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Osteoarthritis (OA), a chronic debilitating joint disease affecting hundreds of million people
globally, is associated with significant pain and socioeconomic costs. Current treatment
modalities are palliative and unable to stop the progressive degeneration of articular cartilage in
OA. Scientific attention has shifted from the historical view of OA as a wear-and-tear cartilage
disorder to its recognition as a whole-joint disease, highlighting the contribution of other knee
joint tissues in OA pathogenesis. Despite much progress in the field of microfluidic systems/
organs-on-a-chip in other research fields, current in vitromodels in use do not yet accurately
reflect the complexity of the OA pathophenotype. In this review, we provide: 1) a detailed
overview of the most significant recent developments in the field of microsystems approaches
for OA modeling, and 2) an OA-pathophysiology-based bioengineering roadmap for the
requirements of the next generation ofmore predictive and authenticmicroscale systems fit for
the purpose of not only disease modeling but also of drug screening to potentially allow OA
animal model reduction and replacement in the near future.

Keywords: osteoarthritis, organs-on-a-chip, microphysiological system (MPS), roadmap, disease modeling,
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INTRODUCTION

Osteoarthritis (OA), a chronic degenerative joint disease associated with substantial morbidity, disability,
and reduced quality of life is the most common musculoskeletal disease affecting approx. 240 million
people worldwide (March et al., 2016). Although OA is characterized by cartilage degeneration,
inflammation, (premature) cartilage ageing, chondrocyte senescence, and phenotypic transitions
(dedifferentiation and hypertrophic differentiation of chondrocytes), it is a disease of the entire joint
(see Figure 1 for an overview), affecting all articular tissues because of their physical and functional
association (Loeser et al., 2012). Current treatment strategies are only palliative and have little impact on the
progressive degeneration of articular cartilage (Barry andMurphy, 2013). Driven by the unmet therapeutic
need to reduce or reverse disease progression by either drugs or regenerative tissue engineering approaches,
translational disease models for OA are key for the study of disease mechanisms, refinement of diagnostic
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methods, development of intervention strategies as well as
identification of potent and effective disease-modifying therapeutic
agents. The current review aims to outline the recent progress in OA
modeling in vitro using advanced three-dimensional on-a-chip
approaches and to provide a summary of essential aspects of the
articular microenvironment and OA pathophysiology as the basis for
a technological roadmap for the development of disease-relevant
articular and OA joint tissue models in the second part of this review.

THE (PATHO-)PHYSIOLOGICAL
ARTICULAR MICROENVIRONMENT AS
BLUEPRINT FOR MORE
DISEASE-RELEVANT IN VITRO
OSTEOARTHRITIS MODELS

The Complex Physiology of a Joint
Throughout the human body, the three distinct types of skeletal
joints are classified as either fibrous joints (synathroses),
cartilaginous joints (amphiarthroses), or synovial joints

(diarthroses) with their basic function of connecting skeletal
parts such as the bone (Lawry and Bewyer, 2010; Zhang et al.,
2015). Within the joint, the movements of the bones may be
sliding, angular, and external or internal rotation. Among these
types, synovial joints are the most complex structures with seven
subclasses and a variety of mechanical functions (Lawry and
Bewyer, 2010). The joint capsule is filled with synovial fluid (SF)
and the synovial membrane continuously extends from the
periosteum to the perichondrium secreting molecules such as
lubricants into the joint cavity. Articular cartilage provides a
smooth yet resilient surface for sliding between bone structures.
Ensconced within the extracellular matrix of cartilage is a sparse
population of chondrocytes (approx. 2% of the total volume of
adult articular cartilage) as the sole resident cell type adapted to
the low oxygen levels in its environment. Chondrocytes are
phenotypically stable, maturationally arrested differentiated
cells that maintain tissue homeostasis by synthesizing a very
low level of matrix components to replace damaged matrix
molecules, thereby preserving the structural integrity of the
cartilage matrix (Goldring et al., 2011; Gilbert et al., 2021).
Within their ECM, chondrocytes are surrounded by a narrow
(2–4 μm thick) pericellular matrix (PCM) that is both
biochemically and biomechanically (Young’s modulus
23–59 kPa) distinct from the ECM (Young’s modulus
≈500 kPa) and together with the ensconced cells is referred to
as a chondron (Mow and Guo, 2002; Guilak et al., 2005; Gao et al.,
2014; Chery et al., 2021). The extra- and pericellular matrix zones
transmit the depth-dependent dynamic mechanical stimuli,
comprising a combination of compression, hydrostatic
pressure, shear stress, osmotic stress, and tensile strain, to the
mechanosensitive chondrocytes, which in turn adjust cartilage
metabolism depending on the magnitude, frequency, strain rate
and nature of the applied load (Natenstedt et al., 2015; Gilbert
et al., 2021; Statham et al., 2021). The bidirectional reciprocity in
cartilage mechano-signaling enables chondrocytes to sense load
application, including altered loading patterns, and in turn adjust
matrix composition in response to mechanical cues. In this
context, the PCM is pivotal in modulating the mechanical
environment of the chondrocyte and regulating
mechanotransduction in chondrocytes by transmitting
biomechanical, biophysical, and biological signals between the
ECM and chondrocytes (Mow and Guo, 2002; Gao et al., 2014;
Chery et al., 2021). Based on the collagen fiber arrangement,
distinct zonal chondrocyte phenotype, the density of
proteoglycans, and expression of zone-specific markers, mature
articular cartilage can be structurally and functionally divided
into three distinct zones being the superficial (tangential) zone,
the middle (transitional) zone, and the deep (radial) zone. A
perpendicular tidemark region integrates the hyaline cartilage
layer with the underlying calcified cartilage and subchondral bone
(Bonnet and Walsh, 2005; Chauffier et al., 2012; Candela et al.,
2016; Broeren et al., 2019). The subchondral bone is important
for cartilage homeostasis as the stiffness of the underlying
subchondral bone severely affects chondrocyte
mechanosignaling (Carter et al., 2004; Zhen et al., 2021).

Reflecting on what has been mentioned earlier, successful
recapitulation of an authentic joint environment in vitro needs to

FIGURE 1 | The fine line of tissue homeostasis in OA. (A) A plethora of
structural and biochemical tissue factors such as extra- and pericellular matrix
(ECM/PCM) biosynthesis, cytokine expression, protease expression and
metabolic activity of cells guide the dysfunctional progression of OA joint
tissues. (B) Changes in the distribution, occurrence, and activity of a variety of
tissue-specific cell types mediate the structural decline of OA joint tissues with
characteristic pathophysiological cell activation and proliferation, synovial
lining thickening, and cell clone formation/clustering as well as pathological
hypervascularization and bone deposition (calcification). Created with
permissions from Biorender.com.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 8863602

Rothbauer et al. A Roadmap to OA Microsystems

http://Biorender.com
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


take many factors into account including general anatomical and
structural as well as cellular, molecular, and biophysical properties.

The Synovial Fluid is More Than Just an
Ultrafiltrate
Having established on the overall joint anatomy, mechanics, and
function, the role of intra-articular pressure (IAP) and the role of
synovial fluid will be briefly outlined in the following. As hyaline
cartilage is avascular, aneural, and alymphatic, synovial fluid and
adjacent tissues provide its nutrient and oxygen supply and waste
removal via loading-dependent transport through the ECM (pore
size 2–10 nm) (Chahine et al., 2005), resulting in an oxygen
gradient of 9%–2% and an osmolarity of 350–450 mOsm
(Brighton et al., 1971; Urban et al., 1993; Rajpurohit et al.,
1996; Sieber et al., 2020). Synovial fluid is a viscoelastic
ultrafiltrate of plasma through the semipermeable synovial
membrane supplemented with macromolecules secreted by
synoviocytes (Levick and McDonald, 1995; Freemont, 1996;
Sabaratnam et al., 2005; Blewis et al., 2007). Due to the
plasma ultrafiltration, which allows proteins to cross only to a
limited extent, physiological SF total protein (TP) concentration
is approximately 25%–35% of the plasma protein concentration,
while the glucose and electrolyte concentrations are similar to
plasma (Weinberger and Simkin, 1989; Gobezie et al., 2007; Ritter
et al., 2013). In healthy knee joints, the synovial fluid pressure is
similar to the negative subatmospheric IAP of around −3 mmHg
(Jayson and St Dixon, 1970; Blake et al., 1989) and stabilizes the
whole joint keeping tissue portions in place. During exercise, the
biomechanical forces on anatomical knee structures can almost
triple and consequently lead to a rise in IAP above the capillary
perfusion pressure (Kutzner et al., 2010) as well as shear force
generation of around 20–30 dyn/cm2 (Tirtaatmadja et al., 1984;
Hlaváček, 1995; Levick and McDonald, 1995; Schett et al., 2001).
In turn, this impedes synovial perfusion via blood vessels and
results in a more hypoxic environment during activity (Geborek
et al., 1989). A rise in IAP as well as hypoxia can be also observed
in OA patients. In addition, fluid pressure turbulences caused by
fluid shear at the endothelial cell surface can promote
inflammatory escalation (Albarrán-Juárez et al., 2018).

Thoughts on theMechanosensitive Synovial
Membrane
The synovial membrane, which produces and maintains the
specialized physical, cellular, and biochemical synovial
environment, consists of two distinct layers: the synovium
intima or lining, which is comprised of secretory fibroblast-
like synoviocytes (FLS, 70–90% of the total cell population)
and macrophage-like synoviocytes (MLS), and the underlying
synovium subintima or sublining with an extensive system of
lymphatics for clearance of transported molecules (Xu et al., 2003;
Blom et al., 2004; Blewis et al., 2007; Hirschmann et al., 2007;
Kiener et al., 2010; Zhang et al., 2019; Onuora, 2020). Both
synoviocyte types are mechanosensitive and
mechanoresponsive and exposed to a dynamic environment of
mechanical stimuli including fluid- and contact-induced shear

stress (Estell et al., 2017; Han et al., 2020; Thomson and Hilkens,
2021). Indeed, biomechanical stimuli, such as fluid-induced shear
stress have been shown to influence FLS biosynthesis and
modulate the effect of cytokines on FLS production of
cartilage degrading enzymes (Estell et al., 2017; Han et al.,
2020; Thomson and Hilkens, 2021). Similarly, mechanical cues
are reported to guide macrophage activation and polarization as
well as macrophage-chondrocyte cross-talk and to act as an
immunomodulatory stimulus for macrophages (Estell et al.,
2017; Han et al., 2020). Consequently, fluid pressure, fluid
shear, as well as turbulences within the joint
microenvironment can significantly influence the physiology
and pathological progression of many musculoskeletal cell
types including synoviocytes, endothelial cells, and chondrocytes.

This means that reengineering an authentic biophysical niche
of a joint must consider many biophysical principles to create an
in vivo-like environment for in vitro cell cultures.

Soluble Tissue Crosstalk Contributes Many
Vital Factors in Osteoarthritis Onset and
Progression
Overall, the plethora of tissue types with distinct physical,
mechanical, cellular, biochemical, and structural properties are
conflating to create the complex microenvironment of a joint.
This simple fact already teases that a single tissue-centered view
cannot be a successful strategy to investigate a multifactorial
musculoskeletal disease such as OA. The pathogenesis of OA is
multifaceted, involving mechanical, cellular, and molecular
processes, inflammation, metabolic dysfunction, and epigenetic
modifications, and is orchestrated by cellular crosstalk of
chondrocytes, synovial macrophages and fibroblasts,
osteocytes, and infiltrating leukocytes, as well as alterations in
the extracellular matrix (ECM) of articular tissues and synovial
fluid composition (Loeser et al., 2012; Sellam and Berenbaum,
2013; Raman et al., 2018). OA can occur as a result of a variety of
predisposing factors such as age, mechanical injury, genetics,
gender, metabolic dysfunction, and obesity that incite a cascade of
pathophysiological events within articular tissues (Loeser et al.,
2012; Barboza et al., 2017). Irrespective of the initiating factors,
the pathological progression of OA follows a consistent pattern
(Goldring et al., 2011), indicating that a common molecular
pathway [i.e., canonical NF-kB pathway (Marcu et al., 2010;
Pichler et al., 2021, 2022)] links the biochemical and
biomechanical processes that underlie the onset and
progression of OA. Cartilage ECM debris caused by age-
related wear or trauma is released into the synovial
microenvironment activating synovial macrophages, synovial
fibroblasts, and chondrocytes to produce inflammatory and
catabolic mediators, which in turn disrupt cellular homeostasis
and the balance between matrix synthesis and degradation in
both tissues. Eventually, this creates a vicious cycle of tissue
inflammation and breakdown (Barry and Murphy, 2013; Barboza
et al., 2017). The normally quiescent chondrocytes, become
activated and undergo a phenotypic shift characterized by cell
proliferation, cluster formation, increased production of both
extracellular matrix proteins and matrix-degrading enzymes, and
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hypertrophic differentiation (Barry and Murphy, 2013; Barboza
et al., 2017). Exposure to inflammatory and oxidative mediators
also enhances premature stress-induced senescence and ageing of
chondrocytes resulting in an accumulation of senescent cells in
the superficial layer of the articular cartilage. These cells in turn
secrete a variety of inflammatory cytokines and matrix-degrading
proteases linked to a senescence-associated secretory phenotype
(SASP) (Bonnet andWalsh, 2005), which influences cell plasticity
and propagates senescence and inflammation in surrounding
cells and tissues. As an additional contributor, the subchondral
bone is a source of inflammatory mediators implicated in clinical
OA pain, hypertrophic differentiation of chondrocytes, and the
degradation of the deep layer of cartilage, and it is involved in the
abnormal distribution of stress on the bone-cartilage interface
secondary to sclerosis and remodeling of the subchondral bone
(Sellam and Berenbaum, 2013; Boris Chan et al., 2015; Aho et al.,
2017; Hügle and Geurts, 2017). Recently, also adipose tissue as
well as the synovial membrane are gaining more and more
attention as significant contributors to the overall degradative
and inflammatory biochemical microenvironment.

Building from the fact that this joint milieu is orchestrated by
intricate cross-talk of a variety of different joint tissues, the
inclusion of more sources of a pro and antiinflammatory
mediator can and will shed more light on the contribution
and mode of actions of individual tissues during onset as well
as the progression of OA.

Alterations in Matrix Compositions Guide
Dysfunctional Biomechanics,
Mechanosignaling, and Cell Activation
Another global factor of OA is the alteration of matrix
biosynthesis and pathological matrix remodeling of a variety
of tissues including cartilage, synovial membrane as well as
subchondral bone. The ECM is key in mechanosignaling and
mechanosensory regulation of matrix biosynthesis as well as pro
and antiinflammatory processes. It has to be noted that the PCM
as the closest cell interface is not a unique feature of chondrocytes
even though most reported. PCM changes also correlate with loss
of mechanotransduction activity in aging bone (Hagan et al.,
2020), as well as fibrotic malformation of adipose (Divoux et al.,
2010) and synovial tissue (Watson et al., 2011). Downregulation
of matrix constituents such as perlecan and collagen VI further
reduces PCM stiffness, which correlates with clone formation in
the vicinity of cartilage defects (Foldager et al., 2014; Zelenski
et al., 2015). OA alters the stiffness of the PCM (Zelenski et al.,
2015; Danalache et al., 2019). These compositional changes can
alter cell volume and morphology (Hall, 2019), TGF-β activation
(Zhen et al., 2021) and proinflammatory cytokine and protease
expression (Candela et al., 2016). An amplification of pathological
mechanosignaling-related processes is further enhanced by
overexpression of integrins due to mechanical overloading
(Lucchinetti et al., 2004). Potentially, alterations in cell
metabolism caused by dysfunctional matrix mechanosensing as
described earlier further contribute to a more hypoxic synovial
fluid environment that via hypoxia-induced oxidative stress lead
to alterations in cell metabolism and activity (e.g., anaerobic

glycolysis of chondrocytes, overproliferation, an increase of
matrix biosynthesis, higher susceptibility to proinflammatory
molecules, etc.) (Fermor et al., 2007; Mobasheri et al., 2017;
Munjal et al., 2019). To give justice to the ultrastructural
inadequacies of joint tissues in OA, in vitro models that claim
to recapitulate matrix-related aspects should not be one-sided
and focus on just a single aspect of matrix biology. The synergistic
interplay between matrix biosynthesis, mechanosensation and
cells as the three main pillars of dysfunctional matrix
mechanobiology in OA must be accounted for in OA for the
entire set of joint tissues to overcome the limitations of the
current research approaches.

Overall, all the above physiological and pathobiological
considerations at the tissue, cellular and molecular levels must
be considered vital to develop an authentic microenvironmental
niche. The implementation of these bioengineering parameters
will in turn improve the predictiveness and authenticity of OA
in vitro models. This is also evident as decades of cause-effect
in vitro research analysis, i.e., proinflammatory cytokine secretion
after a molecular OA stimulus has not resulted in any significant
break-through innovation in disease therapy and tissue
regeneration.

IN VITRO TECHNOLOGIES TO MODEL THE
CELLULAR AND MICROENVIRONMENTAL
COMPLEXITY OF OSTEOARTHRITIS
It is well-known nowadays that traditional two- dimensional (2D)
culture models fail to replicate proper cell-cell and cell-matrix
interactions necessary to mimic disease pathophysiology and are
further limited by aberrant cell morphology, polarity, gene
expression, and overall cell phenotype. Due to the lack of
translational power, two-dimensional (2D) models are being
progressively replaced by three-dimensional (3D) culture
systems. Pellet, tissue explant, and micromass cultures more
accurately mimic the native microenvironment found in
musculoskeletal as well as any other tissue type. Explant
models provide native tissue architecture and in vivo-like cell
composition and thus feature the most authentic and “natural”
microenvironment. Explant mono- and cocultures of equine
(Haltmayer et al., 2019; Anderson et al., 2020) and porcine
(Ding et al., 2014; Vernon et al., 2014) as well as human
tissues (Topoluk et al., 2018; Dolzani et al., 2019) have been
used to elaborate on the structure-function relationship between
tissue architecture, the extracellular matrix composition and cell
phenotypes in OA pathophysiology, but they are difficult to
standardize due to the large interindividual variation. To
improve standardization and thus comparability of data, pellet
and micromass cultures, with and without natural (e.g., alginate,
hyaluronan, collagen) or synthetic [e.g., polylactic acid,
poly(ethyelene glycol)-terephthalate] hydrogel-based scaffolds,
have been developed (Smeriglio et al., 2015; Mouser et al.,
2020). Thus, pellet cultures allowed, for example, to investigate
the impact of disease-promoting factors, such as galectins, on
ECM degradation via MMPs in the 3D context (Pichler et al.,
2021, Pichler et al., 2022). Indeed, in 3D hydrogel culture,
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chondrocytes achieved near-native gene expression, chondral
metabolism, and ECM turnover (Smeriglio et al., 2015)
although the mechanical modulus of currently available
hydrogels in the kPa magnitude range does not match the
compression modulus of 9–13MPa of healthy human cartilage
tissue disks (Roberts et al., 1986; Cloyd et al., 2007; Guo et al.,
2017). Moreover, 3D OA cartilage constructs in a poly(ethylene
glycol)-chondroitin sulfate hydrogel scaffold also exhibited
pathological alterations in matrix biosynthesis such as decrease
of COL2A1 expression, reduced glycosaminoglycan (GAG)
content, and loss of compressive construct modulus (kPa)
consistent with native OA samples when challenged with an
inflammatory stimulus. Similarly, synovial micromass
technologies comprising synovial fibroblasts, CD14+ monocytes
and CD68+ macrophages (macrophage-like synoviocytes)
demonstrated near-native cell composition and inflammatory
response of the synovial intimal layer with increased
proinflammatory cytokine expression, loss of antiinflammatory
M2 macrophage phenotype, and synovial membrane hyperplasia
when challenged with a proinflammatory stimulus (Broeren et al.,
2019). Furthermore, 3D cocultures of synovial fibroblasts and
endothelial cells have been established to model the
contribution of synovial neoangiogenesis (Maracle et al., 2017),
and even more complex 3D tricultures (e.g., including
chondrocytes, synovial fibroblasts, and macrophages) modeled
pathological chondrocyte activation and cartilage destruction in
arthritis (Peck et al., 2018). Overall, primitive homo and
heterotypic 3D culture techniques have given important insights
into the complex structure-function relationship that influences
matrix biosynthesis as well as the activity of any cell type within the
joint tissue microenvironment.

Biomechanical Complexity is the Key to
Improve In Vitro Osteoarthritis Models
As outlined earlier, the physiology of a joint requires not only
structural and cellular cues but also a variety of biomechanical
forces for cells and tissues to maintain homeostasis. On the one
hand, 3D printed zonal cell–scaffold structures aim to recapitulate
physiological zonal cell distributions by either seeding cells directly on
printed scaffolds or printing materials with encapsulated cells have
been developed (Guo et al., 2017; Mouser et al., 2020). This creates
better architectural control over the biomechanical properties such as
matrix stiffness and hardness to recapitulate the anisotropy of
material properties within even a single joint tissue type. On the
other hand, the integration within mechanical bioreactors allows
explants or tissue-engineered constructs to investigate the impact of
fluid flow, compressive loading, and other important biomechanical
forces (see Figure 2) and to look into matrix catabolism, metabolic
cell activation as well as inflammatory and nociceptive signaling
(Fermor et al., 2002; Piscoya et al., 2005; Chauffier et al., 2012).
Mechanical bioreactors have been used routinely to improve the
chondrogenic microenvironment for stem cell-based systems as well
as primary chondrocyte models (Fu et al., 2021). More authentic
multidimensional actuation principles combining shear and
compression can further approximate in vivo chondrocyte matrix
biosynthesis as well as lubricin overexpression (Meinert et al., 2017).

Simultaneous control over oxygen tension with feedback loops and
nitrogen supply can further tune the topography of physiological
matrix constituent deposition increasing GAG secretion to the
superficial zones of a construct with upregulation of bulk
COL2A1 and ACAN expression (Tekari et al., 2020). Overall,
research on conventional 3D cultures demonstrated the complex
relationship between structural, biochemical as well as biomechanical
cues in dysfunctional tissue homeostasis found in OA.

Organs-On-A-Chip can Provide More
Refined Tissue Architecture, Cellular
Distribution and Tissue-like
Mechanobiology
As the most recent advancement in the palette of 3D culture
techniques, organ-on-a-chip (OOAC) and microphysiological
systems (MPS) aim for an even better recapitulation of a native
tissue-like environment, tissue architecture and cell-specific
responses relevant to OA modeling by combining stem cell or
patient-derived primary cell-based models for cartilage and
synovium (Fomby et al., 2010; Smeriglio et al., 2015; Tian et al.,
2016; Li et al., 2017; Lin et al., 2019) as well as adipose (Loskill et al.,
2017) and bone-like tissues (Mansoorifar et al., 2021; Nasello et al.,
2021). In this context, microfluidic technologies can create an even
more dynamic yet more controllable musculoskeletal disease
microenvironment. Because OA has long been considered a
cartilage disease, most microphysiological models of OA still
focus on chondrocyte pathobiology. Analogous to traditional 3D
cultures, microfluidic cartilage-on-a-chip approaches have
demonstrated their ability to recapitulate near-native tissue-like
conditions on a structural, architectural, and molecular level (e.g.,
morphology andmatrix biosynthesis, and inflammatory signaling).
Biomechanical actuation by compressive loading has also been
demonstrated to be a critical parameter for biochip chondrocyte
3D cultures as shown in Figure 3A (Lee et al., 2018). Cell
stimulation can be easily performed within biochips using

FIGURE 2 | The complexity of biomechanical activation. The
mechanosensitivity of knee-joint tissues and resident cells is mediated by
integrins as well as stretch- and loading-sensitive cell-bound ion channels
(mechanosensors) and include a variety of transient receptor potential
(TRP) channels, and other mechanosensitive ion channels such as Piezo1 and
Piezo 2. These mechanosensors in turn react to a variety of biomechanical
forces such as fluid and mechanical shear strain, stretching, and tensile
loading as well as compression to either promote joint tissue physiology or
escalate the dysfunctional mechanobiology in OA via pathological
mechanosignaling. Created with permissions from Biorender.com.
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integrated pneumatic deflectable actuator structures. Chondrocytes
embedded in hydrogel can in turn be deformed in the presented
approach up to 30% cell deformation for either static or cyclic
compression routines with no alterations in chondrocyte health. In
the same line, dynamic compressive loading in a physiological
range (6–10%) improved in vivo like cartilage gene expression,
while hyperphysiological compression around 30% loading
triggered OA-like chondrocyte responses (Occhetta et al., 2019;
Figure 3B). Overloading could significantly reduce aggrecan
ACAN gene expression and Collagen II-to-I ratio while
increasing gene expression levels for markers involved in
chondrocyte hypertrophy and inflammation (i.e., collagen type
X, MMP-13, IL-6, and IL-8). To integrate more natural molecule
diffusion distances above 500 μm, musculoskeletal tissue models
that feature single constructs with macroscopic dimensions have
been established. A synovium-on-a-chip system combined with
integrated sensors as shown in Figure 4 demonstrated the
feasibility of time-resolved multiplex analysis schemes
(Rothbauer et al., 2020). The study utilized light scattering to
noninvasively probe dynamic synovial tissue-level responses when

challenged with proinflammatory cytokines including synovial
network architecture remodeling and organoid condensation
altered by cadherin-11-mediated cell-cell adhesion. In addition,
cartilage-on-a-chip systems as demonstrated by Rosser et al. (2019)
can already well resemble cartilage hallmarks of the middle and
superficial zone with proper chondrocyte morphology and gene
expression while precisely controlling the molecule gradients
within cartilage constructs due to the microfluidic flow (see
Figure 5). Moreover, the authors used their miniaturized drug
screening tool to recover cartilage-specific OA-like inflammation
responses with a treatment. Notably, to further investigate and
approximate in vivo-like tissue conditions, increase of microfluidic
construct diameter and volumes by twofold increased collagen and
glycosaminoglycan biosynthesis as well as the corresponding
dynamic construct modulus (Tian et al., 2016). Both studies
demonstrate well that the geometry and macroscopic
dimensions of a construct influence the models’ diffusivity as
well as topographical molecule gradients that in turn are vital to
control parameters for organoid maturation and native tissue-like
physiology.

FIGURE 3 | Examples for biomechanically actuated joint-on-a-chip systems. (A) Amicrofluidic pneumatic-actuation device transmitting multiple mechanical stress
conditions on chondrocyte-laden alginate hydrogel to study deriving mechanisms of bone growth. Via a pneumatic channel network, pressurized air deflates a silicone
(PDMS) balloon to compress chondrocytes. For instance, hydrogel compression of 34% in the z direction (red fluorescence) leads to a compression of individual
chondrocytes within the hydrogel by 16% (green fluorescent cells). Increase of the diameter of the silicone balloon gradually increases cell loading by up to 30%
under constant and cyclic loading conditions (see graphs on the right). Reproduced with permissions from (Lee et al., 2018). (B) Development of a cartilage-on-a-chip
(left panel) where a 3D cartilage construct (blue compartment) enclosed by two medium supplementation channels (red highlights) is actuated by pneumatic
compression of a deflectable membrane (white membrane). Physiological compression of 10% results in a native tissue-like matrix biosynthesis (center panel)
comprising high levels of aggrecan (green fluorescence), collagen type I (white fluorescence), and collagen type II (red fluorescence). Analysis of the Collagen type II-to-I
ratio which is used as an indicator for cartilaginous matrix approximates native cartilage after 14 days of biomechanical on-chip cultivation. Reproduced with permissions
from (Occhetta et al., 2019).
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As outlined before, OA is considered a serious multifactorial
disease affecting multiple tissue structures (Dieppe, 1999; Loeser
et al., 2012; Andriacchi et al., 2020). Consequently, a deeper
understanding of tissue communication is paramount to
understand general as well as disease phenotype-specific
mechanisms (Mobasheri and Batt, 2016; Mobasheri et al., 2019;
Salgado et al., 2021). Combining cartilage-on-a-chip systems with
other musculoskeletal tissues such as the synovium or subchondral
bone has proven essential in providing a more holistic view of
tissue-tissue interactions that may govern OA onset including
inflammation, fibrosis, and degradation of joint tissues (Piluso
et al., 2019). The impact of synovial secretoma on overall bone cell
homeostasis was investigated using a coculture microsystem of
human synoviocytes (i.e., SW982 sarcoma cells) with murine
preosteoclasts (i.e., RAW264.7) and primary stem cell-derived
osteoblasts (Ma et al., 2018). As shown in Figure 6, the
migratory behavior analysis of activated synoviocytes towards
osteoclasts in the bone compartment can potentially shed light
on initial mechanisms of erosion. Integration of synovial with
chondral compartments as shown in Figures 7A, B demonstrated
that the soluble cell-cell communication by healthy synovial
fibroblasts contributes to a more physiological chondrogenic
microenvironment (i.e., round chondrocyte morphology with
reduced cell activation and dedifferentiation) (Rothbauer
et al., 2021). The addition of a chondrogenic differentiation
medium induced a fibrosis-like catabolic synovial response with
the disintegration of the synovial organoids. The inclusion of
monocytes/macrophages, endothelial cells, and physiologically
relevant fluid shear conditions within another chondro-synovial
biochip shown in Figure 8A mimicked the synovial postcapillary
venule. Monocyte chemotaxis andmigration from the bloodstream
into synovial tissue (Figure 8B) as a model for synovial immune
cell infiltration was enhanced when TNF-α treatment was
combined with the fluid flow (Mondadori et al., 2021). To
demonstrate that nutrient and molecule gradients can be
generated in macroscopic multiphasic constructs, 3D-printed
multichamber bioreactors were used to bioengineer sophisticated
anisotropic osteochondral architectures (Lin et al., 2014). A two-
phasic construct was seeded with heterogeneously differentiated
hBMSCs to develop prechondral and osseous phenotypes. Tissue-
specific hallmarks included a tidemark-like region, anabolic gene
expression, and matrix production. When stimulated with IL-1β,
the model developed an OA-like tissue response including an
expression decrease in chondral markers (e.g., SOX9, COL2A1
and ACAN) in the context of osteochondral tissue-level
communication.

BIOENGINEERING
ROADMAP—REQUIREMENTS FOR THE
NEXT GENERATION OF OA MODELS FOR
HUMAN DISEASE MODELING AND DRUG
SCREENING

For the next technological leap, we advocate a reverse engineering
approach following the origins and strengths of organs-on-a-chip

technology to recreate authentic organ or tissue-level function
and architecture while deliberating on homo- and hetero-typic
cell and tissue interactions and also the cellular identity and
activation states that altogether regulate important anabolic and
catabolic molecular but also structural aspects of tissue
homeostasis and function during disease onset and progression.

Mind the Joint Biomechanics and
Mechanobiology
In general, biomechanical cues including compression, shear,
interstitial flow and hydrostatic and osmotic pressure can
regulate pro or antiinflammatory responses in a variety of
tissues and cell types (see Figure 9) highlighting the
necessity for more complex and dynamic culture
environments also in vitro (Li et al., 2018; Fahy et al., 2019).
Mechanical stimuli provide a proper microenvironmental niche
for in vitro disease models. Mechanosensory activation (e.g.,
Piezos, TRPs or integrins, etc.) during the osteoarthritic onset
and progression is a critical, to date largely ignored,
mechanosignaling aspect of microsystems, which must be
closely investigated (Statham et al., 2021). Consequently, to
improve existing models, we propose to apply anatomical and
(bio)mechanical considerations for the next-generation
microsystems. The structure-function relationship of an articular
joint is very complex and multi-faceted and not only includes a
variety of cellular and biochemical but also many important
biophysical parameters. In addition to nutritional functions, the
synovial fluid, as a common biofluid mediating tissue homeostasis
and communication, has also an important biophysical and fluid-
mechanical function. Because pathological conditions (i.e., the rise
of IAP) can be biomechanically and microenvironmentally very
similar to healthy exercising conditions, the selection of cells and
tissues from disease origin will be critical for an authentic disease
pathophenotype. Future joint-on-a-chip models must increase the
controllability and precision of fluid-mechanical cues at the
microscale. In combination with biomechanical loading, future
microphysiological systems can offer better precision and control
over spatio-temporal and regional multiparametric mechanical
stimulations based on principles well established over two
decades of microsystems engineering and microfabrication. In
this line of thought, biomechanical cues within microfluidic
joint-on-a-chip systems can be potentially further approximated
to the biophysical complexity and anisotropy including more in
vivo-like force orientation (Paggi et al., 2020) using a combination of
multiple actuators working at various dimensional axes. Technical
advancement of chip-based mechanostimulation from pneumatic
to other actuation approaches will provide a better technological
basis to create systems with higher throughput (Qian et al., 2020)
including force-time analysis curves of human patients
(Phinyomark et al., 2016; Kapri et al., 2021) as control input
curve will provide cells withmore biomimetic force patterns in vitro.

Mind the Tissue Extracellular Matrix
The inclusion of a near-native and tissue-specific composition of
ECM components including collagens and proteoglycan fillers is key
to generating the proper cellular microenvironment found in OA.
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Collagen fiber arrangement and morphology also affect how the
ECM responds mechanically to compressive, shear, hydrostatic,
osmotic, and tensile loading. Changes in the composition and
stiffness of the extracellular interterritorial, territorial and
pericellular matrix (see Figure 10) provide essential cues for
ECM-sensitive mechanosensors such as integrins and also
connexins to further escalate pathological matrix remodeling
towards an OA phenotype. Consequently, future microsystems
must consider topographic and regional control over matrix
compositions and orientational properties to create a more native
pathophysiological template for disease-relevant cell-matrix
interactions. The PCM has a pivotal role in the bidirectional
reciprocity of cartilage mechanosignaling and homeostasis.
Moreover, PCM degeneration is one of the earliest events during
OA onset, altering the stress-strain microenvironment of
chondrocytes leading to aberrant chondrocyte
mechanotransduction (Gao et al., 2014; Gilbert et al., 2021).
Microphysiological systems must start to recreate PCM and ECM
compositions and architectures that are seen in actual OA tissues.
Novel microencapsulation techniques could be modified to generate
chondron-like structures that simulate the microenvironment of

chondrocytes (Li et al., 2019). Furthermore, to recapitulate the native
niche, attention needs to be paid to the hydraulic permeability
coefficient, which governs fluid movement in cartilage loaded in
compression and is in turn related to the matrix pore structure, size,
and connectivity (Mow and Guo, 2002; Jackson and Gu, 2009;
Sophia Fox et al., 2009). Overall, matrix hydrogel systems that have
the same origin as the target tissue will show the highest potential to
trigger native-like cell and tissue responses for both stem cells as well
as primary cell types alike. This is an important aspect that has been
investigated for decades for repopulated decellularized organ
matrices (Guyette et al., 2016; Ohata and Ott, 2020) but still
needs to be implemented properly for the next generation of
organs-on-a-chip and microphysiological systems. This will
obviously exclude the use of highly artificial hydrogel and
scaffold systems (e.g., Matrigel, GelTrex, Fibrin, Gelatin, PEG,
etc.), that cannot provide the right matrix architecture and
composition found in healthy as well as diseased human tissues.
Concerning matrix zonation and fiber orientation control, optical
and extrusion bioprinting already show great promise to create
biomimetic templates that are fit for musculoskeletal engineering as
the alignment of individual structures can be controlled in a layer-
by-layer fashion (Rothbauer et al., 2022).

Mind the Vascular and Lymphatic (Patho)
Physiology
As shown in Figure 11A, the general architecture of joint tissues
often comprises a vascular region that transitions to an avascular
region over multiple tissue layers or phases. Osteochondral tissue,
synovium, or menisci are good examples of vascular-avascular
transitions (i.e., blood—synovial tissue—synovial fluid). As
indicated in Figure 11B, multiphasic systems can generate a
range of molecular and biomechanical gradients as not only blood
perfusion as a function of vascularization degree but also matrix
composition and stiffness vary significantly even within
individual tissue types (i.e., cartilage zones), which are all part
of a physiological cellular and tissue microenvironment. Similar
to the ambitions of the body-on-a-chip community to create
microsystems that logically connect vascularized organ models
(Ryu et al., 2015; Kratz et al., 2019), also joint-on-a-chip systems
need to improve their vascular (as well as lymphatic) content
using either prelumenized vascular blueprints/templates or
vascular networks (Shi et al., 2014; Whisler et al., 2014;
Knezevic et al., 2017; Bachmann et al., 2018) that form within
a predefined tissue compartment or individual tissue zones
guided by self-assembly and endothelial sprouting. For
applications that are too complex for simple bifurcated lumen
structures or even self-assembly, on-chip optical bioprinting can
create even more biomimetic structures such as vascular beds at
very high resolution (Grigoryan et al., 2019). Adding biomimetic
tissue complexity can elaborate on the manifold relationship of
vascular signaling and pathological architecture on overall joint
tissue homeostasis for obviously fibrous tissues such as synovium,
fat pads, and meniscus but also for osteochondral bone. These
tissues are severely affected by vascular invasion and other
pathological events involving bone resorption and osteophyte
formation (Bonnet and Walsh, 2005; Suri et al., 2007; Hamilton

FIGURE 4 | Noninvasive biosensor integration enables structural
analysis of synovial on-chip organoids. (A) Light scattering measurements
were combined with a human synovium-on-a-chip (top panels) to investigate
structural alterations in rheumatoid arthritis (RA). (B) Light scatter
analysis of on-chip generated untreated synovial organoids shows higher
reproducibility than conventional synovial micromasses generated in
microtiter plates while (C) retaining their ability to respond to TNF-α stimulation
with upregulation of interleukins (IL-6/-8) and proteases (MMP-1/-3) (D)
Synovial on-chip organoids showed synovial lining hyperplasia upon TNF-α
stimulation characteristic for RA synovial intima. Reproduced with permissions
from (Rothbauer et al., 2020).
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et al., 2016). Potentially, the next generation of models should
also consider better fluid components that recapitulate the
viscoelastic, rheological, and biochemical properties of blood
and synovial fluid which will also impact osmotic and
interstitial pressure as well as fluid shear on
mechanosensitive joint tissues. Also, the gaseous
microenvironment provided by flow gradients will influence
cell and tissue identity. However, hypoxia incubators and
chambers can only adjust the entire microenvironment
rather than generating a gradient by regional flow and gas
control. In addition to variable tissue-specific flow conditions
provided by microfluidic technologies, the application and
integration of scavenging materials, vacuum degassing
regions, or simply a natural adjustment of oxygen content
by cell numbers via cell metabolism (Zirath et al., 2018; Sticker
et al., 2019), as well as spatially-resolved oxygen feedback loops
using sensor arrays can further improve microsystem control
from a tissue perspective (Kratz et al., 2019).

Mind the Cell Origin, Identity, and State
The maturity and origin of cells for 3D in vitromodels constitute
an enormous challenge that needs significant technological
improvements. Culturing cells in vitro also includes their
cultivation in an artificial, stimulative, and supplemented fluid
environment, mainly with the aim to promote proliferation.

Especially stem cells are often differentiated into joint tissue-
specific cells and progenitor cells (Lin et al., 2014; O’Grady et al.,
2019; Pirosa et al., 2021) for bone, cartilage, adipose, or
connective tissue cells using differential cultivation protocols
(Lin et al., 2019). Given the cell population heterogeneity of
resident mature and progenitor cell types in native OA tissues
(Stephenson et al., 2018; Cheng et al., 2021; Wang et al., 2021; Liu
et al., 2022), stem cell approaches for future in vitromodels must
provide tissue-specific mature cell types with high phenotypic
and genotypic authenticity in addition to a variety of
heterogeneous progenitor cells. The direct and indirect
crosstalk between various progenitor and adult cell
subpopulations will in turn further advance the authenticity as
well as the inflammatory responsiveness of the next-generation
microsystems. Considering the physical alignment of tissue-
resident cells, mature and progenitor cells can simply be
adjusted by the cell mixing ratio within microfluidic
compartments (Rothbauer et al., 2018); however, advances in
bioprinting also for microfluidic organs-on-a-chip demonstrate
new degrees of freedom and capabilities of cell deposition within
3D volumes (Rothbauer et al., 2022). Since OA is a disease of an
adult population, the application of cells in early developmental
stages (i.e., stem cells) to recapitulate the cellular composition of
pathological adult tissues must be questioned critically. Even
adult cell types show tissue-specific functions as demonstrated,

FIGURE 5 | Biochip technologies for native tissue-like molecular gradients. (A)Macroscopic cartilage-on-a-chip system presenting native-like tissue-like molecule
diffusion dynamics analyzed by fluid dynamic simulations. (B) Steep nutrient and metabolite gradients do not alter the high chondrocyte viability of chondrocytes (green
fluorescent CMFDA assay) and showed (C) cartilage-specific molecular expression levels of matrix and chondrocyte-related genes analyzed by RT-qPCR over 2 weeks
of cultivation. Reproduced with permissions from (Rosser et al., 2019).
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e.g., for the differences between abdominal and infrapatellar
tissue adipocytes in inflammatory M1-macrophage response
(Barboza et al., 2017). Moreover, the in vivo hormonal tissue
environment (Nevitt et al., 2001; Linn et al., 2012; Jin et al., 2017;
Maghbooli et al., 2019) prior to cell isolation (Xue et al., 2018)
alters the in vitro performance of patient-derived primary cells.
This means that the authenticity of soluble biochemical cues such
as hormones and potentially also a variety of other bioactive
molecules including fatty acids, adipokines, and glycans found in
mature tissue is paramount to recreating an authentic
pathophysiological cell and tissue phenotype of OA (Toegel
et al., 2009, 2010; Pabst et al., 2010). Considering that the
prevalence of OA increases with age and is higher in women,
especially after menopause (Phinyomark et al., 2016), cell donor
choice is essential to achieve a disease-relevant and
authentic model.

Another aspect to consider is the need for multiphasic and
heterogeneous differentiation protocols including divergent
differentiation and cultivation durations for the proper
maturation of cells within 3D models. A first step to address
this challenge is to generate growth factor gradients to tune the
differentiation of bioprinted multiphasic tissue constructs (Lin
et al., 2019; Pirosa et al., 2021). Nonetheless, with the increasing
complexity of the microsystem, the spatial and temporal control
of growth factor administration decreases. We thus propose to
better use and employ liquid handling approaches such as
concentration gradient generators and μ-valves for temporal
and spatial separation of individual tissue and cell
compartments for future models.

Thoughts on the Final Engineering Tasks of
Automation and Scalability
The requirements to successfully transfer this future biomimetic
OA microsystem from an academic technology to its envisioned
application in the pharmaceutical industry as a drug screening
tool should already be considered in the ongoing design and
development phase. From a technological standpoint, the
integration and application of the currently available palette
of integrated on-chip functions that organ-on-a-chip and
microphysiological systems can offer still lags behind the
evident cellular and molecular biological advancements
improving the tissue-like architecture, individual cell
phenotypes, gene expression profiles, as well as pro and
antiinflammatory secretion. Over the last decade, a variety of
technological improvements has been made to integrate on-chip
functions within cell-based microfluidic systems to gain better
control over the overall homo and heterotypic cell-cell
interaction as well as the biophysical and chemical
microenvironment (e.g., shear flow, loading, oxygen
concentration, ECM compositions and stiffness gradients,
nutrient supply and waste removal, etc. (Ribas et al., 2018;

FIGURE 6 | Compartmentalized organs-on-a-chip feature migration
dynamics of an arthritic tissue microenvironment. (A) Using a triple culture
biochip, the biochip model was used to analyze FLSmigration towards a bone
model (bottom panel) to simulate fibroblast invasion mechanisms in
bone tissue. (B) The rate of synovial migration was highest for the triple
coculture stimulated with Receptor Activator of NF-κB Ligand (RANKL; left
graph). An increase in numbers of TRAP-positive catabolic osteoclasts and
decrease of anabolic ALP-positive osteoblasts recapitulates in vivo-like
processes happening during the synovial bone invasion and bone erosion.
Reproduced with permissions from (Ma et al., 2018).

FIGURE 7 | Tissue level crosstalk fosters an anabolic and
antiinflammatory joint environment. (A) A millimeter-sized 3D coculture model
recapitulating only the soluble synovial and chondral tissue-crosstalk was
used as an RA model based on healthy cadaveric chondrocytes and RA
patient-derived FLS embedded in 3D hydrogels. (B) Analysis of the potentially
fibrotic effect of commercial differentiation medium (DM) on condensation
analysis of chondral and synovial cocultures. Adapted with permissions from
(Rothbauer et al., 2021).
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Rothbauer et al., 2018; Piluso et al., 2019; Sticker et al., 2019).
Consequently, many principles that have been successfully
reported for biomechanical (micro)bioreactors, cell-based
microfluidics, and lab-on-a-chip systems including functional
materials, degassers, microactuators as well as
multicompartmental networks (Sticker et al., 2017; Piluso
et al., 2019; Shabestani Monfared et al., 2020) have already

shown great potential to also increase the capabilities of current
organs-on-a-chip and microphysiological systems.

Even though many promising studies have combined
industrial microfabrication technologies such as polymer hot
embossing and electroplating (Novak et al., 2013), current
academic approaches mostly lack the technology transfer from
small academic production to large scale series production of
complex organs-on-a-chip and microphysiological systems due

FIGURE 8 | Flow regimes alter immune cell migration in more holistic
in vitro joint tissue studies. (A) A multicompartment biochip with heterotypic
triple cultures comprising articular chondrocytes (blue cells) and an
endothelialized synovial membrane model (turquoise endothelium with
red FLS) for monitoring of monocyte extravasation and tissue infiltration
processes in OA synovial tissue. (B) The combination of flowwith synovial fluid
and chemokines increases the number of extravasated monocytes within the
synovial tissue compartment. Reproduced with permissions from (Mondadori
et al., 2021).

FIGURE 9 | The biomechanical knee-joint environment matters. Synovial
joints comprise a very diverse set of heterotypic tissue architectures including
the synovium, meniscus, cartilage, and subchondral bone. Similar to their
architecture, the respective biomechanical microenvironment during
joint movement is tissue-specific and comprises distinct biomechanical
principles. Created with permissions from Biorender.com.

FIGURE 10 | The reciprocity of cellular mechanosensation escalates the
pathological response during inflammatory onset and progression of OA.
Microenvironmental factors of the extracellular matrix (extracellular matrix,
ECM; pericellular matrix, PCM; Interterritorial matrix, and ITM) are
monitored by cell-bound mechanosensitive structures such as integrins and
connexins that again mediate dysfunctional cell activity and pathological
matrix biosynthesis. Pathological mechanosignaling in turn influences the
cellular sensation towards shear strain, stretching, and compressive loading.
Created with permissions from Biorender.com.

FIGURE 11 | (A) A schematic overview of basic vascular transitions
within musculoskeletal tissues which are affected by OA-related
hypervascularization. (B) A proposed future strategy to model joint tissue-
specific transitions with biomimetic vascularized joint-on-a-chip systems
includes the creation of vascular blueprints/templates with bioprinting as well
as the provision of more relevant biofluid properties (e.g., viscoelasticity of
blood and synovial fluid surrogates) and fluid-dependent biomechanical
principles including fluid interstitial, as well as intra-arcticular pressure.
Created with permissions from Biorender.com.
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to the ongoing strong academic dependence on poly(dimethyl)
siloxane (PDMS) material. PDMS microfabrication is very
affordable and straightforward and it offers great material
advantages such as optical transparency, acceptable
biocompatibility as well as gas transparency. Another plausible
explanation for this limiting material selection is the fact that in
most cases a standard 3–4 years research project does not exceed
production batches of around a few 1,000 pieces including several
design optimizations and iterations within a normal project
lifetime. Consequently, fabrication methods for biomedical-
grade hard polymers are still limited to specialized research
groups due to infrastructural bias or budgetary limitations for
both material pellets as well as injection tools that would provide
industrial prototyping qualities for mass production. Notably,
computer numerical control (CNC) micromachining or hot
embossing of hard polymer slides would bridge the gap
between soft lithography and injection molding. Nonetheless,
scalable and high potential state-of-the-art technologies to
improve the functionality of organs-on-a-chip and
microphysiological systems may include well-established
approaches found mostly for lab-on-a-chip and micro-total-
analysis (µTAS) systems including integrated microvalves,
micropumps, and gradient generators to control the
automated administration of fluids at the picolitre scale
(Unger et al., 2000; Frey et al., 2014; Tian et al., 2016;
Rothbauer et al., 2019). To further improve sample
throughput, a combination of gravity-driven pumpless
bidirectional fluid handling technology (Sung et al., 2010; Esch
et al., 2016) with robotics (Novak et al., 2020) may also be a high
potential candidate. For models that require unidirectional
pumping, this approach can also be modified to provide
unidirectional fluid flow and shear when required (Wang and
Shuler, 2018). Even more biomimetic flow conditions combining
microsystems with bioprinting technologies as demonstrated by
cardiac microsystems need to be considered also for a
musculoskeletal vascular environment (Zhang and Larsen,
2017; Grigoryan et al., 2019).

To improve the high-content capabilities of currently available
microsystems, a broad palette of micro and biosensors as well as
inline and off-chip analysis schemes have been reported mostly as
proof-of-concept studies (Kratz et al., 2019). Overall, the
applicability of noninvasive monitoring approaches is high;
however, any optical, electrical or chemical approach requires
defined technological prerequisites including highly specialized
measuring set-ups (e.g., electrical contacting, optical read-out
positioning, specialized tables, etc.). This in turn reduces the
manufacturability as well as integration potential with
conventional incubator systems found in academia as well as
industry labs. Moreover, the inclusion of a variety of cell- and
tissue-specific analysis parameters that potentially drive the
content of such a microsystem will impede the throughput
capabilities of microsystems due to the necessity of printed
circuit boards (PCBs), external multiplexing systems as well as
a fair extent of electrical and/or optical fiber wiring to provide
good measurement signal-to-noise ratio (SNR) signals. The
synergy of noninvasive and dynamic analysis schemes with
conventional destructive endpoint analysis technologies will

allow more insights into the time-resolved response of
bioengineered systems prior to the relative read-out at defined
endpoints to better question aspects of cellular and donor
variability and heterogeneity (Masaeli et al., 2016; Moura
et al., 2019) as well as disease pathogenesis and tissue-specific
pathomechanisms. As a final remark for this bioengineering road
ahead, the necessity of artificial intelligence and deep learning
(Hashemzadeh et al., 2021) to support faster data analysis and
interpretation arise, since throughput and content as both
throughput and content of our bioengineered systems will also
potentiate the number of individual analysis parameters (e.g.,
secretion profile, mRNA expression, structural imaging,
multidimensional cell morphologies, and interactions, etc.).
Multi-parametric datasets can further benefit from potent
high-content analysis schemes such as single-cell sequencing
(Liu et al., 2022) and advanced mass spectrometry imaging
(Rossiter et al., 2021; Vandenbosch et al., 2021). Finally,
validation of microphysiological disease models must ideally
be benchmarked against human data; however, no human
patient data are available for the early stages of arthritic
disorders. To tackle this challenge, species studies from which
legacy data are available across any temporal range of
pathogenesis stages will provide a good validation strategy for
disease onset and progression validation (Jang et al., 2019; Marx
et al., 2020).

CONCLUDING REMARKS

Biomimicry of the pathological articular microenvironment should
consider authentic tissue architectures, matrix compositions, cell
heterogeneity, gene expression, and protein secretion (i.e., cell-cell
interactions via soluble factors) in addition to general biomechanical
as well as biochemical gradients found in human articular tissues to
improve the capabilities and potential of the current disease models.
Recent methodological advances in microfluidic technologies
already provide better spatial and temporal control and
heterogenic distribution over heterotypic cell populations, as well
as biochemical and biomechanical traits with regard to conventional
tissue-like models. Many key aspects that guide dysfunctional tissue
homeostasis in the osteoarthritic environment in vivo still need to be
implemented. Given the complexity of the articular environment,
OA pathophysiology, and bioengineering approaches, an
interdisciplinary approach will be needed to develop a disease-
relevant in vitro model. To facilitate the necessary integration of
recent technological advances and current knowledge on joint
physiology and OA etiopathogenesis, we here draw a
bioengineering roadmap to define key requirements that will
significantly improve the in vivo relevance, predictability, and
applicability of future chip-based disease models as drug
screening tools. The current progress especially for joint-on-a-
chip technology as disease models and drug screening tools in
arthritis may not seem surprising at first glance because the
technological progression follows advancements of previous
in vitro models and approaches for arthritic diseases: RA-related
studies focus mostly on synovial and immune contribution to
catabolic processes such as secretion of catabolic mediators and
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mechanisms of bone resorption whereas OA-related studies survey
predominantly the effect of degradative molecules but also
proinflammatory mechanisms to affect cartilage as the key target
tissue. The combination of cartilage and synovial cell populations
with bone, vascular, or even autologous immune cell subpopulations
of individual primary patient origin will show significant impact on
how far we can advance joint multi-tissue coculture approaches in
the future. Concluding all that has been mentioned earlier, a
transdisciplinary effort is necessary to achieve the main aim of
recreating native tissue-like models for musculoskeletal diseases. We
need to appreciate and integrate all the lessons learned so far on joint
tissue homeostasis and pathogenesis including joint biomechanics
and tissue-level anatomical architecture, tissue-specific variations in
the composition of the ECM, regional differences and neuralization
and vascularity as well as the cellular origin, identity and activation
states to achieve a model with authentic tissue-level responses
relevant to OA. This will necessitate a cross-disciplinary effort
combining regenerative medicine, tissue engineering,
bioengineering, chemical engineering, mechanical engineering,
and biomechanics in addition to cell and molecular biology to
create a biotechnological leap forward. For the creation of fit-for-
purpose technology applicable for industrial drug screening
applications, the scalability of the model regarding analysis

throughput and the content will further require close
collaboration with mechanical engineering experts and industrial
chip manufacturers.
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