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Impact of glucocorticoid on neurogenesis

Introduction
Glucocorticoids have been suggested to be involved in sev-
eral brain diseases associated with stress such as post-trau-
matic stress disorder (PTSD), anxiety disorders, and major 
depressive disorder (MDD) (Holsboer et al., 2000; Herbert 
et al., 2013; Numakawa et al., 2013; Griffin et al., 2014; 
Raglan et al., 2017). Blood levels of glucocorticoids are in-
creased in response to a variety of environmental stressors 
and are regulated by the negative feedback loop of the hy-
pothalamic-pituitary-adrenal (HPA) axis (Ising et al., 2005; 
Owashi et al., 2008). Maternal stress during pregnancy has 
also been demonstrated to increase the risk of attention 
deficit hyperactivity disorder (ADHD) and autism spectrum 
disorder (ASD) in the offspring, through the elevation of 
glucocorticoid levels (Graignic-Philippeet et al., 2014). The 
impact of glucocorticoids on neuronal functions, including 
cell survival and synaptic plasticity in the central nervous 
system (CNS), has been extensively investigated through in 
vitro and in vivo studies. Moreover, research has indicated 
that neural stem/progenitor cells (NSPCs) are an important 
target of excess glucocorticoids during stress. The resultant 
dysregulation of neurogenesis may thus be involved in the 
onset of the brain diseases mentioned above. Furthermore, 
impaired neurogenesis in the hippocampal region may dis-
rupt the HPA-axis functions because hippocampal neurons 
play an essential role in the negative feedback regulation of 
the HPA-axis (Roozendaa et al., 2001; Furay et al., 2008).

This review focuses on the relationship between glucocor-
ticoids and neurogenesis demonstrated by both in vitro and 
in vivo studies. We have discussed recent evidence concern-
ing altered intracellular signaling and cell phenotypes caused 
by glucocorticoids in NSPCs.

Adult Neurogenesis and Major Depressive 
Disorder
There is growing interest in the possible etiological contribu-
tion of adult neurogenesis in psychiatric diseases including 
MDD, bipolar disorder, schizophrenia, anxiety disorders, 
and PTSD (Schoenfeld and Cameron, 2015; Yun et al., 2016). 
The onset of MDD has been suggested to be particularly as-
sociated with adult neurogenesis in the dentate gyrus of the 
hippocampus. Several lines of evidence show reduced hip-
pocampal neurogenesis in animal models of MDD caused by 
social defeat stress, chronic corticosterone (CORT, a murine 
glucocorticoid) exposure, lipopolysaccharide administra-
tion, and unpredictable chronic mild stress (altered bedding, 
cage tilting, shaking, cage exchange, induced defensive pos-
ture, altered light-dark cycle) (Levone et al., 2014; Tang et 
al., 2016). Various therapeutic interventions for MDD such 
as antidepressants, electroconvulsive shock, enriched envi-
ronment, and exercise appear to enhance NSPC proliferation 
and the survival rate of newborn neurons in the adult hippo-
campus (Madsen et al., 2000; Santarelli et al., 2003; Jhaetal, 
2011; Kiuchi et al., 2012). Human postmortem studies also 
show fewer granule neurons in the dentate gyrus of unmedi-
cated MDD patients and an increased number of hippocam-
pal NSPCs in MDD patients treated with antidepressants 
(Boldrini et al., 2009, 2012, 2013). These correlations be-
tween depression and reduced neurogenesis in both human 
and animal models suggest that neurogenesis may play a 
significant role in the etiology of depression. In order to ad-
dress this hypothesis, hippocampal irradiation and inducible 
genetic modification of NSPCs have been utilized to regulate 
adult neurogenesis in stressed or antidepressant-treated an-
imals. Although there have been conflicting results on the 

Abstract
Neurogenesis is currently an area of great interest in neuroscience. It is closely linked to brain diseases, 
including mental disorders and neurodevelopmental disease. Both embryonic and adult neurogeneses are 
influenced by glucocorticoids secreted from the adrenal glands in response to a variety of stressors. More-
over, proliferation/differentiation of the neural stem/progenitor cells (NSPCs) is affected by glucocorticoids 
through intracellular signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, hedgehog, and 
Wnt. Our review presents recent evidence of the impact of glucocorticoids on NSPC behaviors and the un-
derlying molecular mechanisms; this provides important information for understanding the pathological 
role of glucocorticoids on neurogenesis-associated brain diseases.

Key Words: neural progenitor cells; glucocorticoids; neurogenesis; intracellular signaling pathways 

INVITED REVIEW

*Correspondence to:
Tadahiro Numakawa, Ph.D., 
numakawa.yyrmk@gmail.com.

doi: 10.4103/1673-5374.211174

Accepted: 2017-07-07

Haruki Odaka1, 2, Naoki Adachi3, 4, Tadahiro Numakawa2, 4, *

1 Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
2 Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
3 Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
4 Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 
Japan
  
How to cite this article: Odaka H, Adachi N, Numakawa T (2017) Impact of glucocorticoid on neurogenesis. Neural Regen Res 12(7):1028-1035.
Funding: This study was supported by grants from by Takeda Science Foundation (TN, NA), and from the Grant-in-Aid for Scientific 
Research(C) (JSPS KAKENHI JP16K06996) (to TN) and JSPS KAKENHI Grant Number 17J04183 (to HO) in the Ministry of Education, Cul-
ture, Sports, Science, and Technology of Japan.



1029

Odaka et al. / Neural Regeneration Research. 2017;12(7):1028-1035.

causal contribution of decreased neurogenesis in depres-
sive behaviors, several studies have consistently reported 
that impaired hippocampal neurogenesis diminishes the 
effect of antidepressants in rodents (Santarelli et al., 2003; 
Surget et al., 2008, 2011). In the context of reduced neuro-
genesis in stressed animals, Hill and colleagues reported 
that increased survival of adult-born neurons induced by 
NSPCs-specific deletion of pro-apoptotic gene Bax amelio-
rated depressive behaviors in CORT-treated mice (Hill et 
al., 2015). It is of interest that both enhanced and reduced 
neurogenesis under basal conditions (unstressed and un-
treated) did not change behavior in animals. These results 
indicate that the alteration of neurogenesis is necessary but 
not sufficient to achieve antidepressant effects or cause de-
pressive behaviors (Santarelli et al., 2003; Hill et al., 2015).

Chronically elevated glucocorticoid levels under pro-
longed stress are the most common biological feature in 
MDD patients (Figure 1) (Numakawa et al., 2013). Animals 
chronically treated with CORT at a dose of 20 mg/kg/day 
for 25 days exhibited depressive behaviors and decreased 
neurogenesis in the hippocampal dentate gyrus (Sawamoto 
et al., 2016). Adrenalectomy (surgical removal of the adrenal 
glands) also prevents depressive behaviors and reduced neu-
rogenesis in chronically stressed murines, suggesting that 
glucocorticoids are a major mediator of depressive behaviors 
and impaired neurogenesis under chronic stress (Lehmann 
et al., 2013). Importantly, the hippocampus negatively 
regulates HPA-axis activity in response to elevated blood 
glucocorticoid levels, raising the possibility that impaired 
hippocampal neurogenesis influences the negative feedback 
function to regulate HPA-axis activity. 

Schloesser et al. (2009) reported that suppression of hip-
pocampal neurogenesis led to increased HPA response after 
exposure to a mild stressor. In the study, NSPCs in the hip-
pocampus were eliminated in transgenic mice using the her-
pes simplex virus thymidine kinase (HSV-tk) in glial fibril-
lary acidic protein (GFAP) positive NSPCs by administration 
of toxins specific to HSV-tk expressing proliferative cells. 
With X-irradiation of mouse hippocampi, Surget showed 
that ablation of hippocampal neurogenesis alone did not 
affect the negative feedback in the HPA-axis; however, it di-
minished fluoxetine-induced restoration of the hippocampal 
regulation of HPA-axis activity under chronic stress (Surget 
et al., 2011). It has also been reported that enhancing new-
born neuron survival restored depressive behaviors in mice, 
without affecting the HPA-axis regulation either at baseline 
or following CORT treatment (Hill et al., 2015). These con-
flicting results suggest that the influence of hippocampal 
neurogenesis on the regulation of HPA-axis activity may 
vary based on the type of stress and antidepressant used.

Embryonic Neurogenesis and 
Neurodevelopmental Disorder
Embryonic neurogenesis may be involved in the onset of 
neurodevelopmental and psychiatric diseases; as such, it is 
an important target for investigating the impact of stress 
and glucocorticoids. Growing epidemiological evidence in-

dicates that maternal stress during pregnancy increases the 
risk of ADHD, depression, schizophrenia, and ASDs in the 
offspring (Figure 1) (van Os and Selten, 1998; Van den Ber-
gh and Marcoen, 2004; Beversdorf et al., 2005; Kinney et al., 
2008; Khashan et al., 2008; Van den Bergh et al., 2008; Gri-
zenko et al., 2012; Graignic-Philippe et al., 2014). Although 
the mechanisms of how maternal stress affects fetal brain 
development are not fully understood, excessive glucocorti-
coid transfer from mother to fetus is proposed as a key factor 
(Wilcoxon and Redei, 2007; Salomon et al., 2011). Catalytic 
conversion of glucocorticoid to cortisone by placental 11 
beta-hydroxysteroid dehydrogenase type 2 prevents mater-
nal glucocorticoid transfer to the fetus (Reynolds, 2013). 
Chronic severe stress and prolonged elevation of glucocor-
ticoid levels in maternal serum exceeds catalytic conversion 
capacity and a considerable quantity of glucocorticoids then 
reaches the fetus (Reynolds, 2013). Fetal exposure to gluco-
corticoids can also be induced during therapeutic admin-
istration of synthetic glucocorticoids to promote fetal lung 
maturation. Such treatment is routinely used in obstetrical 
practice, although some clinical studies have demonstrated 
its adverse effect on childhood cognition and long-term be-
havior (Crowther et al., 2007; French et al., 2009; Braun et 
al., 2013). However, it should be noted that reports regarding 
the long-term effect of therapeutic glucocorticoid adminis-
tration are still mixed; thus, further large-scale randomized 
controlled trials are required (Stutchfield et al., 2013).

Animals exposed to prenatal stress appear to exhibit a 
variety of behavioral abnormalities, including reduced ex-
ploration activity, decreased spatial memory, inability to 
extinguish conditioned fear memory, increased anxiety, and 
depressive behaviors (Alonso et al., 1991; Lordi et al., 2000; 
Schneider et al., 2002; Sundberg et al., 2006; Salomon et al., 
2011; Anacker et al., 2013a; Bingham et al., 2013). Interest-
ingly, anxiogenic behavior observed in prenatally-stressed 
rats (via a combination of restraint, forced swim and elevat-
ed platform stress) were ameliorated by maternal adrenal-
ectomy, which was reversed by maternal administration of 
high-dose CORT (Salomon et al., 2011). In another report, 
dams receiving both adrenalectomy and CORT administra-
tion produced offspring with increased depressive behavior 
(Wilcoxon and Redei, 2007). Maternal CORT treatment also 
impaired the ability to extinguish conditioned fear memo-
ry, a hallmark of PTSD, in offspring as well as in prenatally 
stressed rats (Bingham et al., 2013). These studies essentially 
suggest that increased maternal serum levels of glucocor-
ticoids could cause some behavioral abnormalities in off-
spring.

Although the impact of glucocorticoids on embryonic 
neurogenesis is still being investigated, several studies have 
demonstrated the detrimental effects of perinatal glucocor-
ticoid exposure on neurogenesis. Decreased body weight, 
hippocampal volume, and number of proliferating cells in 
the subventricular zone of the lateral ventricle, subgranular 
zone of the hippocampus, and cortex were observed in rats 
after administration of dexamethasone (DEX), a synthetic 
glucocorticoid, at postnatal days 4–7 (Kanagawa et al.,2006). 
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Furthermore, a single administration of DEX on pregnant 
mice at embryonic day 15.5 resulted in decreased body 
weight and hippocampal volume, increased apoptotic cells 
in the hippocampus, and reduced cell proliferation in the 
subgranular zone of the dentate gyrus in pups (Noorlander 
et al., 2014). Remarkably, the prenatally DEX-treated mice 
exhibited a deficit in spatial memory, impaired hippocampal 
long-term depression, decreased hippocampal neurogenesis, 
and shortened lifespan in the adult period, indicating the 
long-lasting impact of prenatal DEX exposure on the CNS 
after birth (Noorlander et al., 2008).

Glucocorticoid Effect on Neural Stem/
Progenitor Cells
To clarify the molecular mechanisms underlying neurogen-
esis impairment caused by increased glucocorticoids, several 
in vitro studies have proposed various impacts of glucocor-
ticoids on the cellular system in NSPCs. Endogenous gluco-
corticoids have two specific receptors: the mineralocorticoid 
receptor (MR) and the glucocorticoid receptor (GR), both 
of which can function as transcription factors. As MR has 
a high affinity for glucocorticoids, it is occupied even at the 
basal blood glucocorticoid levels (De Kloet et al., 1998). On 
the other hand, GR has a low affinity to glucocorticoids and 
is activated in response to increased levels of stress-induced 
glucocorticoids (De Kloet et al., 1998). Interestingly, MR 
and GR differentially affect the proliferation and differen-
tiation of NSPCs. Anacker et al. (2013a) demonstrated that 
a low concentration of cortisol (human endogenous gluco-
corticoid) enhanced proliferation of human hippocampal 
progenitor cells and differentiation into astroglias, and 
suppressed differentiation into neurons, through MR func-
tion. Meanwhile, a high concentration of cortisol decreased 
proliferation of NSPCs and neural differentiation without 
affecting astroglial differentiation, via activating GR (Anack-
er et al., 2013a). These results suggest that the basal level of 
glucocorticoids modulates neurogenesis via MR, while an 
increased level of glucocorticoids inhibits neurogenesis via 
GR function. Consistent with this idea, the negative impact 
of glucocorticoids on neurogenesis via GR activation has 
been reported in various types of NSPCs (Bose et al., 2010; 
Samarasinghe et al., 2011; Raciti et al., 2016).

It is well known that ligand binding triggers translocation 
of cytosolic GR to the nucleus, and subsequently, GR direct-
ly binds to the promoter region of target genes or modifies 
activity of other transcriptional factors (Mitre-Aguilar et al., 
2015). In addition to such genomic actions, plasma mem-
brane GR (mGR) rapidly activates intracellular signaling 
cascades in response to ligand binding, which is known as 
non-genomic functions (Mitre-Aguilar et al., 2015). Al-
though little is known about the influence of non-genomic 
pathways of GR on NSPCs, one study has reported a pos-
sible contribution of the non-genomic pathway on gluco-
corticoid-induced suppression of neurogenesis in cultured 
NSPCs (Samarasinghe et al., 2011). Activation of mGR in 
cultured NSPCs rapidly stimulated ERK1/2 signaling after 
DEX treatment in a Caveolin-1 dependent manner, which 

led to phosphorylation of connexin43. Because connexin43 
diminishes gap junction intercellular communication (GJIC) 
and pharmacological GJIC inhibition is sufficient to suppress 
the proliferation of NSPCs, the mGR-dependent GJIC inhi-
bition would contribute to NSPCs proliferation (Samarasing-
he et al., 2011). Interestingly, the inhibitory action of mGR 
on NSPC proliferation lasted at least 24 hours, even though 
DEX exposure was transient (1 hour). These findings imply 
that proliferative activity of NSPCs can be interrupted by a 
transient increase of glucocorticoids triggered by stressful 
events.

In cultured rat embryonic NSPCs, DEX exposure for two 
days upregulated negative regulators of the cell cycle (p16 
and p21) and senescence-related genes (high mobility group 
1 and heterochromatin protein 1), and downregulated the 
mitochondrial genes (NADH dehydrogenase 3 and cyto-
chrome b) concomitant with the suppression of NSPCs pro-
liferation. Importantly, these features were retained for 10 
days after ceasing DEX exposure, resembling the long-last-
ing effect of GR. Because DEX-exposed NSPCs showed de-
creased methylation of global DNA and expression of DNA 
methyltransferases, GR-mediated epigenetic events may also 
contribute to changes in gene expression profiles in daughter 
cells as a long-lasting influence of glucocorticoid exposure 
(Bose et al., 2010). This group recently showed that DEX 
treatment on human induced pluripotent stem cell-derived 
neuroepithelial-like stem cells exhibited a long-lasting de-
crease of neural differentiation, with significant downregula-
tion of antioxidants and increased intracellular reactive oxy-
gen species generation. Decreased neural differentiation was 
counteracted by the antioxidant N-acetyl-cysteine, suggest-
ing that the intracellular redox system affects neural differ-
entiation (Raciti et al., 2016). Importantly, the DEX-induced 
neural differentiation defect was accompanied by reduced 
expression of TrkB, a receptor of brain-derived neurotrophic 
factor (BDNF), which was also reversed by antioxidant treat-
ment. Although the relationship between TrkB expression 
and neural differentiation was not elucidated in the study, 
the interference of glucocorticoids with the BDNF/TrkB 
signaling pathways is of interest given that BDNF is a potent 
enhancer of neural differentiation and maturation.

Besides transcriptional regulation, alteration of the ubiqui-
tin proteasome system (UPS) is also involved in the inhibito-
ry effect of glucocorticoids on neurogenesis. Rat embryonic 
NSPCs showed a decrease in cell proliferation after DEX 
exposure, which was accompanied by the reduction of cyclin 
D1 levels, a positive regulator of the cell cycle (Sundberg 
et al., 2006). The increased ubiquitination of cyclin D1 and 
counteraction of MG132 (an inhibitor of the UPS) reduced 
DEX effects (on both expression of cyclin D1 and cell prolif-
eration), implying an involvement of the UPS in the DEX-in-
hibited cell proliferation. Moreover, the authors proposed 
that baculoviral inhibitor of apoptosis repeat-containing 6 
gene (BRUCE/Apollon) is another possible target of DEX-in-
duced UPS alteration in the suppression of NSPCs prolifer-
ation (Sippel et al., 2009). Further, it was revealed that DEX 
increased the expression of the deubiquitinating enzyme 
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Usp8/Ubpy, which decreased BRUCE possibly via the stabi-
lization of BRUCE-targeting ubiquitin-protein ligase Nrdp1. 
Although the molecular mechanism behind increased cyclin 
D1 ubiquitination is still not clear, these findings suggest that 
the alteration of the UPS may be accountable for part of the 
gene expression mediated by glucocorticoids.

Intrinsic and extrinsic signaling cascades regulate prolifer-
ation and differentiation of NSPCs. Several groups, including 

Figure 2 Inhibition of Akt signaling by corticosterone (CORT) 
exposure in neural stem/progenitor cells (NSPCs). 
(A) Schematic representation of experimental procedure. Primary 
embryonic rat neurospheres were digested and plated on polyeth-
ylemine-coated dishes at day –3. After 3 days of expansion of NSPCs in 
the proliferation medium, the medium was switched to differentiation 
induction medium at day 0 and cultured until day 7. CORT exposure 
was performed each day after plating. (B) Robust increase of phos-
phorylated-Akt (pAkt) level during differentiation. (C) Decreased pAkt 
levels in NSPCs at day 7 after differentiation induction in the presence 
of CORT. 

Figure 3 Possible crosstalk of intracellular signaling pathways 
affected by glucocorticoid exposure.
Blue: Glucocorticoid receptor (GR) signaling; red: major pathway of the 
phosphoinositide 3-kinase (PI3K)/Akt signaling; green: major pathway 
of the Wnt signaling; and orange: major pathway of the hedgehog sig-
naling. Arrow head: Positive regulation; T bar: negative regulation; and 
dotted line: detailed mechanisms were unidentified. DKK1: Dickkopf1; 
GSK-3β: glycogen synthase kinase-3 beta; mTOR: mammalian target of 
rapamycin; SGK1: serum- and glucocorticoid-inducible kinase 1; SMO: 
smoothened.

Figure 1 Glucocorticoid hypothesis of neurodevelopmental disease and depressive disorder.
Possible impacts of stress-induced glucocorticoid secretion from adrenal cortex on adult or embryonic neurogenesis are shown. ADHD: Attention 
deficient hyperactivity disorder, ASD: autism spectrum disorder; GCs: glucocorticoids. Reference: (1) Wong et al., 2000; (2) Lenze et al., 2011; (3) 
Sawamoto et al., 2016; (4) Lehmann et al., 2013; (5) Schloesser et al., 2009; (6) Grizenko et al., 2012; (7)Van den Bergh and Marcoen., 2004; (8) 
Beversdorf et al., 2005; (9) Kinney et al., 2008; (10) Van den Bergh et al., 2008; (11) Khashan et al., 2008; (12) van Os and Selten, 1998; (13) Kanaga-
wa et al., 2006; (14) Noorlander et al., 2014.
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the authors, have reported impairment of various signaling 
cascades by glucocorticoid exposure. Gene expression mi-
croarray combined with pathway analysis showed that a 
high-dose of cortisol inhibited TGF-β-SMAD2/3 and hedge-
hog signaling in human hippocampal progenitor cell lines 
(Anacker et al., 2013a). These signaling abnormalities were 
also observed in the hippocampus of adult rats exposed to 
prenatal stress. In addition, hedgehog signaling activation by 
smoothened agonist, purmorphamine, canceled the inhib-
itory effect of cortisol on neuronal differentiation (Anacker 
et al., 2013a). This supports the possible involvement of 
hedgehog signaling in neurogenesis regulation. Serum- and 
glucocorticoid-inducible kinase 1 (SGK1), a direct target 
gene of GR, has been proposed as a contributor to repression 
of hedgehog signaling (Anacker et al., 2013b). In human 
hippocampal progenitor cell lines, an SGK1 inhibitor re-
versed the cortisol-induced suppression of hedgehog signal-
ing, proliferation and neuronal differentiation. Interestingly, 
SGK1 potentiated and maintained the cortisol-induced 
phosphorylation and nuclear translocation of GR even after 
withdrawal of cortisol, implying a positive feedback role of 
SGK1 on GR function. This study indicates that SGK1 is one 
of the candidate factors regulating the long-lasting effects of 
glucocorticoids. It may mediate hedgehog signaling indirect-
ly, as the SGK1 inhibitor would reverse various GR-mediated 
phenotypes through repressing its positive feedback action.

Wnt signaling pathways are also involved in self-renewal, 
expansion, differentiation and maturation of NSPCs in both 
the developing and adult brain (Bengoa-Vergniory et al., 
2015). Thus, their correlation with glucocorticoids is salient. 
DEX treatment of human NSPCs inhibited both prolifera-
tion and neural differentiation of NSPCs, accompanied by 
increased Dickkopf1 (DKK1, endogenous Wnt-signaling 
antagonist) levels and reduced levels of canonical Wnt target 
genes including cyclin D1 and inhibitor of DNA binding 2 
(ID2) (Moors et al., 2012). Neutralization with anti-DKK1 
antibody antagonized the DEX-induced impairment in 
proliferation and differentiation of NSPCs. The GR was also 
shown to bind to the promoter region of DKK1 gene, imply-
ing direct regulation of DKK1 expression by GR. Interesting-
ly, DEX-induced alteration of DKK1/Wnt pathway was also 
reported in osteoblasts in the context of DEX-induced oste-
oporosis, indicating the importance of glucocorticoid-me-
diated DKK1/Wnt pathway in a variety of cell populations 
(Ohnaka et al., 2005). 

ERK- and PI3K/Akt-signaling are critical in neuronal 
events including neurogenesis, as they are pivotal to signal-
ing after stimulation by growth factors (Samuels et al., 2009; 
Wang et al., 2017). Glucocorticoids exert a negative effect 
on these signaling cascades in various cell types, including 
neurons (Sandri et al., 2004; Smith et al., 2005; Horsch et 
al., 2007; González et al., 2010; Kumamaru et al., 2011). Re-
cently, the authors found that ERK and Akt activities were 
increased during in vitro differentiation of rat embryonic 
NSPCs, and this activation was decreased by CORT applica-
tion (Odaka et al., 2016) (Figure 2). The importance of Akt 
activation for proper neural differentiation was demonstrat-

ed using specific inhibitors for these signaling pathways. A 
potent PI3K/Akt signaling activator, IGF1, counteracted the 
CORT-induced suppression of neural differentiation, sug-
gesting its role in impaired neurogenesis. Considering that 
Wnt signaling inhibition caused a defect in neural differ-
entiation, glycogen synthase kinase-3 beta (GSK-3β) is one 
of the possible downstream targets of PI3K/Akt signaling. 
Phosphorylation of GSK-3β by Akt inhibits the enzymatic 
activity of GSK-3β and results in the prevention of the pro-
teasomal degradation of β-catenin, as is the case with canon-
ical Wnt signaling pathways (Katoh et al., 2006). Indeed, it 
was demonstrated that glucocorticoid suppressed PI3K/Akt/
GSK-3β/β-catenin pathways in osteoblast-like cells (Smith 
et al., 2005). Moreover, an in vivo study showed that endog-
enous adult neurogenesis was enhanced by the activation of 
the PI3K/Akt/GSK-3β system after cerebral ischemia, fur-
ther supporting an involvement of these pathways in neuro-
genesis (Kisoh et al., 2016).

Another putative downstream target of PI3K/Akt is 
mTOR (mammalian target of rapamycin). The stimulation 
of mTOR complex1 (mTORC1) by the activation of PI3K/
Akt subsequently induces activation of p70 ribosomal S6 
protein kinases 1/2 and inhibition of eukaryotic initiation 
factor 4E-bonding proteins, triggering the translational 
response of the mTOR cascade (Wang et al., 2017). PI3K/
Akt/mTOR signaling is essential for normal brain develop-
ment. Deletion of mTOR in NSPCs disrupted progenitor 
self-renewal and suppressed neural differentiation, and re-
sulted in microcephaly (Ka et al., 2014; Wang et al., 2017). 
It is of note that mTOR activity is negatively regulated by 
GSK-3, implying that Wnt or PI3K/Akt-induced GSK-3β 
inhibition may enhance mTOR activity (Ka et al., 2014). 
GSK-3 also negatively regulated hedgehog signaling via 
targeting a downstream molecule of hedgehog pathway 
Gli (Pan et al., 2006; Wang et al., 2006). Although further 
studies are needed, the negative action of glucocorticoids 
on DKK1/Wnt, PI3K/Akt, and hedgehog signaling appear 
to synergistically suppress neurogenesis through their 
crosstalk (Figure 3). 

Downregulation of both PI3K/Akt and ERK pathways by 
glucocorticoids implies the possible involvement of receptor 
tyrosine kinases (RTKs, major activators of these signaling 
pathways). BDNF is one of the most-studied RTK activa-
tors as a target of glucocorticoid action. BDNF has multiple 
functions in both the embryonic and adult brain, such as 
NSPCs proliferation, differentiation, survival, and synaptic 
plasticity. Several studies report that exposure to stress and 
glucocorticoids decreases expression of BDNF in the hip-
pocampus and/or the cortex in rodents (Smith et al., 1995; 
Schaaf et al., 1997; Dwivedi et al., 2006). Recent studies 
using the BZ cell line (established by targeted oncogenesis 
in mouse hippocampus) showed that GR was recruited to a 
promoter region of the BDNF gene to repress transcription 
through unidentified transcription factor tethering (Chen 
et al., 2017). Glucocorticoids also impair BDNF-stimulated 
intracellular signaling pathways. Generally, BDNF binds to 
TrkB to activate mainly three intracellular cascades; PI3K/
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Akt, MAPK/ERK, and PLC-γ pathways (Begni et al., 2017). 
The authors previously reported that DEX exposure atten-
uated the interaction of TrkB with Shp2, and subsequently 
suppressed ERK signaling and BDNF-induced enhancement 
of synaptic maturation in rat cortical neurons. DEX also in-
hibited BDNF-induced PLC-γ activation and its regulation 
of neurotransmitter release in rat cortical neurons (Nu-
makawa et al., 2009). Intracellular interaction between GR 
and TrkB was also revealed, which is important in the TrkB-
PLC-γ interaction. Although inhibitory actions of glucocor-
ticoids on BDNF-stimulated PI3K/Akt signaling in neural 
cells have not been reported, upregulation of p85α monomer 
caused by glucocorticoids inhibited Akt activity by compet-
ing for the RTK binding site with p110/p85 heterodimers in 
osteoblasts and myoblasts (Kuo et al., 2012; Zou et al., 2015). 
Although these mechanisms might be accountable for some 
glucocorticoid-induced phenotypes in NSPCs, further stud-
ies are required to explore the functional crosstalk between 
glucocorticoids and BDNF in NSPCs. 

Future Directions
In this review, we outlined recent evidence on functional in-
teractions between stress hormone glucocorticoids and neu-
rogenesis. Investigating altered cell fate and related intracel-
lular signaling in NSPCs affected by glucocorticoid stress is 
important to reduce the risk of developmental brain diseases, 
including mental disorders and neurodegenerative diseases. 
In spite of differences in cell population and niche, both em-
bryonic and adult NSPCs exhibit similar phenotypes, includ-
ing suppression of proliferation and neural differentiation by 
high levels of glucocorticoids. These phenotypic similarities 
might be attributed to a common molecular mechanism in 
embryonic and adult NSPCs. Studies on glucocorticoid-re-
lated impairments discussed above, however, were revealed 
by using NSPCs originating from embryos; thus, it should be 
ascertained if these mechanisms can also be applied in adult 
NSPCs.

Although GR is believed to be a major contributor of glu-
cocorticoid stress, MR (which have a high affinity receptor 
for glucocorticoids) act positively on neurogenesis (Anacker 
et al., 2013a), indicating that the functional balance between 
GR and MR is critical for glucocorticoid action in neuro-
genesis. Although genetic manipulation of GR in animals 
could be a promising tool for investigation, several studies 
on neurogenesis in GR knockout or knockdown mice have 
yielded inconsistent results. GR heterozygous mice displayed 
reduced hippocampal neurogenesis under the stress condi-
tion but not the basal condition (Kronenberg et al., 2009). 
Brain-specific deletion of GR did not affect neurogenesis 
in hippocampal granule cell layer in the basal condition 
(Gass et al., 2000). It is difficult to evaluate the influence of 
GR deletion in neurogenesis using systemic or whole-brain 
GR-deficient mice, as GR deletion in hippocampal or hypo-
thalamic neurons disrupts the negative feedback loop of the 
HPA-axis. This in turn causes hypercorticoidism, which can 
interfere with neurogenesis. Indeed, cell type-specific knock-
down of GR in vivo showed different results. For example, 

viral-mediated knockdown of GR selectively in hippocampal 
newborn cells resulted in enhancement of neural differenti-
ation and maturation under the basal condition (Fitzsimons 
et al., 2013). In the future, NSPC-specific manipulation of 
GR could be a powerful tool for precisely understanding 
GR-mediated actions in neurogenesis in vivo.
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