of urologic tumors
that extensively occurred in the world. Studies have reported
that RCC is the third occurred tumor among the urinary sys-
tem, the incidence of RCC is next to prostate cancer and
bladder cancer [1], and almost 30% of the patients were
present with distant metastases when they were diagnosed
[2]. The five-year survival rate of metastatic RCC (mRCC)

is only 10%, worser than nonmetastatic RCC [3]. KIRC is
the most frequent pathological subtype in adults and is
responsible for 80%–90% of the RCC cases [1]. In most
patients with KIRC, proper surgical method remains the
preferred treatment. However, the tumor that is not sensitive
to chemotherapy and radiotherapy is more likely to metasta-
sis or recur compared with other pathological RCCs [4]. For-
tunately, recent studies have demonstrated that KIRC is
sensitive to immunotherapy and some big data on clinical
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trials have proven its worth in KIRC [5]. KIRC has been
reported to be linked to significant infiltration of immune
cells, and the clinical outcomes differ based on the type of
cell involved [6]. Thus, identifying the cells related to
immune factors would prove helpful.

lncRNAs is one type of the transcribed noncoding RNAs
(ncRNAs). The length of it was longer than 200 nucleotides
and they are distributed widely in cells [7]. However, lncRNAs
exhibited vital roles in multifarious functions of gene expres-
sion, such as transcription, chromatin organisation, and transla-
tion [8]. Recently, some studies reported that tumor-related
lncRNAs could regulate the progression of cancer by affecting
the tumor microenvironment (TME) [9], cell differentiation
[10], and apoptosis [11]. In addition, lncRNAs could signifi-
cantly influence the immune system, including immune cell
infiltration and immune activation [12]. Some studies reported
that the lncRNALINK-A could downregulate antigen presenta-
tion by inactivating the PKA pathway [13]. Moreover, the clin-
ical progression and prognosis of some tumors, including lung
cancer, prostate cancer, and BC, are associated with dysfunction
of lncRNAs [7]. For instance, the lncRNA HOXD-AS1 was
found to have high expression in castration-resistant prostate
cancer (CRPC) cells. The multiplication could be inhibited by
knockdown of HOXD-AS1 and it could be sensitive to chemo-
therapy after knockdown. Therefore, HOXD-AS1 showed
important role in cancer development [14].

With the development of bioinformatics, several studies
have been published recently regarding signature construction
based on lncRNAs to handle the therapeutic effect on patients
with KIRC. For instance, Sun et al. constructed a 5-immune-
related-lncRNA signature to distinguish whether KIRC
patients prognosis is good or not. In addition, the study ana-
lyzed the relationship between lncRNA and mRNA to find
out the behavior and relationship of these RNAs [15]. Cui
et al. reported that seventeen autophagy-associated lncRNAs
were successfully identified and a risk profile associated with
KIRC prognosis was constructed. This feature is a valid prog-
nostic indicator and not dependent on other features for
patients with KIRC [16]. However, the prediction of lncRNAs
associated with necroptosis in KIRC and their relationship
with immune status has not been clearly described.

In recent years, there are many ways of cell death that
have been discovered and via a number of different path-
ways, including apoptosis, necrosis, programmed necrosis,
pyroptosis, iron death, and autophagy. Apoptosis, which is
the well-known programmed cell death, had characteristic
morphological change with a number of specific biochemical
processes. Necrosis is the uncontrolled cellular death, which
is often followed by spillage of the cellular contents into sur-
rounding tissues. For the other forms of cell death, for exam-
ple, pyroptosis is also a kind of programmed cell death with
collateral damage (nuclear integrity is maintained) and
autophagy, which is a mechanism for both killing stressed
cells and to recycle cellular components. Necroptosis is a
freshly detected mechanism of cell programmed death medi-
ated by RIP1, MLKL, and RIP3 [17, 18]. More and more
studies are available suggesting that necroptosis is caught
up in various diseases, such as cardiovascular disease, can-
cers, and neuroinflammation [18–20]. Additionally, a recent

study showed that necroptosis may boost the cancer metasta-
sis and T cells death in tumors [21]. Necroptosis serves as one
of the programmed cell death in the cell, it contains the fea-
tures of necrosis combined with apoptosis, suggesting it might
cause and enhance antitumor immunity of tumors [17]. Park
et al. have found that the key regulatory genes in necroptosis
could influence the therapeutic effect in non-small-cell lung
cancer [22]. In alcoholic cirrhosis, RIPK3-mediated necropto-
sis was always associated with poor prognosis [23]. Nonethe-
less, how necroptosis affect the prognosis and inflammation
mechanism in KIRC is not yet clear.

Here we established risk signatures to explore the con-
nection between necroptosis-related lncRNAs (NRLs) and
the prognosis of KIRC. In addition, we studied how NRLs
influenced the tumor microenvironment (TME) and their
drug sensitivity in KIRC. We have provided novel prognos-
tic predictors and data for a clearer understanding of the
immune infiltrates of necroptosis in patients with KIRC.

2. Materials and Methods

2.1. Data Availability. The patients’material and their related
RNA sequencing data were downloaded from The Cancer
Genome Atlas (TCGA) (https://cancergenome.nih.gov/) data-
base. Transcribed RNA data were obtained from the frag-
ments per kilobase million (FPKM) for our study. The
lncRNAs genes were analyzed using the GENCODE project
(https://www.gencodegenes.org/) [24]. Patients with unavail-
able survival information and incomplete data were excluded.

2.2. Identification of Genes Associated with Necroptosis. 67
mRNAs related to necroptosis were extracted for identifica-
tion [25]. We performed the Pearson correlation coefficient
analysis in R software (version 4.0.4) to determine the
lncRNAs that has a relationship with the pyroptosis-related
genes. A correlation coefficient (jRj) value larger than 0.5
defined that a strong correlation exist, and p value less than
0.01 was regarded as the difference was different. The pro-
tein–protein interaction (PPI) network of the necroptosis-
related genes was analyzed using the Search Tool for the
Retrieval of Interacting Genes (STRING) (https://string-db
.org/). Thereafter, PPI network was observed by the Cytos-
cape software (version 3.7.1).

2.3. Qualification of the Necroptosis-Associated lncRNA
Prognostic Signature. The association between NRLs expres-
sion and survival data was assessed by using UCR analysis to
identify necrosis-associated lncRNAs. NRLs which has been
found to have a significant relationship (p < 0:05) were chosen
as the necroptosis-related lncRNAs for KIRC. Subsequently,
LCR analysis with the ‘glmnet’ package was applied to estab-
lish a prediction model of possible genes. The following for-
mula could be utilized to calculate risk score:

Expressiongene1 × Coefficientgene1 + Expressiongene2
× Coefficientgene2+⋯+Expressiongene n
× Coefficientgene n

ð1Þ
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Figure 1: Continued.
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Figure 1: Identification of the necroptosis lncRNAs and analysition of its function. The distribution of necroptosis lncRNAs in lesions or
regular tissues with heatmap in KIRC (a). Necroptosis lncRNAs expression level in Volcano (b). The pathway of necroptosis lncRNAs in
KEGG (c). The biological function of necroptosis lncRNAs in GO (d).
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Figure 2: Construct the risk model of necroptosis related lncRNAs. The risk model built using LASSO analysis (a–c). The PCA analyses
were performed to the complete gene set (d), necroptosis genes (e), and NRLs (f).
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An individual risk score was assigned to each patient.
Next, KIRC patients were separated as different risk groups
using the median cut-off of risk score according to the risk
model. Protective and risk prognostic factors were determined
using the hazard ratios (HR) by the UCR and the multivariate
Cox regression (MCR). The factor was considered risky when
HR was >1 and protective when HR was <1.

2.4. Survival and ROC Analysis. We analyzed survival with
the R packages survival and survminer, and the differences
were distinguished via the KM analysis. We calculated
whether our model for different overall survival (OS) is sen-
sitive and specific using the package timeROC of R (version
4.0.4). In addition, we used timeROC to evaluate the inde-
pendent risk factors of different clinical factors, including
age, gender, stage, grade, and risk score.

2.5. Construction of Alignment Diagram and PCA of the Risk
Genes. An alignment diagram was created on the basis of
the NRLs with ‘rms’ package to evaluate the various years
OS of KIRC patients. Plotting calibration curves was per-
formed to estimate the accuracy of alignment charts.
PCA was utilized to categorize the patients into groups
according to the NRLs.

2.6. GO, KEGG, GSEA, and ssGSEA Analysis. For bioinfor-
matics analysis, GO and KEGG were used to search possible

biological characteristics that may influence the risk groups,
including the changed signaling pathway. GSEA was used to
explore the immune-related pathways. The ssGSEA was
accompanied with the GSEABase package to explore the
immune and inflammatory infiltration profiles.

2.7. Effectiveness of the Necroptosis-Related lncRNA
Trademark in Clinical Trial. The effectiveness of immuno-
therapy on KIRC was estimated using TCIA. Relationship
between the risk score and immunotherapy sensitive genes
including PDL1, PD1, CTLA4, and TIGIT was also checked.
The IC50 value of chemotherapeutic agents was selected to
explore the response of KIRC to first-line targeted therapy
based on the R package ‘pRRophetic’.

3. Results

3.1. Identification of Genes Related to Necroptosis.We down-
loaded a total of 15,142 lncRNA expression profiles using the
R package. We screened 67 necroptosis-related mRNAs ana-
lyzed using the Pearson correlation coefficient based on jRj
larger than 0.5 and p value smaller than 0.01 to identify
NRLs. At last, 2,180 NRLs were exported. Following this,
we performed “limma” R package to get 428 DE
necroptosis-related lncRNAs difference from the tumor tis-
sues and normal tissue samples (Figures 1(a) and 1(b)).
Then we used GO and KEGG to search the potential
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Figure 3: The risk predictive model of NRLs in KIRC. The differences of OS in the two groups (a). Time-dependent ROC curves (b). The
risk score distribution of various groups (c). The survival status of patients in the two groups (d). The expression levels of 19 NRLs in risk
models (e).
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biological characteristics and related pathways of the DE
NRLs (Figures 1(c) and 1(d)).

3.2. Construction of the Prognostic Signature. Following this,
UCR analysis was utilized to separate the lncRNAs that have
prognosis functions from the DE NRLs, and 348 lncRNAs
have significant association with OS in KIRC patients (Sup-
plementary Table S1). From a total of 348 lncRNAs, we
identified 19 lncRNAs by LCR to build up the prediction
model (Figures 2(a) and 2(b)), the forest plot exhibited the
corresponding HRs and 95% CIs of the 19 lncRNAs
(IGFL2-AS, LINC01943, LINC01126, U62317.1, LASTR,
MYOSLID, ENTPD3-AS1, UBE2Q1-AS1, NARF-IT1,
APCDD1L-DT, MIRLET7A1HG, AC007376.2,
AC0026401.3, AC008050.1, AC025580.3, AC026992.1,
AC007743.1, AL162186.1, and AL158212.3). The results in
Figure 2 indicate UBE2Q1-AS1 could be a risk factor of
prediction in KIRC (Figure 2(c)). We separated 258
patients equally in the high and low-risk group according
to the median. We performed the PCA to know the risk
patterns in KIRC to estimate the effectiveness of the risk
model (Figures 2(d)–2(f)). We can see that a risk model
containing 19 lncRNAs had great efficiency to separate
patients into different risk groups.

3.3. Survival Analysis and Proof of the NRLs Trademark. We
took the KM survival analysis to figure out the OS of the risk
signature. We found that the high-risk group was more

likely to die than the other group (p < 0:001, Figure 3(a)).
We also approved the accuracy of the risk model with the
ROC curve. The AUC value of one-year OS was 0.763, while
the value for three- and five-year OS was 0.758 and 0.804,
respectively. These results indicated that the prediction risk
model can precisely forecast the OS (Figure 3(b)). We also
found that with an increase in the risk score, the high-risk
group has more possibilities to die (Figures 3(c)–3(d)). The
NRLs expression in the risk signature was also visualized
(Figure 3(e)).

3.4. Affirmation of the NRLs Trademark. To confirm the
truthfulness of our risk trademark in predicting the progno-
sis in KIRC, the KM survival analysis was further executed.
Better OS was found in the low-risk groups (Figure 4(a)).
The AUC values of ROC curve suggested the well predictiv-
ity of the risk trademark (Figure 4(b)). As the risk scores
were increasing, the more patients were dead
(Figures 4(c)–4(d)). NRLs expression was observed in the
testing set (Figure 4(e)), we found different set expressed
more in various groups.

3.5. Autonomous Prognostic Factors and Significance of the
Prediction Model. Risk score was found to act as the auton-
omous factor according to UCR and MCR (HR = 1:614,
95% CI: 1.454−1.793 and HR = 1:341, 95% CI: 1.173
−1.534, respectively) Figures 5(a) and 5(b). In addition, the
clinical characteristics, including age (AUC = 0:692), grade
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Figure 4: Affirmation of the risk model in test groups. The differences of OS in the two groups (a). Time-dependent ROC curves (b). The risk
score distribution of various groups (c). The survival status of patients in the two groups (d). The expression levels of 19 NRLs in risk models (e).
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Figure 5: The clinical values of the necroptosis-related lncRNAs risk model. The connection of clinical elements and risk score by UCR and
MCR (a, b). ROC curves of risk score, age, AJCC stage, gender, sex, and T, N, and M stages (c). The clinical features in two groups (d). The
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(AUC = 0:694), AJCC stage (AUC = 0:829), T stage
(AUC = 0:778), and M stage (AUC = 0:722), are all vital
for KIRC prediction (Figure 5(c)). The Chi-squared analysis
suggested that higher risk seems to have higher levels of
grade, AJCC stage, T stage, and M stage (Figure 5(d)). We
built a nomogram model using risk scores to predict OS in
KIRC patients (Figure 5(e)). The predictions of OS were
effective as presented in the calibration plot (Figure 5(f)).
The results suggested that both the risk and nomogram
models were accurate. The prognostic value of various clin-
ical features was demonstrated in the DCA plot
(Figure 5(g)). To detect the prognosis in diverse clinical ele-
ments, we evaluated the survival differences of KIRC
patients in various risk groups. Except for N stage, patients
in the low-risk groups have longer OS than the other group.
(Figures 6(a)–6(n)).

3.6. Functional Assessment of the Risk Feature. We per-
formed GSEA to assess the action of the risk model. Pro-
cesses significantly influenced the development of cancer,
including MYC targets V2, DNA repair, IL-6/JAK/STAT3
signaling, and immune response. These processes existed
more in the high-risk group, whereas metabolic processes
were embellished in the low-risk group (Figures 7(a)–7(t)).
The high-risk group can upregulate several pathways and
processes linked with tumor progression and immune
response, suggesting that necroptosis might influence the
treatment outcomes of immunotherapy according to analy-
sis using GSEA.

3.7. The Immune Infiltration Landscapes in Various Groups.
Immune checkpoint expression can influence the therapeu-
tic effects of chemotherapy and immunotherapy. We

assessed the levels of MSH6, BTLA, LOXL2, MSH2, POLE2,
BTNL2, PDCD1, TIGIT, and CTLA4 of patients from the
two risk groups. More immune checkpoints were found
among patients in the high-risk group (Figure 8(a)). More-
over, the interrelationship among risk scores and the
immune checkpoints, indicating that higher levels of
PDCD1, CTLA4, POLE2, TIGIT, BTLA, and BTNL2 were
related to higher risk scores, but the levels of MSH6 and
MSH2 were negative with the risk scores (Figure 8(b)).

ssGSEA were executed to catch the immune landscape
in the risk groups and verified the different infiltration
and components of the TME. Notably, we found that
the majority of the immune cells were not the same in
the two risk groups (p < 0:05). There were more immune
cells, including APC_co_stimulation (p < 0:001), CCR
(p < 0:001), CD8+_T cells (p < 0:001), cytolytic activity
(p < 0:001, HLA (p < 0:001), inflammation-promoting
(p < 0:001), macrophages (p < 0:001), parainflammation
(p < 0:001), pDCs (p < 0:005), T cell coinhibition
(p < 0:001), T cell costimulation (p < 0:001), T helper cells
(p < 0:001), Tfh (p < 0:001), Th1 cells and Th2 cells
(p < 0:001) in the high-risk group (Figure 8(c)). In addi-
tion, we identified 11 immune infiltration cells that has
a connection with risk score (Figure 8(d)).

Then “CIBERSORT” was applied to determine how
immune cell is expressed, indicating immune cells such as
plasma cells (p < 0:001), T cells CD8 (p = 0:02), T cells follic-
ular helper (p = 0:004), T cells regulatory (Tregs) (p < 0:001),
NK cells resting (p = 0:044), and macrophages M0 (p = 0:04)
expressed more in the high-risk groups, which further con-
firmed our conclusions (Figure 8(e)). Additionally, as the
risk scores were increasing, there were higher levels of the
aforementioned cells (Figure 8(f)).
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Figure 6: The different prognosis of clinical features in the risk model (a–n).
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3.8. Sensitivity in the Clinical Response. Immunotherapy
scores data was collected from TCIA database to differenti-
ate the immune responses of the two groups. We found that
patients without CTLA4 and PD-1 expressed had no differ-

ences in immunotherapy scores (Figure 9(a)). But either one
or two of them positive would lead to greater immunother-
apy scores (Figures 9(b)–9(d)). Subsequently, we examined
whether there exist a relationship in the risk groups and
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Figure 7: The GSEA analysis of the risk model (a–t).
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Figure 8: Continued.
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Figure 8: The immune infiltration in two groups. The immune check points expression and differences in two groups (a). The connection among
immune check points and the risk score (b). The immune infiltration with ssGSEA (c). The interaction in the immune cells and the risk score (d).
The immune infiltration with CIBERSORT in the two groups (e). The connection of immune cells changing along with risk score (f).
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chemotherapy sensitivity based on the IC50 values. The
results seem the same in axitinib or pazopanib
(Figures 9(e) and 9(f)). But more low-risk patients are sensi-
tive to sorafenib (p = 0:048), sunitinib (p < 0:001), and tem-
sirolimus (p < 0:001) (Figures 9(g)–9(i)). In conclusion, our
prognostic model can be a potential indicator of the effec-
tiveness of clinical treatment.

3.9. The Correlation between our Risk NRLs and the Related
Genes. We analyzed how our prognostic NRLs could influ-
ence each other, and what interested us was that the levels
of the prognostic NRLs including IGFL2-AS1, LINC01943,
U62317.1, LASTR, LINC01126, AC026401.3, MYOSLID,
APCDD1L-DT, AL162586.1, and NARF-IT1 were positive
in increasing risk scores (Figure 10(a)). Both lncRNA-
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mRNA expressed network was built up according to our risk
signature to find the related necroptosis genes
(Figure 10(b)). The Sankey diagram demonstrated the pro-
tective and risk factors of NRLs and the related mRNAs
(Figure 10(c)). Finally, we explored the biological function
of the related mRNAs, which were significantly associated
with the procession of the cell death and progression of the
cancer (Figure 10(d)).

3.10. Affirmation of 19 lncRNAs Expression in Tissues. We
explored 19 NRLs expression in normal (n = 72) and tumor
tissues (n = 539) of KIRC using datasets from TCGA
(Figure 11(a)). We found that, with the exception of the levels
of AC026992.1 (p < 0:01), AL158212.3, and ENTPD3-AS1
(p < 0:01), higher in normal tissues, other lncRNAs were all
higher in tumor tissues (Figures 11(b)–11(t)).

4. Discussion

lncRNAs have been identified as crucial regulators of various
kinds of cellular processes since they could function as
tumor suppressors. The upregulation of lncRNA will pro-
mote the proliferation and invasion of tumor, while knock-
down of its expression suppresses this process. It has been
reported in many studies that the lncRNAs are altered in
many types of cancers, and therefore the aberrant lncRNAs
expression levels can be applied as effective diagnostic

markers, and deregulated lncRNAs can be used as targets
in cancer treatment. In our study, a 19-NRL risk model
was built up by us to estimate the prognosis of KIRC
patients. The model presented unique advantages. We used
the UCR to select prognostic lncRNAs that are related to
necroptosis. In the meantime, risk models were constructed
using LCR. Finally, 258 patients were equally separated in
the high- or low-risk group to know the 19 lncRNAs. The
KM and ROC curve analyses were performed to know the
treatment effect of KIRC patients, which revealed that the
model was a powerful prediction tool. In addition, this
model could assess the different clinical characteristics; the
evaluated factors are age, gender, disease staging, grade,
and their related risk score. The estimated risk score was
independent with excellent sensitivity and specificity. Fur-
thermore, via GSEA, the high-risk group was found to
enhance tumor development and progression, which con-
firmed the differences in prognostic property based on clas-
sification by risk.

Some previous studies have contributed to the construc-
tion of the lncRNA-related model to predict the immune
infiltration landscape in KIRC. Chen et al. identified four
lncRNA predictive risk scoring models and found that
higher risk scores were associated with higher levels of
immune infiltration in the KIRC microenvironment. Higher
risk score will increase activation of six immune cells, the cell
types were mentioned before. [26]. Based on the extensive
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Figure 10: Coexpression between mRNAs and lncRNAs in our risk models and biological pathways of related mRNAs coexpressed with 14
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Figure 11: 19 lncRNAs expression in normal and tumor tissues in TCGA. (a) Heatmap showed the distribution of our 19 risk lncRNAs in
different tissues. (b) lncRNAs expression we found in normal tissues.
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participation of lncRNAs in biological processes, predicting
tumor immune infiltration and the prognosis by studying
the mechanism of action of lncRNAs would prove to be
helpful [27]. KIRC is considered an immunogenic tumor,
and infiltration of immunosuppressive cells would lead to
the development of a TME [28]. However, there are limited
studies on how necroptosis-related genes influence the TME
in KIRC. High-risk patients may have a higher immune
score and a poor prognosis, the same was reported by Xin
et al. They demonstrated that better OS was related to lower
immune scores. In addition, the high-risk group was infil-
trated with seven immune cells, followed by worse prognosis
[29]. Furthermore, we found that low-risk patients were
more susceptible to sunitinib, sorafenib, and temsirolimus
immunotherapy. High-risk groups expressed more immune
checkpoint genes, suggesting that TME could influence the
therapeutic effects in patients with KIRC. In conclusion,
necroptosis probably influenced the TME and immune cell
infiltration. Our risk model may provide a new perspective
to explore TMR in the future and could be applied to predict
immune cell infiltration.

Among the lncRNAs included in our model, IGFL2-AS1
was reported as a facilitation factor in metastatic tongue
squamous cancer [30]. LINC01943 was upregulated in triple
negative breast cancer (TNBC) tissues, which could regulate
TGF-β expression to promote tumorigenesis, leading to
worse OS [31]. U62317.1 acts as a risk factor in oral cancer
and tends to be associated with the lipid metabolic process
[32]. LASTR has been proved to promote the stomach ade-
nocarcinoma growth and lung cancer [33, 34]. LINC01126
could repress proliferation, increase apoptosis, and cause
inflammatory of hPDLCs in anaerobic environment via
sponging miR-518a-5p to promote periodontitis pathogene-
sis in humans [35]. AC026401.3 and IGFL2-AS1 were
involved in glycolysis and as a prognostic signature in KIRC
[36]. MYOSLID was involved in the growth of osteosarcoma
and amplifies the vascular smooth muscle differentiation
program [37, 38]. ENTPD3-AS1 could suppress renal cancer
via miR-155/HIF-1 signaling, which confirmed our results
[39]. Overall, referred to former researches, we observed that
the necroptosis-related risk lncRNAs identified in our study
are strongly associated with immune functions. Through the
identification of immune system gene set and NRL biomark-
ers, AC007376.2, AC007743.1, AC008050.1, AC026401.3,
AC026992.1, and L158212.3, and the analysis of how
immune checkpoint genes express, this work got a conclu-
sion for the association with the risk score and the predictive
genes of immunotherapeutic sensitivity such as PDL1, PD1,
CTLA4, and TIGIT.

The findings in this study can provide novel mechanisms
for KIRC. Novel biomarkers were identified, which may be
of significance in future studies. The effectiveness of clinical
treatment and differences in two groups were studied, to
predict tumor microenvironment and immunotherapy
response. We found that patients without CTLA4 and PD-
1 expressed had no differences in immunotherapy score.
However, either one or two of them positive would lead to
greater immunotherapy scores. Studying the certain connec-
tion with the risk groups and chemotherapy sensitivity

according to the IC50 values, there were no differences in
axitinib or pazopanib. To the contrary, patients in the low-
risk group were more sensitive to sorafenib, sunitinib, and
temsirolimus, allowing for clustering KIRK affected individ-
uals for a positive or negative response to immunotherapy.

Recently, several publications on NRLs have been pro-
duced, associated with different types of cancer, showing
the importance of necroptosis genes and their regulation
by lncRNAs. For instance, Luo et al. studied the association
of lncRNAs with stomach adenocarcinoma, focusing on a
twelve NRL signature which included LASTR, one of the
lncRNAs identified in this work as NRL for KIRC [40]. Liu
et al. studied lncRNAs in colon cancer and identified MYO-
SLID as associated to pyroptosis, linking this lncRNA to reg-
ulation of SKP1 expression via MIR-589-5p and to the miR-
29c-3p-mcl-1 axis [41]. The function of lncRNAs in seques-
tering and inactivating one or more miRNA species was
studied also in the necroptosis response in HCC [42]. In
breast cancer, Xu et al., Chen et al., Xie et al., and Zhang
et al. studied the link between tumor microenvironment
and NLR signatures [43–46], as well as miRNA signatures
[47]. An axis linking an lncRNA with a microRNA and the
target gene was shown in bladder cancer progression and
metastasis [48, 49]. A similar approach has been used to
study laryngeal squamous cell carcinoma [50].

However, there are several mechanisms of action per-
formed by lncRNAs, one of which is structural, interacting
with protein complexes and epigenetic regulators, such as
histone modifiers, polycomb complexes, and chromatin
complexes. Although several publications have indicated
the occurrence of necroptosis regulators in KIRC, very few
data are available on the involvement of lncRNAs in control-
ling or decreasing the neurotrophic signaling in kidney can-
cer, in particular based on OTUD6B-AS1, AL162377.1,
AC108449.2, AF111167.2, and hsa-miR-21-5p targeting
KLF9 [51–53]. To improve the therapeutic potential of kid-
ney cancer treatment, this paper provides an improved and
extended NRL signature model for KIRC that is able to dis-
tinguish low and high overall survival rates and response to
immunotherapies.

Still, this study has several limitations. Firstly, the valida-
tion of the test model is required. Secondly, larger multicen-
tre trials are required to endorse the accuracy of the model.
Moreover, more molecular experiments should be per-
formed on the selected lncRNAs to explore how they influ-
ence the progression of tumorigenesis and immune
infiltration in KIRC.

5. Conclusion

In conclusion, we established risk signatures to explore the
connection between necroptosis-related lncRNAs (NRLs)
and the prognosis of KIRC. Meanwhile, the relationship
between NRLs and the TME, immune infiltration, prognosis
prediction ability, and therapeutic effects in KIRC was inves-
tigated. The NRL risk model was constructed with the LCR
to categorize patients with various risks. The risk model sug-
gested that higher immune score might lead to worse prog-
nosis, and low-risk patient could be cured using
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chemotherapy and immunotherapy. Our research could
offer new opinions regarding the importance of necroptosis
in the TME and KIRC development.
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