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Cells are the fundamental building blocks of organs and tissues. Information
and mass flow through cellular contacts in these structures is vital for the
orchestration of organ function. Constraints imposed by packing and cell
immobility limit intercellular communication, particularly as organs and
organisms scale up to greater sizes. In order to transcend transport limit-
ations, delivery systems including vascular and respiratory systems
evolved to facilitate the movement of matter and information. The construc-
tion of these delivery systems has an associated cost, as vascular elements do
not perform the metabolic functions of the organs they are part of. This
study investigates a fundamental trade-off in vascularization in multicellular
tissues: the reduction of path lengths for communication versus the cost
associated with producing vasculature. Biologically realistic generative
models, using multicellular templates of different dimensionalities, revealed
a limited advantage to the vascularization of two-dimensional tissues. Strik-
ingly, scale-free improvements in transport efficiency can be achieved even in
the absence of global knowledge of tissue organization. A point of diminish-
ing returns in the investment of additional vascular tissue to the increased
reduction of path length in 2.5- and three-dimensional tissues was identified.
Applying this theory to experimentally determined biological tissue struc-
tures, we show the possibility of a co-dependency between the method
used to limit path length and the organization of cells it acts upon. These
results provide insight as to why tissues are or are not vascularized in
nature, the robustness of developmental generative mechanisms and the
extent towhich vasculature is advantageous in the support of organ function.
1. Introduction
Multicellularity has evolved independently multiple times during the evolution
of our biosphere [1]. Extant multicellular organisms span several orders of
magnitude in size [2,3]. Increased size has been suggested to allow organisms
to inhabit new niches and thus ensure limited competition and enhance their sur-
vival [4]. However, increased size incurs additional challenges to the functioning
of organs and organisms [5], such as the effective distribution of resources across
themulticellular entity aswell as coordination of biological action via information
transfer [6]. These challenges include responses to changing environments and
the timing of developmental transitions [7,8].

To tackle these issues, specific transport-oriented cell types and systems have
evolved, including respiratory and vascular systems [9–12]. Vascular elements
create a delivery system that effectively reduces the scale of the tissues and
organs they are part of, introducing fast routes to transfer information and
matter across cells in tissues [13,14]. This allows larger organs to be less
constrained by their dimensionality (whether they are two dimensional or three
dimensional) and scale [5,15].
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Vasculature is, however, a costly investment in the physio-
logy of organisms [10], as it is dedicated to supporting the
delivery of nutrients and information to other cell types,
rather than supporting organ function directly [3]. As a result,
vascular elements need to be efficiently built and managed
[16]. In this study, we investigate the extent to which a multicel-
lular system can be effectively vascularizedwithout coming at a
prohibitive cost to organ function.

The relevance and ubiquity of delivery networks in biology
have prompted the search for fundamental mathematical
principles that pervade transport networks [3,14,16–18].
It has long been identified that transport systems often display
allometric scaling [17,19,20], with power laws connecting
biological variables with reasonably well-defined exponents
[3,19–21]. These have been shown to operate in multiple
biological substrates, such as animal respiratory systems
[20,22,23], cardio-vascular systems [20,24], tumours [25,26],
plant transport networks [27–29] and even foraging trails
of ants [30]. Theories have been proposed to explain suchmath-
ematical regularities, including the hierarchical and symmetric
branching of vessels in the transport network [3,18,31]. This
approach is able to predict, in an already established network,
the average properties of vessel radius and vessel length
changes across the system.

A different approach considers how this transport system
might be dynamically generated, an aspect of key importance
in understanding the development and regeneration of such
systems. For example, optimality has been explored in ‘top-
down’ vascular networks which begin as fully connected
uniform systems that optimize flow and particle delivery
[32]. This process has been argued to closely replicate the bio-
logical processes behind retina development [33]. This type of
model has also provided insights into organ regeneration by
exploring the relation between damage and structure [34].
In this article, we take an inverse perspective, and explore bio-
logically plausible ‘bottom-up’ generative models of vascular
development [35]. This allows us to consider, from first prin-
ciples, the fundamental rules of a generative process capable
of creating shortcuts in a tissue in order to reduce the impact
of scale. Using a dynamic network science framework, we
investigate the extent to which a multicellular system can be
effectively vascularizedwithout coming at a cost to organ func-
tion, as vascular cells provide transport and support to organs
but do not contribute to the biochemical or physiological
function that the organ performs.
2. Results
2.1. A general model to simulate vascular development

in cell contact networks
In order to investigate the dynamics of vasculature creation in a
model tissuenetwork,weproposeagenerativeprocessbasedon
node centrality computation and node fusion. In this model,
nodes of the network stand for cells and edges represent
cellular physical contacts. Lattices were used to represent
immobilized cells within tissues, as observed in spatially con-
strained organs, with typically homogeneous connectomes
[36]. The premise is that vasculature formation is equivalent to
the strings of cells being fused into a single node, which reduces
network distances within the graph [6,37], and that only contig-
uous cells can be fused together in this process. This process
would be analogous to the formation of a cavity in animal vas-
cular systems, where solutes and cells in suspension can move
freely inside vascular vessels. But this system is also similar to
vasculature formation in plants, where the individual cells of
the phloem are connected end-to-end through the sieve plate,
which contains enlarged holes that connect contiguous cells
together ina single cytoplasm.For the sakeof simplicity,we con-
sider only undirected and unweighted graphs in this approach.

Node centrality computation informs the algorithm about
which nodes have a greater impact in the relaying of infor-
mation within the network (see Methods). The physical
limitation of information transfer and distances in a tissue is
related to the feasibility of coordinating developmental tran-
sitions as well as coordinating responses to environmental
changes or biological damage [6,7]. Node fusion reduces dis-
tances in the network and facilitates information transfer by
creating shortcuts. To quantify these effects, we consider a
read-out of our generative model, namely the average path
length of the network after successive iterations of the algorithm
[38]. Average path length is a biologically relevant read-out
metric as it captures distances between sources of information
and their destination across the tissue where both source and
receptor location are not known a priori.

The proposed algorithm operates with the following steps
(figure 1):

(i) compute node centrality for each vertex in the graph;
(ii) choose a node based on the centrality values;
(iii) choose a first-order neighbour of the node chosen in

(ii) based on the centrality values;
(iv) fuse the nodes chosen in steps (ii) and (iii);
(v) go to step (i).

Different methods are used to select which nodes are fused in
each iteration (figure 1). A node can be chosen at random and
a random first-order neighbour to be fused with it (method
UU for uniform, figure 1a). An alternative method considers
choosing the specific, globally identified node with the highest
centrality and its highest centrality neighbour (method DD for
deterministic–deterministic, figure 1b). A third method uses a
roulette wheel algorithm [39] with propensities proportional
to the node centrality for selecting the first node (hence not
guaranteeing that the global maximum is identified) and the
highest centrality for the neighbour node (RD method for
random–deterministic, figure 1c). The fourth method is the
reverse of the previous method, whereby the globally highest
centrality node is chosen but a roulette wheel algorithm with
centrality-based propensities is then used in order to choose
the neighbour to be fused to (DR method for deterministic–
random, figure 1d). This method results in the growth of the
vasculature from the ends of existing vascular elements.

Upon fusion, a new graph is obtained, and the centrality
is computed again in this reduced network. Average path
length is also computed and the trade-off between vasculature
investment and path length reduction is explored.

We choose network centralities as the governing feature of
cells for vascular selection because these measures have been
shown to correlate with cell behaviour in three-dimensional
(3D) organs [40]. While cells may not be able to directly com-
pute how central they are in terms of the network theory
methods discussed here, centralities are known to positively
correlate with easily sensed physiological variables; hence,
they provide roughly actionable quantities in tissues [40] and
are suitable substitutes for biologically driven processes
[41,42].
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choose a random node 
and fuse it with a random 
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choose a node using a 
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and fuse it with the highest
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Figure 1. Schematic representation of the algorithm used in this article. The starting network (top) is a real epithelial network or a noisy regular lattice in two,
three or 2.5 dimensions (three layers of hexagonal lattice where the vascular elements can only propagate though the middle layer). In this graph, node centrality is
calculated, either as closeness centrality or betweenness centrality. Then, a node from the network is chosen (blue node) and a first-order neighbour of this node is
determined (yellow node) using one of the four sets of rules described in the middle row. The nomenclature shown represents whether the algorithm used to
choose the first and the second nodes follows a deterministic (D) rule that identifies the global highest centrality node or a random (R) rule that makes a prob-
abilistic selection over high-centrality nodes. When centrality does not inform node choice, the resulting purely random process is labelled UU, for the uniform
random choice in both stages. These two nodes are fused (red nodes), generating a new graph that is fed again into the algorithm. Finally, after a given fraction
of cells have been turned into vascular elements, the algorithm ends.
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More specifically, we considered two centrality measures
linked to the physical structure of tissues. First, closeness cen-
trality (CC) measures the mean distance to all other nodes in
a network [43]. In the case of a lattice, this also correlates with
the distance to the network boundary (figure 2a,b). This maps
reasonably well to how cells are positioned within an organ.
The plausibility of CC as an actionable stimulus is supported,
for example, by a study in plants showing that cells can sense
their embeddedness within a plant organ following an
oxygen gradient [44]. In this case, the stability of a transcription
factor was shown to be linked to oxygen concentration, which
in turn drives spatially derived gene expression patterns.
Cells may therefore sense how deep they are within a tissue
using such external gradients, demonstrating that the physical
distance from the boundary of the organ can play an instructive
role in cell behaviour.
Second, we consider betweenness centrality (BC), which
uses the knowledge of a complete network to identify nodes
that lie upon the greatest number of shortest paths [45]. Such
nodes are poised to mediate the greatest amount of system-
level information flux. Like CC, BC also maps to nodes in the
central region of a lattice (figure 2c) owing to the fact that
these inner cells are mediating more information transfer.
While BC is probably not computed directly by a tissue (as it
requires a global understanding of cellular organization),
other methods which only make use of local information,
such as navigation centrality (NC), which identifies shortest
paths by following gradients, correlate strongly with BC [46],
providing a link between the biologically plausible method
of NC and BC. Additionally, in the electronic supplementary
material, we show that BC positively correlates with the flux
of diffusible toxic byproducts simulated on a two-dimensional



edge core high BClow BC

(a) (b) (c)

low CC high CC

Figure 2. Centrality computation in a 2D hexagonal lattice with 300 nodes. (a) Distance to the boundaries of the graph (here determined by the position of the
nodes). (b) Betweenness centrality, and (c) closeness centrality. Betweenness and closeness differ in the impact that the random removal of edges has in the
centrality distribution. CC maps more closely to the distribution found in (a), which may represent an external gradient established by diffusion from the outside
of the tissue towards the centre [44].
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(2D) template, further validating the use of BC as a computa-
tionally tractable stand-in of purely local information
processes. We also note that BC is linked with readily sensed
physical quantities, including surface area of a cell and its
volume [40]. Owing to the high computational cost of comput-
ing NC and physiological processes, as well as the comparable
behaviour to BC, we make use of BC in this study.

The centrality quantity that is used is incorporated in the
naming conventions as a subscript: either BC for betweenness
centrality or CC for closeness centrality.

2.2. Vasculature performance in 2D sheets of cells
The average path length for each vascularization method
decreases with the fraction of vascularization, as might be
expected (figure 3). The random method (figure 3a–c,j) per-
forms very poorly when compared with all other methods,
only achieving a 26% reduction in average path length when
30% of the cells of 992 node networks have been fused. The
DRCC method (figure 3a–c,h) also performs weakly, achieving
at best a 50% reduction in the same conditions. The remaining
methods, strikingly, behave quite similarly, all inducing a dra-
matic improvement in path lengthwith vascular fraction in the
992 node tissues. Notably, methods leveraging global know-
ledge such as DDBC do not dramatically outperform more
local information methods such as the roulette approach of
RDBC or DRBC. This separation of behaviours in three groups
is lost as the size of the networks is decreased, with similar
behaviours obtained in the DRCC and the rest of the non-
random methods. It is particularly interesting to note that the
RDBC method displays two regimes at the lower end of
graph sizes, one where it performs as poorly as the random
method and a second regime, as the fraction of fused cells
increases, where it becomes as efficient as the DRBC method.

A fundamental difference between the path length
reduction of DDBC and RDBC can be observed in figure 3d,f.
In the case of DDBC, different graph sizes show different trajec-
tories as the vasculature fraction is increased. In the case of
RDBC, the starting point is a function of the graph size, but
different graph sizes more readily coalesce into a single trajec-
tory as the vasculature fraction is increased. This overlap
means that the average path length becomes a function of vas-
culature fraction alone and is independent of the scale of the
template. While the RDBC approach may lack tangibility in
terms of the observed creation of continuous and coherent
vascular systems (see below), this suggests a different class of
underlying mechanics of how these generative processes
could give rise to vascular systems which transcend path
length. Importantly, different vasculature generative mechan-
isms provide scale-free improvements in transport, pointing
to a robust biological mechanism to establish these systems.

2.3. Vasculature performance in 3D assemblies of cells
Figure 4 shows the same analysis discussed in figure 3 for 3D
networks instead of 2D. In 3D tissues, roulette wheel methods
showa higher spread across replicates than in 2D tissues, while
non-stochastic methods such as DDCC and DDBC follow a
deterministic trend that only contains the stochasticity
included during the network creation. Similarly to overall
trends observed at two dimensions in smaller sized graphs,
the performance of different methods overlaps in 125 node
graphs (figure 4a) comparedwith 1000 node graphs (figure 4c).
Independently of graph size, the DRCC method performs par-
ticularly poorly in 3D networks (figure 4h), comparable to the
randommethod (figure 4j). In contrast with the 2D lattice case,
the RDCC method now also performs poorly (figure 4i). A lag
in path length reduction and later improvement is also
observed here in the RDBC method (figure 4f ), a consequence
of percolation transition taking place as the number of fused
nodes increases [47].

Interestingly, the gap between full information methods
(DDBC, DDCC) and local information methods (RDBC, DRBC,
RDCC, DRCC) is widened with respect to the 2D template
discussed before. While in two dimensions, there is an overlap
and all these methods performed very similarly at the inter-
mediate vascular fractions (about 15%), in the 3D models a
wider set of behaviours is observed at this stage. However, per-
formance compared with the best methods recovers as the
vasculature fraction increases, reaching similar levels of path
length reduction at the 30% vasculature fraction mark.

2.4. Vasculature performance in 2.5D tissues
Many tissues have a layered organization with vascular
elements existing solely within their inner structures. The leaf
of a plant is one such example, havingdistinct non-vascularized
epidermal tissues and avascular systemwithin.Herewe refer to
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Figure 3. Average path length scaling for an increasing fraction of cells converted to vasculature in noisy 2D hexagonal lattices. Comparison between the different
methods described in the Methods section (a–c). For graphs of constant size (a) 100, (b) 400 and (c) 992, the effect of node fusion following the high betweenness
(DDBC), roulette wheel then highest value betweenness (RDBC), highest value then roulette wheel betweenness (DRBC), high closeness (DDCC), roulette wheel then
highest value closeness (RDCC), highest value then roulette wheel closeness (DRCC) and random methods (UU). Scaling for each of the methods in different graph
sizes (d–j ). Exploration of the methods DDBC (d ), DRBC (e), RDBC ( f ), DDCC (g), DRCC (h), RDCC (i) and R ( j ) in graphs ranging from 42 to 992 nodes. All data points
contain 25 replicates; shaded regions represent a standard deviation of the sample.
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these structures as a constrained 2.5-dimensional (2.5D) system
(between two and three dimensions with respect to vascular
system generation). These networkswere built using a 3D hexa-
gonal template but restricting one of the dimensions to three
rows of cells. 2.5D lattices (figure 5c) are a useful system to
investigate how vasculature growth might operate in leaves
and other tissues, which are strictly 3D, but where one of the
dimensions of the system is actually not as equally extended
as the remaining ones.

Figure 5d–i shows the comparison innormalizedpath length
reduction in 2D, 3D and 2.5D tissues for the methods discussed
previously. Except in the case of DRCC methods, there is a con-
sistent endpoint structure to the normalized path length
reduction at maximum investment in vasculature, with the
highest path length going to three dimensions, the smallest
path length to two dimensions and 2.5 dimensions achieving
an intermediate value. Interestingly, in the DDBC, RDBC, DRBC

and DDCC methods, another common feature can be found,
with 2.5 dimensions being the best-performing template in
terms of normalized path length reduction at lower vasculature
fractions. However, these common features are not universal,
suggesting that there is not a single algorithm that performs
best in all tested substrates [48].
2.5. Network analysis of vascular systems
Methods that use the roulette wheel algorithm for selecting the
first node in the fusion step (UUandRD) typically initially create



0 0.05 0.10 0.15 0.20 0.25 0.30

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

0 0.05 0.10 0.15 0.20 0.25 0.30

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 0.05 0.10 0.15 0.20 0.25 0.30

2

3

4

5

6

7

0 0.05 0.10 0.15 0.20 0.25 0.30

2

3

4

5

6

7

method
DDBC
DRBC
RDBC
DDCC
DRCC
RDCC
UU

125 512 1000
av

er
ag

e 
pa

th
 le

ng
th

vasculature fraction

(a) (b) (c)

av
er

ag
e 

pa
th

 le
ng

th

av
er

ag
e 

pa
th

 le
ng

th

vasculature fraction vasculature fraction

graph size
27
125
512
1000

av
er

ag
e 

pa
th

 le
ng

th

vasculature fraction

(d) (e) ( f )

av
er

ag
e 

pa
th

 le
ng

th

av
er

ag
e 

pa
th

 le
ng

th

vasculature fraction vasculature fraction

av
er

ag
e 

pa
th

 le
ng

th

vasculature fraction

(g) (h) (i)

av
er

ag
e 

pa
th

 le
ng

th

av
er

ag
e 

pa
th

 le
ng

th

vasculature fraction vasculature fraction

( j )

av
er

ag
e 

pa
th

 le
ng

th

vasculature fraction

0 0.05 0.10 0.15 0.20 0.25 0.30

2

3

4

5

6

7

0 0.05 0.10 0.15 0.20 0.25 0.30

2

3

4

5

6

7

0 0.05 0.10 0.15 0.20 0.25 0.30

2

3

4

5

6

7

0 0.05 0.10 0.15 0.20 0.25 0.30

2

3

4

5

6

7

0 0.05 0.10 0.15 0.20 0.25 0.30

2

3

4

5

6

7

0 0.05 0.10 0.15 0.20 0.25 0.30

2

3

4

5

6

7

DDBC

UU

DRBC RDBC

DDCC DRCC RDCC

Figure 4. Average path length scaling for an increasing fraction of cells converted to vasculature in noisy 3D hexagonal lattices. Comparison between the different
methods described in the Methods section (a–c). For graphs of constant size (a) 125, (b) 512 and (c) 1000, we show the effect of node fusion following the high
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disconnected elements of vasculature. Over time, these discon-
nected components then come together in a single element,
a phenomenon described as the percolation transition
[47,49–52]. Before this transition happens, RDBC behaves simi-
larly to the random, uninformed method. However, as the
number of nodes fused increases, RDBC can perform almost as
well as the equivalent methods requiring global information
(DDBC). The vertical dashed lines in figure 6a,c show these tran-
sitions happening in two and three dimensions, respectively. In
twodimensions, roughly 35%of node fusion is needed toobtain
a transition in the simulation (dotted line, figure 6a). Conversely,
this transition happens much earlier in three dimensions, with
only 15% of vasculature needed to percolate (figure 6c).
A different set of behaviours is observed between two
and three dimensions in terms of average path length within
the virtual vascular system. In two dimensions, the DDBC,
DRBC, DDCC and DRCC methods display a logarithmic
growth in average path length, while RDBC shows a sharp
increase in average path length at the values of vasculature
fraction where the transition takes place. Some of the methods
that show a logarithmic growth in two dimensions display in
three dimensions a decrease in average path length owing to
loop formation in the vascular system beyond 20% vasculature
investment (figure 6, inset). Figure 6e–j shows a representative
simulation of vasculature systems for each of the 2D methods
at 10% vasculature fraction. The fragmented nature of the
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vascular elements created by RDBC and RDCC before the
percolation transition is shown in figure 6f,i.
2.6. Algorithm operation on biological templates
Following the observation that no single algorithm performs
best on all templates, we sought to evaluate the relationship
between these vasculature generative methods and the differ-
ent templates upon which they act. To this end, we made use
of biological cellular connectivity data collected from different
organs of the plant Arabidopsis thaliana. We focused on the epi-
dermal cell layers to control for the topological diversity that is
present across the 3D organs of the plant (https://osf.io/
fzr56/) [40]. These templates do not contain vascular cells
themselves, as vascular cells are extremely difficult to capture
reliably using confocal microscopy for all tissues and are thus
removed from all the organs used in this model. We studied
the relationship between path length and vascularization for
epidermal tissues, including the valve epithelia, the shoot
apical meristem (SAM) first layer, the petal cone cell epithelia,
the sepal abaxial epithelia and the leaf adaxial epithelia
(figure 7a–e). Differences in algorithm performance across the
templates can be readily observed, a particularly notable
example being the comparison between the poorly performing
uniformmethod (UU) and the roulette-based BCmethod (RD)
in figure 7g. Comparing the effects these two methods have
in SAM epithelia and sepal epithelia, a reversal in trend can
be observed. While in the sepal, the RDBC method rapidly
decreases the average path length (more so than the same
method in the SAMepithelia), the reverse trend in performance
can be observed using the UU method (figure 7g).

This suggests that, in order to achieve optimal perform-
ance, there should be an interplay between the algorithms
and the templates in which they operate. In particular, the
sepal epithelia have a much broader degree distribution than
the SAM (figure 7f ), with giant cells that naturally form short-
cuts across this template. These higher degree cells (some of
them outliers in the distribution shown in figure 7f ) have a
large betweenness centrality and guide the process of vascula-
ture formation for both RDBC and DDBCmethods. This effect is
shown to be reversed in other methods (figure 7g). Another
example of this same feature is shown in figure 7h, where
RDCC and DRCC are tested in valve and petal epithelia.
In this example petal and valve show a switch in which

https://osf.io/fzr56/
https://osf.io/fzr56/
https://osf.io/fzr56/
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method performs better, RDCC or DRCC. This may impact the
formation of vasculature in different organs depending on
the organization of cells and the algorithms invoked in the
construction of such systems.
2.7. Optimality in vasculature construction
To identify the efficient vascular system construction and
reduction of node distances across simulated vascular
elements, we examined the extent towhich the global transport
efficiency of multicellular systems is influenced by different
percentages of vascularization. The DDBC and DDCC methods
were selected based on their ability to effectively generate
coherent vascular systems (figures 3 and 4).

Figure 8 shows trade-offs [53] describing the best observed
solutions when presented with vascularization as a multi-
objective problem, trying to obtain the best global efficiency
with the least investment in vasculature. A clear difference in
how these algorithms operate in two dimensions versus 2.5
and three dimensions is observed. The 2D process results in a
progressive lowering of path length. By contrast, clear tran-
sitions of diminishing returns are present in 2.5D and 3D
templates, and at a lower relative threshold in the former
than in the latter. While these thresholds are dependent upon
the size of the network, the presence of these transitions in
higher dimensional templates indicates that optimal thresholds
of vascularization are present.

A ready connection of the trade-off shown here can be
made to the process of pruning after the establishment
of the primitive vascular plexus [54]. In the biological
construction of vasculature during skin development, an
over-connected mesh of vascular vessels is formed (high
vascular fraction with low path length) that is pruned effi-
ciently, transforming it into a branching tree (lower vascular
fraction but higher path length and lower global efficiency).
3. Discussion
Here we have explored how a set of algorithms that can build
delivery systems in a spatially embedded tissue perform
under different conditions, including varying tissue scale,
dimensionality and topology, in synthetic and experimentally
characterized cellular connectivity networks.

The best performance in path length reduction when com-
paring different methods is typically found in algorithms that
use more information, namely DDCC and DDBC, which require
non-local information on node centrality in order to choose the
direction of growth for the vascular element (figures 3 and 4).
However, methods using more local information, simulated
here with the use of a roulette wheel algorithm that represents
rates of growth in different directions acting independently, can
achieve similar levels of success, especially in large graphs and
high vasculature fraction conditions. Strikingly, we find that
scale-free improvements in transport can be achieved in the
absence of global knowledge of the system.

The RDBC method also offers the interesting property of
scale invariance, with equal values of average path length
with a given vasculature fraction for different network sizes
(figures 3 and 4). As different nucleating elements come
together to form a single vascular system, a percolation tran-
sition takes place, which gives rise to scale-free behaviour.
These two findings suggest that less informed systems (local
versus non-local information and organ size information)
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might not be required in order to efficiently construct an
effective vascular system.

The effect of different templates on the performance of these
algorithms was also investigated. Differences in performance
followinggraphdimensionality (two, 2.5 and three dimensions)
were observed. Optimality analysis using a Pareto front explor-
ing the extent of investment in vascularization versus global
transport efficiency identified the presence of critical thresholds
in 2.5D and 3Dnetworks, beyondwhich no additional gains are
obtained by making more vasculature (figure 8).

Unlike in 2.5D and 3D networks, 2D tissues did not show a
rapid decrease in global transport efficiencywith increased vas-
culature, and the Pareto front did not overlap with the other
dimensionalities analysed (figure 8). This lack of improvement
from vasculature may be one reason why two-dimensional
vascularized organs or organisms are not observed in nature.

Further differences in template dimensionality were
observed, whereby loops formed in 3D templates using the
vasculature generative processes, which were not observed
in 2D templates using these same algorithms (figure 6).
This in turn impacted the reduction of path length in these
transport systems. Loops have also been linked to increased
resilience to damage and fluctuations [34].
Finally, we tested the same algorithms in different real 2D
templates obtained from plant epidermal layers. This analysis
shows that there are trade-offs at play, and that strong improve-
ment for one method in a specific template may come at the
cost of performance in other templates (figure 7). This also
suggests that adaptation and optimization in vasculature-creat-
ing processes can come from the molecular mechanisms that
decide the construction (algorithm) as well as the physical sub-
strate organization in which they take place (template).
Characterization of tissue templates in terms of size, dimen-
sionality and topology can be informative of the algorithmic
processes that might be operating in them.

Altogether these results highlight that optimality in the
extent and algorithm used for the vascularization of tissues is
dependent on the size, dimensionality and topology of the cel-
lular templates. This study provides a framework to explain
optimal organ design [55] within the context of long-distance
delivery systems that transcend path length. Application of
this knowledge extends to diverse spatially embedded multi-
cellular systems, and the lack of observed vascularization in
cellular monolayers. These results, however, rest on the
premises of the model. Namely, we did not introduce some
well-known mechanical constraints such as flow conservation

https://osf.io/fzr56/
https://osf.io/fzr56/
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equations when choosing the next node to be fused. Further
expansions of this framework could include flow conservation
features to better match observed vasculature bundle width
and mechanical properties, as well as allometric scaling in
delivery systems as previously defined [3].
4. Methods
4.1. Template construction and vascularization methods
In this study, we represent multicellular organs as a connectivity
network of cells. These template networks correspond to two
classes: regular lattices with bounded stochasticity (random del-
etion of edges to break the symmetry of the lattice, see below) or
real tissue networks presented in previous studies about epithe-
lia (https://osf.io/fzr56/). In the case of regular lattices, 2D, 2.5D
or 3D triangular lattices were created using the NetworkX library
for Python [56]; here, 2.5D refers to an otherwise 3D template
being restricted to only three stacked layers (see figure 5 for a
clear example of a 2.5D template). First, a regular square lattice
was created using standard NetworkX functions. Then, a stag-
gering of node positions in alternating layers was introduced
to approximate a triangular lattice. Finally, the network was
reconnected using Euclidean distance between pairs of nodes
(using the row, column and depth as coordinate systems for
the Euclidean system).

In order to introduce variation across each of the independent
runs of the model, a constant fraction of edges was deleted in the
case of synthetic templates, whether two, three or 2.5 dimensions.
Edges were removed from the graph with a random uniform
probability of 0.01 in order to break the symmetry of the lattice.

4.2. Roulette wheel selection
A roulettewheel algorithmwas implemented similar to [39], where
each node corresponds to a particle and a reaction corresponds to a
given node being chosen to be fused in the next iteration of the
algorithm. Reaction propensities for each of the nodes were set to
be proportional to the respective node centrality used (betweenness
or closeness) as described in the Results section.

4.3. Network-based vasculature generative processes
Two different node centrality measures were used to identify cells
for node fusion in the construction of vasculature: BC [45] and CC
[43]. BC is calculated as the number of times a node is part of the
shortest path that connects a pair of nodes, for all pairs of nodes
within a network [45],

Betweenness (x) ¼
X

i=x=j

Si,j(x)
Si,j

,

where Si,j is the total number of shortest paths fromnode i to node j,
and Si,j(x) is the number of those paths that contain the node x.
The summation is over distinct nodes i and j that are also distinct
from node x. Thus, a node is more central the more it is part of
paths connecting other pairs of nodes.

Closeness centrality is calculated as the reciprocal of the sum
of the length of the shortest paths between the node and all other
nodes in the graph [43],

Closeness (x) ¼ n� 1P
y=x d(x,y)

,

where n is the total number of nodes within the graph and d(x,y)
is the distance between nodes x and y. According to this defi-
nition, a node that is closer to other nodes is more central.

Network average path length was calculated using the stan-
dard function from NetworkX [56]. This function computes the
average shortest distance, in number of discrete jumps, required
to reach all the other nodes. This is averaged for all the nodes
existing in the graph.

Average path length (G) ¼ 1
n(n� 1)

X

y=x
d(x,y),

where n is the number of nodes in the graph G and d(x,y) stands
for the shortest distance between nodes x and y. Plots were gen-
erated using the standard Python library Seaborn and Matplotlib
[57] as well as the NetworkX draw function for the graphs [56].

4.4. Global transport efficiency calculation
The vascularized networks were analysed with global efficiency
using custom Python code with the calculations described in
Latora & Marchiori [58]. Comparisons shown were only made
between graphs that started as 992 (31 × 32) nodes for 2D tem-
plates, 1000 (10 × 10 × 10) nodes for 3D templates and 972
(18 × 18 × 3) nodes for 2.5D templates before vascularization.
The selection of the best solutions in the multi-objective optimiz-
ation of global efficiency and vasculature fraction was carried out
as described in [53],

Global efficiency (G) ¼ 1
n(n� 1)

X

y=x

1
d(x,y)

,

https://osf.io/fzr56/
https://osf.io/fzr56/
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where n is the number of nodes in the graph G and d(x,y) stands
for the shortest distance between nodes x and y.
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