# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 3-Methoxybenzaldehyde thiosemicarbazone

# Jian Zhang,<sup>a</sup> Lin-ping Wu,<sup>a</sup> Ling-hua Zhuang<sup>b</sup> and Guo-wei Wang<sup>a</sup>\*

<sup>a</sup>Department of Light Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and <sup>b</sup>Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: kingwell2004@sina.com.cn

Received 10 March 2009; accepted 20 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 14.5.

The title compound,  $C_9H_{11}N_3OS$ , was prepared by the reaction of 3-methoxybenzaldehyde and thiosemicarbazide. The benzylidene ring and the thiosemicarbazone fragment are slightly twisted, making a dihedral angle of 14.1 (1)°. A weak intramolecular N-H···N hydrogen bond may influence the conformation of the molecule. Intermolecular N-H···S hydrogen bonds build up a three-dimensional network.

### **Related literature**

For a general background to thiosemicarbazone compounds, see: Casas *et al.* (2000); Tarafder *et al.* (2000); Ferrari *et al.* (2003); Maccioni *et al.* (2003); Chimenti *et al.* (2007). For bond-length data, see: Allen *et al.* (1987).



# Experimental

Crystal data

 $\begin{array}{l} C_9H_{11}N_3OS \\ M_r = 209.27 \\ \text{Monoclinic, } P2_1/c \\ a = 11.814 \ (2) \ \text{\AA} \\ b = 5.6760 \ (11) \ \text{\AA} \\ c = 15.248 \ (3) \ \text{\AA} \\ \beta = 90.29 \ (3)^{\circ} \end{array}$ 

#### Data collection

| Enraf–Nonius CAD-4<br>diffractometer   | 1852 independent reflections<br>1494 reflections with $L > 2\sigma(I)$ |
|----------------------------------------|------------------------------------------------------------------------|
| Absorption correction: $\psi$ scan     | $R_{\rm int} = 0.017$                                                  |
| (North <i>et al.</i> , 1968)           | 3 standard reflections                                                 |
| $T_{\min} = 0.908, \ T_{\max} = 0.969$ | every 200 reflections                                                  |
| 1946 measured reflections              | intensity decay: 9%                                                    |
| Refinement                             |                                                                        |

# $R[F^2 > 2\sigma(F^2)] = 0.041$ 128 parameters $wR(F^2) = 0.110$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ 1852 reflections $\Delta \rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$

#### Table 1

Hydrogen-bond geometry (Å, °).

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $D - H \cdots A$                | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------------------|---------------------------------|------|-------------------------|--------------|---------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $N2-H2\cdots S1^{i}$            | 0.86 | 2.57                    | 3.370 (2)    | 156                       |
| $N3-H3A\cdots N1$ 0.86 2.25 2.611 (3) 105             | $N3-H3B \cdot \cdot \cdot S1^n$ | 0.86 | 2.57                    | 3.411 (2)    | 166                       |
|                                                       | $N3-H3A\cdots N1$               | 0.86 | 2.25                    | 2.611 (3)    | 105                       |

Symmetry codes: (i) -x + 1, -y + 3, -z + 1; (ii) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2432).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.
- Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712.

Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368. Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Nether-

- Enrat-Nonius (1989). CAD-4 Software. Enrat-Nonius, Delit, The Netherlands.
- Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951–959.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). *Transition Met. Chem.* 25, 456–460.

supplementary materials

Acta Cryst. (2009). E65, o884 [doi:10.1107/S160053680901040X]

# 3-Methoxybenzaldehyde thiosemicarbazone

# J. Zhang, L. Wu, L. Zhuang and G. Wang

## Comment

Thiosemicarbazones constitute an important class of *N*,*S* donor ligands due to their propensity to react with a wide range of metals (Casas *et al.*, 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni *et al.*, 2003; Ferrari *et al.*, 2000). They have been evaluated as antiviral, antibacterial and anticancer therapeutics. Thiosemicarbazones belong to a large group of thiourea derivatives, whose biological activities are a function of parent aldehyde or ketone moiety (Chimenti *et al.*, 2007). Schiff bases show potential as antimicrobial and anticancer agents (Tarafder *et al.*, 2000; Deschamps *et al.*, 2003) and so have biochemical and pharmacological applications. We here report the crystal structure of the title compound (I).

The sulfur atom and the hydrazine nitrogen N1 are in *trans* position with respect to the C9–N2 bond. This conformation may be induced by the weak intramolecular N-H···N hydrogen bond (Fig. 1, Table 1). All bond lengths are within normal ranges (Allen *et al.*, 1987).

At first glance the molecule is roughly planar with the largest deviation from the mean plane being -0.272 (3) Å at N3, however the benzaldehyde ring and the thiosemicarbazone fragment are twisted with respect to each other making a dihedral angle of 14.1 (1)°.

The molecules are connected by intermolecular N—H···S hydrogen bonds which build up a three dimensional network (Table 1, Fig.2).

# Experimental

A mixture of 3-methoxybenzaldehyde (1.36 g, 0.01 mol) and hydrazinecarbothioamide (0.91 g, 0.01 mol) in 20 ml of absolute methanol was refluxed for about 3 h. On cooling, the solid separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. <sup>1</sup>H NMR (DMSO,  $\delta$ , p.p.m.) 11.39 (s, 1 H), 8.17 (s, 1 H), 8.02 (s, 2 H), 7.42 (m, 1 H), 7.30 (t, 2 H), 6.99 (t, 1 H), 3.79 (t, 3 H).

# Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å, and constrained to ride on their parent atoms, with  $U_{iso}(H) = xU_{eq}(C)$ , where x= 1.5 for methyl H and x = 1.2 for C(aromatic) and N atoms.

**Figures** 



Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids. H atoms are represented as smal sphere of arbitrary radii. In-tramolecular hydrogen bond is shown as dashed line.

Fig. 2. Partial packing view showing the N-H···S hydrogen bonds network. H atoms not involved in hydrogen bonding have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) -x+1, y-1/2, -z+1/2]

# 3-Methoxybenzaldehyde thiosemicarbazone

| Crystal data                                                    |                                              |
|-----------------------------------------------------------------|----------------------------------------------|
| C <sub>9</sub> H <sub>11</sub> N <sub>3</sub> OS                | $F_{000} = 440$                              |
| $M_r = 209.27$                                                  | $D_{\rm x} = 1.359 {\rm ~Mg} {\rm ~m}^{-3}$  |
| Monoclinic, $P2_1/c$                                            | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                                            | Cell parameters from 27 reflections          |
| a = 11.814 (2) Å                                                | $\theta = 1 - 25^{\circ}$                    |
| b = 5.6760 (11)  Å                                              | $\mu = 0.29 \text{ mm}^{-1}$                 |
| c = 15.248 (3)  Å                                               | T = 293  K                                   |
| $\beta = 90.29 \ (3)^{\circ}$                                   | Block, colorless                             |
| V = 1022.5 (3) Å <sup>3</sup>                                   | $0.30\times0.20\times0.10~mm$                |
| Z = 4                                                           |                                              |
| Data collection                                                 |                                              |
| Enraf–Nonius CAD-4<br>diffractometer                            | $R_{\rm int} = 0.017$                        |
| Radiation source: fine-focus sealed tube                        | $\theta_{max} = 25.3^{\circ}$                |
| Monochromator: graphite                                         | $\theta_{\min} = 1.7^{\circ}$                |
| T = 293  K                                                      | $h = -14 \rightarrow 0$                      |
| $\omega/2\theta$ scans                                          | $k = 0 \rightarrow 6$                        |
| Absorption correction: $\psi$ scan (North <i>et al.</i> , 1968) | $l = -18 \rightarrow 18$                     |
| $T_{\min} = 0.908, \ T_{\max} = 0.969$                          | 3 standard reflections                       |
| 1946 measured reflections                                       | every 200 reflections                        |
| 1852 independent reflections                                    | intensity decay: 9%                          |
| 1494 reflections with $I > 2\sigma(I)$                          |                                              |
|                                                                 |                                              |

# Refinement

Refinement on  $F^2$ 

Secondary atom site location: difference Fourier map

| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.041$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.110$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0521P)^2 + 0.3815P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.06                                                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 1852 reflections                                               | $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$                               |
| 128 parameters                                                 | $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$                          |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | x            | У            | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| S1  | 0.51511 (6)  | 1.47619 (10) | 0.35880 (3)  | 0.0442 (2)                |
| 01  | 0.85492 (14) | 0.6407 (3)   | 0.83956 (9)  | 0.0496 (5)                |
| N1  | 0.66878 (15) | 1.0213 (3)   | 0.50804 (11) | 0.0369 (4)                |
| N2  | 0.60984 (16) | 1.2149 (3)   | 0.47967 (11) | 0.0407 (5)                |
| H2  | 0.5936       | 1.3268       | 0.5155       | 0.049*                    |
| N3  | 0.59915 (18) | 1.0451 (4)   | 0.34546 (12) | 0.0497 (5)                |
| H3A | 0.6324       | 0.9237       | 0.3674       | 0.060*                    |
| H3B | 0.5800       | 1.0463       | 0.2910       | 0.060*                    |
| C1  | 0.9085 (2)   | 0.4449 (6)   | 0.88050 (16) | 0.0614 (8)                |
| H1A | 0.9862       | 0.4377       | 0.8627       | 0.092*                    |
| H1B | 0.8706       | 0.3024       | 0.8634       | 0.092*                    |
| H1C | 0.9049       | 0.4624       | 0.9430       | 0.092*                    |
| C2  | 0.84356 (18) | 0.6327 (4)   | 0.75008 (14) | 0.0383 (5)                |
| C3  | 0.77906 (17) | 0.8120 (4)   | 0.71427 (13) | 0.0366 (5)                |
| Н3  | 0.7479       | 0.9264       | 0.7505       | 0.044*                    |
| C4  | 0.76070 (17) | 0.8221 (4)   | 0.62447 (13) | 0.0350 (5)                |
| C5  | 0.8097 (2)   | 0.6510 (4)   | 0.57024 (14) | 0.0428 (6)                |
| Н5  | 0.7982       | 0.6566       | 0.5099       | 0.051*                    |
| C6  | 0.8741 (2)   | 0.4764 (4)   | 0.60621 (16) | 0.0503 (6)                |
| Н6  | 0.9071       | 0.3642       | 0.5700       | 0.060*                    |
| C7  | 0.8914 (2)   | 0.4638 (4)   | 0.69715 (16) | 0.0472 (6)                |
| H7  | 0.9346       | 0.3430       | 0.7214       | 0.057*                    |
|     |              |              |              |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| C8 | 0.69256 (18) | 1.0136 (4) | 0.58932 (13) | 0.0379 (5) |
|----|--------------|------------|--------------|------------|
| H8 | 0.6663       | 1.1311     | 0.6265       | 0.045*     |
| C9 | 0.57769 (17) | 1.2279 (4) | 0.39499 (13) | 0.0332 (5) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|    | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-----------------|--------------|--------------|--------------|
| S1 | 0.0643 (4)  | 0.0374 (3)  | 0.0309 (3)      | 0.0090 (3)   | -0.0081 (3)  | 0.0035 (2)   |
| 01 | 0.0534 (10) | 0.0621 (12) | 0.0333 (8)      | 0.0106 (9)   | -0.0062 (7)  | 0.0109 (8)   |
| N1 | 0.0429 (10) | 0.0363 (10) | 0.0315 (9)      | 0.0058 (9)   | -0.0045 (8)  | 0.0024 (8)   |
| N2 | 0.0555 (12) | 0.0378 (11) | 0.0286 (9)      | 0.0118 (9)   | -0.0091 (8)  | -0.0020 (8)  |
| N3 | 0.0732 (14) | 0.0442 (12) | 0.0315 (9)      | 0.0164 (11)  | -0.0128 (9)  | -0.0056 (9)  |
| C1 | 0.0631 (16) | 0.077 (2)   | 0.0444 (14)     | 0.0194 (15)  | -0.0057 (12) | 0.0225 (14)  |
| C2 | 0.0335 (11) | 0.0471 (14) | 0.0343 (11)     | -0.0031 (10) | -0.0041 (9)  | 0.0072 (10)  |
| C3 | 0.0338 (11) | 0.0429 (13) | 0.0331 (11)     | 0.0020 (10)  | 0.0002 (9)   | 0.0024 (10)  |
| C4 | 0.0331 (11) | 0.0380 (12) | 0.0340 (11)     | -0.0035 (10) | -0.0043 (9)  | 0.0045 (10)  |
| C5 | 0.0526 (14) | 0.0413 (14) | 0.0346 (11)     | 0.0013 (11)  | -0.0061 (10) | -0.0020 (10) |
| C6 | 0.0622 (16) | 0.0432 (14) | 0.0454 (13)     | 0.0109 (12)  | -0.0051 (12) | -0.0084 (11) |
| C7 | 0.0517 (14) | 0.0401 (13) | 0.0497 (14)     | 0.0076 (11)  | -0.0091 (11) | 0.0061 (11)  |
| C8 | 0.0389 (11) | 0.0439 (13) | 0.0309 (11)     | 0.0039 (10)  | -0.0012 (9)  | 0.0002 (10)  |
| C9 | 0.0372 (11) | 0.0357 (12) | 0.0266 (10)     | -0.0032 (10) | -0.0024 (8)  | 0.0015 (9)   |

# Geometric parameters (Å, °)

| S1—C9      | 1.683 (2)   | C2—C7    | 1.377 (3)   |
|------------|-------------|----------|-------------|
| O1—C2      | 1.371 (2)   | C2—C3    | 1.382 (3)   |
| O1—C1      | 1.422 (3)   | C3—C4    | 1.386 (3)   |
| N1—C8      | 1.270 (3)   | С3—Н3    | 0.9300      |
| N1—N2      | 1.370 (2)   | C4—C5    | 1.402 (3)   |
| N2—C9      | 1.346 (3)   | C4—C8    | 1.454 (3)   |
| N2—H2      | 0.8600      | C5—C6    | 1.363 (3)   |
| N3—C9      | 1.309 (3)   | С5—Н5    | 0.9300      |
| N3—H3A     | 0.8600      | C6—C7    | 1.402 (3)   |
| N3—H3B     | 0.8600      | С6—Н6    | 0.9300      |
| C1—H1A     | 0.9600      | С7—Н7    | 0.9300      |
| C1—H1B     | 0.9600      | С8—Н8    | 0.9300      |
| C1—H1C     | 0.9600      |          |             |
| C2—O1—C1   | 116.9 (2)   | С4—С3—Н3 | 119.9       |
| C8—N1—N2   | 116.44 (18) | C3—C4—C5 | 119.4 (2)   |
| C9—N2—N1   | 119.16 (18) | C3—C4—C8 | 118.6 (2)   |
| C9—N2—H2   | 120.4       | C5—C4—C8 | 122.00 (19) |
| N1—N2—H2   | 120.4       | C6—C5—C4 | 119.8 (2)   |
| C9—N3—H3A  | 120.0       | С6—С5—Н5 | 120.1       |
| C9—N3—H3B  | 120.0       | С4—С5—Н5 | 120.1       |
| H3A—N3—H3B | 120.0       | C5—C6—C7 | 120.9 (2)   |
| O1-C1-H1A  | 109.5       | С5—С6—Н6 | 119.6       |
| O1—C1—H1B  | 109.5       | С7—С6—Н6 | 119.6       |
| H1A—C1—H1B | 109.5       | C2—C7—C6 | 119.1 (2)   |
|            |             |          |             |

# supplementary materials

| O1—C1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |             | С2—С7—Н7 |              | 120.5       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|----------|--------------|-------------|
| H1A—C1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                 |             | С6—С7—Н7 |              | 120.5       |
| H1B—C1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                 |             | N1-C8-C4 |              | 120.3 (2)   |
| O1—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124.6 (2)             |             | N1—C8—H8 |              | 119.8       |
| O1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 114.8 (2)             |             | С4—С8—Н8 |              | 119.8       |
| C7—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.6 (2)             |             | N3—C9—N2 |              | 117.1 (2)   |
| C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.2 (2)             |             | N3—C9—S1 |              | 124.11 (16) |
| С2—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.9                 |             | N2—C9—S1 |              | 118.78 (16) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |             |          |              |             |
| Hydrogen-bond geometry (Å, °)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |             |          |              |             |
| D—H···A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H··· $A$  |
| N2—H2···S1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 0.86        | 2.57     | 3.370 (2)    | 156         |
| N3—H3B···S1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 0.86        | 2.57     | 3.411 (2)    | 166         |
| N3—H3A…N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 0.86        | 2.25     | 2.611 (3)    | 105         |
| Symmetry codes: (i) $-x+1$ , $-y+3$ , - | z+1; (ii) $-x+1, y-1$ | /2, -z+1/2. |          |              |             |







Fig. 2