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Evaluation of parameters for fetal 
behavioural state classification
Lorenzo Semeia1,2*, Katrin Sippel1,3, Julia Moser1,2 & Hubert Preissl1,3,4

Fetal behavioural states (fBS) describe periods of fetal wakefulness and sleep and are commonly 
defined by features such as body and eye movements and heart rate. Automatic state detection 
through algorithms relies on different parameters and thresholds derived from both the heart rate 
variability (HRV) and the actogram, which are highly dependent on the specific datasets and are 
prone to artefacts. Furthermore, the development of the fetal states is dynamic over the gestational 
period and the evaluation usually only separated into early and late gestation (before and after 
32 weeks). In the current work, fBS detection was consistent between the classification algorithm 
and visual inspection in 87 fetal magnetocardiographic data segments between 27 and 39 weeks 
of gestational age. To identify how automated fBS detection could be improved, we first identified 
commonly used parameters for fBS classification in both the HRV and the actogram, and investigated 
their distribution across the different fBS. Then, we calculated a receiver operating characteristics 
(ROC) curve to determine the performance of each parameter in the fBS classification. Finally, we 
investigated the development of parameters over gestation through linear regression. As a result, the 
parameters derived from the HRV have a higher classification accuracy compared to those derived 
from the body movement as defined by the actogram. However, the overlapping distributions of 
several parameters across states limit a clear separation of states based on these parameters. The 
changes over gestation of the HRV parameters reflect the maturation of the fetal autonomic nervous 
system. Given the higher classification accuracy of the HRV in comparison to the actogram, we 
suggest to focus further research on the HRV. Furthermore, we propose to develop probabilistic fBS 
classification approaches to improve classification in less prototypical datasets.

In 1974 Prechtl described for the first time ‘behavioural states’ in  infants1, which is a concept that was later applied 
to  fetuses2. Starting from 32 weeks of gestational age (GA), four fBS were identified, namely quiet sleep (1F), 
active sleep (2F), quiet awake (3F) and active awake (4F). The definition criteria of these states rely on body/
eye movement and heart rate patterns that are stable for at least 3 min (see Table 1). Fetal states can be detected 
even before 32 weeks of GA but, in this case, it is only possible to define periods of rest (quiet states, QS) and 
periods of activity (active states, AS;3. The distribution of these fBS has been found to be stable over  daytime4 
but depends on maternal  position5.

Fetal states were investigated in relation to fetal  health6, fetal  maturation7 and the development of the auto-
nomic nervous system (ANS)8,9, as well as in fetal cognitive  processing10. With the advancement of technology, 
it was possible to correctly classify states even without the usage of all defined indicators.

For example, Maeda  described11 how it was possible to define fBS without considering eye movements, adopt-
ing only the fetal heart rate and the gross body movement as available in the actocardiogram.

This also enabled the investigation of fBS using fetal magnetocardiography (fMCG). This device allows to 
non-invasively record the magnetic signal of the fetal heart directly through the maternal abdomen. Compared to 
classical CTG and ultrasound, fMCG provides a higher temporal resolution and it is less susceptible to maternal 
 interferences12. These recordings provide more accurate fetal heart dynamic parameters, like heart rate variability 
(HRV) measures.

The gold standard for fBS classification using fMCG is a visual inspection and classification of the fetal HRV 
and actogram by experts. To facilitate this classification, the original Nijhuis criteria (2, see Table 1) were adapted 
by Brändle et al. in 2015 (9, see Table 2). Due to the low occurrence of state 3F in this adaption only states 1F, 2F, 

OPEN

1IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, 
German Center for Diabetes Research (DZD), Otfried-Müller-Str. 47, 72076 Tübingen, Germany. 2Graduate 
Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, 
Germany. 3Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany. 4Department 
of Pharmacy and Biochemistry, Interfaculty Centre for Pharmacogenomics and Pharma Research, University of 
Tübingen, Tübingen, Germany. *email: lorenzo.semeia@student.uni-tuebingen.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-07476-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3410  | https://doi.org/10.1038/s41598-022-07476-x

www.nature.com/scientificreports/

and 4F were included. The fetal actogram describes the movement of the fetal body by calculating the spatial 
location of the highest heart activity amplitude (heart vector) for every single heartbeat, and follows the changes 
of this location within the sensor array over time.

Recently, some algorithms have been developed to automatically classify fBS, both in CTG 13 and in  fMCG14. 
Therefore, the original criteria defined by Nijhuis et al.2 had to be translated into values that could be used as 
classification thresholds by those algorithms.

To achieve the quality and accuracy of a visually-inspected evaluation performed by experts, automatic state 
detection algorithms rely on the combination of several heart and movement parameters and their more or less 
strictly defined thresholds. These thresholds are highly dependent on the specific datasets and, although this is a 
practical solution for the study of prototypical fetal physiology during the states, they are only applicable to those 
datasets in which no artefacts are occurring. Moreover, given the dynamic development of fBS over gestation, for 
classification purposes researchers usually separate the early and the late gestation (before and after 32 weeks of 
GA). Altogether, these factors make it difficult to obtain a satisfactory classification of fBS. In the current work 
we aim to perform an exploratory analysis of commonly used fBS classification parameters, like variability in 
the heart-rate or in the actogram, to determine the reliability of these parameters. Secondly, the development of 
these parameters over gestation is investigated.

The first part (Step1, “Parameter distribution and thresholds”) of the current work will investigate the accuracy 
of the fBS classification parameters. Therefore, we analysed the distribution of the main parameters commonly 
used in fBS algorithms.

Second (Step2, “Best classifier”), we want to verify which of the heart-rate (HR) or movement parameters are 
the best parameters for state classification performance both in early as in late gestation.

Finally (Step3, “Changes over time”), we investigate changes and development of these parameters over the 
last trimester of gestation, in order to highlight possible age-dependent trends.

Methods
Fetal magnetocardiography. The fetal magnetocardiographic data used in the current work are recorded 
using a fetal Magnetoencephalography (fMEG) device. fMEG is a non-invasive device for the recording of brain 
and heart activity of fetuses in the last trimester of gestation, and of newborns in the first weeks of  life15. The 
datasets included in the current study were recorded using a SARA (SQUID Array for Reproductive Assess-
ment, VSM MedTech Ltd., Port Coquitlam, BC, Canada) system available at the fMEG Center at the University 
of Tuebingen, Germany. All the recordings were sampled with a frequency of 610,3516 Hz. This device compre-
hends 156 magnetic sensors and 29 additional reference sensors. These sensors are placed in a concave array, 
designed to match the maternal abdomen. In order to limit the influence of external magnetic fields, the device 
is placed in a magnetically shielded room (Vakuumschmelze, Hanau, Germany).

Datasets. The 169 original fMEG datasets (117 for fetuses younger than 32 weeks of GA) used in the cur-
rent analysis come from previously published  studies16,17. All recordings were performed in the morning. In 
addition, previous data showed that the fBS distribution is stable over  daytime4. These datasets were previously 
screened for good quality of the raw data in terms of absence of large amplitude artefacts. These studies were 
approved by the Ethical Committee of the Medical Faculty at the University of Tuebingen (No. 476/2008MPG1 
and 339/2010BO1). All the participants to these studies gave their informed consent in accordance to the Dec-
laration of Helsinki and agreed for the usage of the data in further studies. The datasets include recordings of 
spontaneous activity as well as recordings during an auditory paradigm. The datasets length varies between 6 
and 15 min.

Table 1.  Fetal behavioural states original criteria defined by Nijhuis et al. in  19822.

State 1F State 2F State 3F State 4F

Body movements Incidental Periodic Absent Continuous

Eye movements Absent Present Present Present

Heart rate patterns
Stable heart rate, with small oscilla-
tion bandwidth. Accelerations strictly 
related to movement

Wider oscillation bandwidth com-
pared to 1F. Frequent accelerations 
related to body movements

Stable heart rate. No acceleration 
and higher oscillation bandwidth 
compared to 1F

Unstable heart rate. Long lasting 
accelerations, often with tachycardia

Table 2.  Fetal behavioural states definition criteria by Brändle et al. from  20159.

1F 2F 4F

Baseline  < 160 bpm  < 160 bpm  > 160 bpm possible

Oscillation bandwidth  ≤  ± 7.5 bpm  ± 7.5 – ± 15 bpm  >  ± 15 bpm

Accelerations No  > 15 bpm/ > 15 s  > 30 bpm/ > 30 s

Movement No Yes Yes



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3410  | https://doi.org/10.1038/s41598-022-07476-x

www.nature.com/scientificreports/

Preprocessing. The data preprocessing was performed using Matlab R2016b (The MathWorks, Natick, MA, 
USA). R-peak detection of maternal and fetal heart has been performed using  FLORA18. Maternal heart inter-
ference was removed by  FAUNA19. HRV parameters in the time domain (mean heart-rate (HR), the standard 
deviation of normal to normal R-R intervals (SDNN) and the root mean square of successive differences between 
normal heartbeats (RMSSD) were calculated for the fMCG  signals20. Finally, the fetal actogram and cardiogram 
were calculated as described by Govindan et al.21. The actogram describes the spatial location of the highest fetal 
cardiac signal in relation to the magnetic sensors for each time point, and is therefore a measure for fetal activity 
and movement.

Fetal states analysis. The fetal behavioural state underlying the datasets was automatically detected using 
an algorithm adapted from the work of Vairavan et al.14 and implemented in Matlab R2019b.

We tested the algorithm on three groups based of the fetal gestational age (GA), an early, a middle, and a late 
group. The early group includes datasets from fetuses between 27 and 32 (27 0/1–32 6/7) weeks of GA, the middle 
group fetuses between 33 and 36 (33 0/1–36 6/7) weeks of GA, and the late group includes fetuses between 37 
and 39 (37 0/1–39 6/7) weeks GA. According to the work of Vairavan et al.14, the percentage of accelerations in 
the HR, the standard deviation of the HR (σ(HR)) and the percentage of points above 160 bmp were computed. 
The thresholds for these values used in our algorithm are also from Vairavan and  collaborators14. To differentiate 
between active and passive states in fetuses from 27 to 29 (27 0/1–29 6/7) weeks of GA we applied the threshold 
of 5.54% of accelerations for dividing between passive (≤ 5.54%) and active (> 5.54%) states. This threshold is 
based on Vairavan et al.14, where it is used for dividing between active and passive states between 30 and 36 (30 
0/1–36 6/7) weeks of GA.

Out of the included 169 datasets, a state was classified for approximately 80% of the total data length. In the 
remaining 20% of data, the variability of parameters used for classification (e.g. the percentage of acceleration 
in the HR) was exceeding the tolerance of the detection algorithm, thus preventing a fBS classification. This 
variability is likely due to transitions between states or to signal noise.

To maintain a reasonable amount of data for each group, we considered the middle and late group as a whole 
late group for all the further analyses. From the algorithm outputs, 120 data segments (from 85 different record-
ings performed in 52 subjects) were selected based on a clear detection of the behavioural state: 31 for active and 
27 for passive in the early group, 31 for 1F and 31 for 2F in the late group. The goal of the selection was to have 
an equivalent amount of datasets in each group however, no more than 27 passive state windows were available. 
Yet, a lower occurrence of passive states is  expected22. 3F and 4F were not included because we were not able to 
detect enough data segments. The mean duration of these 120 data segments was 266 ± 44 s.

The data segments were then visually evaluated by two experts to gain security about the result of the auto-
matically classified states. There was agreement between the two raters in 96 windows (80% agreement). 87 out 
of these 96 windows were also in agreement with the automatic states classification algorithm. Following this 
procedure, our further analysis only contains those 87 datasets in which there was accordance between all 3 
ratings (see Table 3).

Parameters definition. The following parameters, which are based on the states definition criteria reported 
in Table 1 and Table 2, are included in the further analysis. For a summary of the parameters see Table 4.

Classical HRV parameters (mean HR, SDNN-RR and RMSSD-RR) are calculated on the RR intervals in 
order to verify whether their values are comparable to previous work which investigated  fBS9. Therefore, their 
classification accuracy and development over time are not further investigated.

Table 3.  Characteristics of the 87 data segments that were chosen for further evaluation [mean ± standard 
deviation].

Passive Active 1F 2F

Windows length, in seconds 288.63 ± 30.83 252.81 ± 43.98 283.60 ± 34.07 250.00 ± 52.98

Number of windows 19 31 15 22

GA, in weeks 29.21 ± 1.47 29.52 ± 1.43 35.13 ± 1.41 34.95 ± 1.65

Table 4.  Summary of the parameters used in the current work.

HRV Actogram

STD-baseline RMSSD-actogram

% points outside ± 5 bpm STD-actogram

% points outside ± 7.5 bpm

RMSSD-HR

STD-HR

Correlation between cardiogram-actogram
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In the HRV we defined A) Baseline standard deviation (STD-baseline). The baseline is defined as smoothing 
the HR in a two minutes moving window with 1 s shift. We considered the baseline standard deviation as an 
index of variability in the heart rate. B) Percentage of points outside the ± 5 bpm oscillation bandwidth (% points 
outside ± 5 bpm), based on Nijhuis et al.2. The oscillation bandwidth is defined as the area between the baseline 
and the baseline ± 5 bpm. C) Percentage of points outside the ± 7.5 bpm oscillation bandwidth (% points out-
side ± 7.5 bpm) based on Brändle et al.9. The oscillation bandwidth is defined as the area between the baseline and 
the baseline ± 7.5 bpm. D) Root mean square of successive differences in the HR (RMSSD-HR). This parameter 
has been chosen as an index of short-term variability in the heart rate. In contrast to the classical HRV parameter 
RMSSD, which is calculated on the time differences between successive R peaks, this parameter is directly calcu-
lated on HR values. E) Heart rate standard deviation (STD-HR). This is an index of variability in the heart rate.

In the actogram we defined F) Root mean square of successive differences in the actogram (RMSSD-acto-
gram). This parameter has been selected as an index of short term variability in the actogram. G) Actogram 
standard deviation (STD-actogram). This is an index of variability in the actogram.

Finally, since in the original definition by Nijhuis et al.2 fBS are also defined based on the relation between 
heart-rate and movement accelerations, we calculated the correlation between cardiogram and actogram to 
explore whether this parameter could be used for states classification.

Statistics. Statistics were performed with Matlab R2019b for Windows. Before proceeding, outliers for each 
of the parameters, defined as a value exceeding the mean ± 3 standard deviations, were removed. Then, the Kol-
mogorov–Smirnov test was used to test the normality assumption required by the following statistical analysis.

Step 1. Parameter distribution and thresholds. We tested the hypothesis that there is a difference 
between HRV, cardio- or actogram parameters between active and passive (H1: μActive—μPassive ≠ 0), or 
between 1 and 2F (H1: μ2F—μ1F ≠ 0), state.

A t-test was performed for the analysis of the different parameters between active and passive, and between 1 
and 2F, state After Bonferroni correction for N = 10 different parameters, the significance level was set to p < 0.005.

Step 2. Best classifier. Receiver operating characteristics (ROC) curves were defined to verify the perfor-
mance of each parameter in classifying a state.

Step 3. Changes over time. Finally, to detect the development of parameters during gestation, linear 
models were built for each parameter. In the models, we combined passive (early passive + 1F) and active (early 
active + 2F) states between 27 and 39 weeks of GA. The model was defined as:

where y is one of the parameters included in the current analysis, β0 is the intercept, β1 the regression coeffi-
cient, X the gestational age, and ε the error in the estimate. Model values of p < 0.05 were considered statistically 
significant and effect size, defined by  r2, was calculated.

Results
Step 1. Parameters distribution and thresholds. HRV parameters. The t-test between states re-
vealed no difference in the mean HR both between passive and active state in the early gestation (t(48) = 1.46, 
p = 0.15), and between 1 and 2F in the late gestation (t(35) = 0.38, p = 0.70) (Fig. 1a). SDNN-RR was higher in 
active compared to passive state (t(45) = 9.20, p < 0.001), and higher in 2F compared to 1F state (t(35) = 7.36, 
p < 0.001) (Fig. 1b). Finally, RMSSD-RR was higher in active compared to passive state (t(48) = 10.43, p < 0.001), 
and higher in 2F compared to 1F (t(35) = 6.40, p < 0.001) (Fig. 1c).

y = β0+ β1X + ε

Figure 1.  Box and whiskers plots of the HRV parameters in the four defined states. Depicted are the median 
(central mark), and the 25th and 75th percentile (bottom and top edges of the box, respectively). (a) Heart rate 
in beats per minute (bpm). (b) Standard deviation of normal to normal R-R intervals, in milliseconds (ms). (c) 
Root mean square of successive differences between normal heartbeats, in milliseconds (ms).
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Although two out of three HRV parameters showed a significant difference both in early and in late gestation, 
only the RMSSD-RR values in the early gestation could be separated by a single threshold. The distributions of 
all other parameters overlap.

Cardio- and actogram parameters. In the early gestation, the t-tests revealed that all parameters were higher in 
active compared to passive states: ‘STD-baseline’ (t(45) = 5.59, p < 0.001), ‘% points outside ± 5 bpm’ (t(46) = 13.47, 
p < 0.001), ‘% points outside ± 7.5 bpm’ (t(46) = 14.16, p < 0.001), ‘RMSSD-HR’ (t(42) = 13.54, p < 0.001), ‘STD-
HR’ (t(44) = 13.80, p < 0.001), ‘RMSSD-actogram’ (t(43) = 3.46, p = 0.001), and ‘STD-actogram’ (t(42) = 4.22, 
p < 0.001).

Also in late gestation, the t-tests revealed that all parameters were higher in 2F compared to 1F: ‘STD-base-
line’ (t(34) = 5.28, p < 0.001), ‘% points outside ± 5 bpm’ (t(32) = 16.73, p < 0.001), ‘% points outside ± 7.5 bpm’ 
(t(35) = 15.91, p < 0.001), ‘RMSSD-HR’ (t(32) = 6.97, p < 0.001), ‘STD-HR’ (t(32) = 11.65, p < 0.001), ‘RMSSD-
actogram’ (t(32) = 3.67, p < 0.001), and ‘STD-actogram’ (t(34) = 4.07, p < 0.001).

Although all of the seven cardio- and actogram parameters show significant differences in their distribution 
in early and late gestation, only three parameters in early and two in late gestation could be separated by a single 
threshold, while the distributions of all the other parameters overlap (see Fig. 2).

For details about the mean parameters values, see supplementary table 1 and supplementary table 2.

Correlation cardiogram-actogram. Correlating the cardiogram and the actogram, the t-tests revealed no dif-
ference in the mean r-value between passive (M = -0.01, SD = 0.22) and active (M = 0.08, SD = 0.26) state in the 
early gestation (t(48) = 1.32, p = 0.19). There was a significant difference between 1F (M = 0.09, SD = 0.21) and 2F 
(M = 0.28, SD = 0.27) in the late gestation (t(35) = 2.33, p = 0.03) (see Fig. 3).

Step 2. Best classifier. ROC analysis. In the early gestation, ‘% points outside ± 5 bpm’, ‘% points out-
side ± 7.5 bpm’, ‘STD-HR’ and ‘RMSSD-HR’ are perfect classifier (AUC = 1), ‘STD-baseline’ has a high perfor-
mance (AUC = 0.93), ‘RMSSD-actogram’ (AUC = 0.80) and ‘STD-actogram’ (AUC = 0.83) perform less com-
pared to the other classifier (see Fig. 4a).

In the late gestation the results are very similar. ‘% points outside ± 5 bpm’, ‘% points outside ± 7.5 bpm’, ‘STD-
HR’ are perfect classifier (AUC = 1), ‘STD-baseline’ (AUC = 0.92) and ‘RMSSD-HR’ (AUC = 0.98) have a high 
performance, ‘RMSSD-actogram’ (AUC = 0.87) and ‘STD-actogram’ (AUC = 0.86) perform less compared to the 
other classifier (see Fig. 4b).

Step 3. Changes over time. Development of parameters over gestational age, not divided by fBS. First 
of all, we tested whether the parameters change with GA regardless the fBS (see supplementary table 3). The 
parameters did not show any general change during development.

Development of parameters over gestational age, divided by fBS. Furthermore, we investigated whether the 
parameters change over time depending on the fBS. For this analysis, we combined passive (early passive + 1F) 
and active (early active + 2F) states to detect their general evolution over time (see supplementary table  4). 
Only the ‘RMSSD-HR’ showed a difference between states. In particular, the decline can be seen in active states 
(p = 0.01,  r2 = 0.13) but not in passive states (p = 0.30; Fig. 5).

Development of the correlation cardiogram-actogram over gestational age. Thirdly, we looked at the evolution 
of the correlation between cardiogram and actogram over time (Fig. 6a). We found an overall increase of the 
r-values over gestational age (p = 0.001,  r2 = 0.18).

Introducing the behavioural state as further parameter, we found an increase in the correlation between 
actogram and cardiogram for active states (p < 0.001,  r2 = 0.22) but not for passive states (p = 0.2) (Fig. 6b).

Discussion
This work systematically investigated different parameters commonly used for fBS classification. Although nearly 
all investigated parameters differed significantly in their distribution between active and passive state, or between 
1 and 2F, only a few of these parameters had non-overlapping distributions, preventing a clear separation and 
classification of the states.

Furthermore, we identified two parameters that continuously changed during fetal development. We therefore 
argue that they are not suitable for a general fBS classification.

Step 1. Parameters distribution and thresholds. The first aim of the current work was to investigate 
the distribution of properties of the acto- and cardiogram over fetal behavioural states. As expected, different 
parameter distributions are representative for the different states, as confirmed by the significant differences 
between parameters across states. Moreover, our HRV parameters (mean HR, SDNN-RR and RMSSD-RR) were 
in line with previous  works9.

Some emphasis should be put on the parameters ‘% points outside ± 5 bpm’ and ‘% points outside ± 7.5 bpm’. 
For example, in Brändle et al.9, the authors operationalised the variability of the HR considering the oscillation 
bandwidth in which the HR could vary. Specifically, it is assumed that the HR does not exceed the [baseline ± 7.5] 
bpm in state 1F. Although this value could efficiently divide between active and passive states during early or 
late gestation, this threshold was exceeded in each data-window. In states classified as passive, up to 4% of the 
total data points exceeded this value. This raises the question, whether the threshold value should be increased 
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(e.g. ± 10 bpm), or whether an increase would instead classify active states as passive and vice-versa. Our sugges-
tion would be to define a certain tolerance around this threshold. For example, in our datasets this value could 
be exceeded in 5% of data points in a passive state and still provide the same results in terms of classification.

Another point is the correlation between the cardiogram and the actogram. In Nijhuis et al.2, the authors 
defined the fBS by means of the different ways heart-rate and body movement relate to each other. As a proxy for 
this coupling, in our work we explored how heart rate and body movement are related through analysis of the 
correlation between the two signals. Generally, the correlation was weak, with r-values both positive and negative 
(Fig. 3). Given the high variability and wide overlap of this parameter over fBS, this parameter does not appear 
specific of a particular state. However, as discussed later, this index has interesting developmental characteristics.

Figure 2.  Parameters distributions divided by gestational age. (a) STD-baseline (bpm). (b) % points 
outside ± 5 bpm. (c) % points outside ± 7.5 bpm (%). (d) RMSSD-HR (bpm). e) STD-HR (bpm). (f) RMSSD-
actogram, in centimeters (cm). (g) STD-actogram, in centimeters (cm).
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Figure 3.  Correlations between cardiogram-actogram. Depicted are the median (central mark), and the 25th 
and 75th percentile (bottom and top edges of the box, respectively).

Figure 4.  Receiver operating characteristics (ROC) curve for (a) early gestation and for (b) late gestation.

Figure 5.  Decrease over gestational age of RMSSD-HR (bpm) in active but not passive fBS.
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Step 2. Best classifier. The ROC analysis revealed that the parameters derived from the HRV have very 
high classification performance, as noted by the AUC of almost 1 in every case (Fig. 4). Even though movement 
plays an important role in the initial Nijhuis criteria, the actogram parameters, as defined in the current work, 
show the worst classification performance with an AUC around 0.80.

Therefore, at least in the frame of fMCG recordings, we argue that the actogram does not improve an auto-
matic fBS classification. However, it should be considered that the actogram only represents gross-body move-
ments and does not represent the movements of extremities.

Step 3. Changes over time. We found a decrease over gestation in the parameter ‘RMSSD-HR’ in active 
states but not in passive states (Fig. 5). Even though there is no accordance on the development of short term 
variability in the heart patterns during the last trimester of gestation, with some works reporting an  increase23 
and others no  changes9, in our case we found a decrease which depends on the activity state (Fig. 5).

The progressive decline in short-term variability in the heart-rate, as expressed in our findings by the ‘RMSSD-
HR’, makes the distinction between active and passive states, based on this parameter, less clear as gestational age 
increases. This is compatible with evidence for no substantial differences in short term variability in the heart-rate 
across different sleep stages later in childhood and  adolescence24.

Furthermore, we found an increasing correlation following gestational age between cardiogram and actogram 
only in active states (Fig. 6). One reason for the developmental change of this relationship could be the shorten-
ing, over gestation, of the lag between fetal heart-rate changes and fetal trunk movement onset. Supporting this 
hypothesis, for example, Zhao et al.25 found that the coupling between these two elements in fact rarely occurs 
before 36 weeks of GA.

These developmental trends, found in the correlation between cardiogram and actogram, and in the ‘RMSSD-
HR’, could reflect the maturational changes of the fetal autonomic nervous system and make these parameters 
less suitable for fBS analysis over different gestational ages. In particular, these parameters vary not only between 
early and late gestation, but also within these time frames at least in active states.

Limitations and outlook. In the present analysis wake states, like 3F and 4F were excluded due to their 
low occurrence. Including a substantially higher number of datasets could shed light on the parameter distri-
bution over these fBS. Moreover, in contrast to Vairavan et al.14, we grouped together fetuses from the middle 
(32–36 weeks of GA) and late (37–39 weeks of GA) in a whole late group.

Furthermore, the data segments included in the current analysis were selected by a states detection algorithm 
and validated by two external raters, which results in selecting very prototypical data segments. In the algorithm 
used in this study (adapted from Vairavan et al.14), data segments with a parameter distribution that does not fit 
the prototypical characteristic of a certain fBS are discarded. Therefore, an algorithm with clearly defined thresh-
olds has a problem with classifying less clear datasets, or datasets with a transition between states. Classification 
of transitions between wake and sleep states is not only relevant for understanding basic sleep physiology, but 
also for the study of cognitive  processing26.

To improve the detection of fBS, one option could be to consider the probability of the fetuses being in one 
of the fBS compared to the others. In fact, considering the distribution of parameters reported before, it appears 
that a certain value for a parameter is more likely to occur in a certain state compared to another state. This likeli-
hood could be used for a more dynamic state detection, accounting for transitions. Another approach could then 
be a dynamic definition of the fBS using the fetal brain data extracted during the measurement. fMEG allows, 
theoretically, to also use the fetal brain activity as an additional parameter. Even in preterm infants, for example, 

Figure 6.  (a) Increase of the correlation cardiogram-actogram regardless the fBS. (b) This increase is driven by 
the significant increase of correlation during active states.
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a state classification based on the electroencephalographic data is at the moment the frontier for automatic state 
 classification27.

Conclusion
Our results indicate that HRV parameters have a higher classification accuracy in comparison to those extracted 
from the actogram. Therefore, we propose for the automation of fBS detection to concentrate on the HRV instead 
of body movement as defined by the actogram. Moreover, the changes over time in some of the parameters in our 
opinion disqualify them from being part of a fBS classification algorithm that simply divides fetuses into early 
and late groups. In fact, given the parameters continuous change over time, we instead suggest to consider fetal 
gestational age in weeks. State of the art algorithms, like the one from Vairavan et al.14, are easily applicable and 
partly reflect the original fBS definition criteria. On the other side, these algorithms may be too simplistic, thus 
failing to grasp more complex physiological events such as transitions between states. Based on these conclusions, 
our suggestion is therefore the development of a probabilistic approach for the fBS detection that is more dynamic 
in detecting the alternating patterns between wake and sleep, which could possibly include fetal brain parameters.

Data availability
The datasets adopted in the current study are available from the corresponding author on a reasonable request.
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