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Abstract: Heterosis has been widely accepted as an effective strategy to increase yields in plant
breeding. Notably, the chemical hybridization agent SQ-1 induces male sterility in wheat, representing
a critical potential tool in hybrid seed production. However, the mechanisms underlying the male
sterility induced by SQ-1 still remain poorly understood. In this study, a cyclin-dependent kinase
inhibitor gene, TaICK1, which encodes a 229 amino acid protein, was identified as a potential
contributor to male sterility in common wheat. The expression of TaICK1 was upregulated during
the development of anthers in Xinong1376 wheat treated with SQ-1. Meanwhile, the seed setting
rate was found to be significantly decreased in TaICK1 transgenic rice. Furthermore, we identified
two cyclin proteins, TaCYCD2;1 and TaCYCD6;1, as interactors through yeast two-hybrid screening
using TaICK1 as the bait, which were validated using bimolecular fluorescence complementation.
Subcellular localization revealed that the proteins encoded by TaICK1, TaCYCD2;1, and TaCYCD6;1
were localized in the cell nucleus. The expression levels of TaCYCD2;1 and TaCYCD6;1 were lower
in Xinong1376 treated with SQ-1. A further analysis demonstrated that the expression levels of
OsCYCD2;1 and OsCYCD6;1 were lower in transgenic TaICK1 rice lines as well. Taken together,
these results suggest that the upregulation of TaICK1, induced by SQ-1, may subsequently suppress
the expression of TaCYCD2;1 and TaCYCD6;1 in anthers, resulting in male sterility. This study
provides new insights into the understanding of SQ-1-induced wheat male sterility, as well as the
developmental mechanisms of anthers.
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1. Introduction

Bread wheat (Triticum aestivum L.) is one of the most stable cereal crops and feeds nearly 40%
of the world population, contributing to approximately 20% of the global total caloric intake [1–3].
In China, wheat is the third most important food crop after rice and maize, in terms of either total
production or sown area. In 2017, the area of sown wheat was more than 24.5 million hectares, with a
total output of 1.34 hundred million tons (http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm, China
Statistical Yearbook 2018). However, with the continued increase in the global population, reductions
in cultivatable land (19% less in the wheat cultivated area in 2016 compared to 1998), frequent abnormal
climate changes, and other factors, a gap still remains between the total output of wheat and its
demand [4,5]. Therefore, there is still an urgent need to improve wheat yields [3,6].

Heterosis is one of the most effective ways to improve the yield and quality of wheat [7,8].
At present, two main wheat heterosis strategies are available: a genetic male sterility system (e.g.,
CMS, cytoplasmic male sterility; or PTMS, photo-thermo-sensitive male sterility) and a physiological
male sterility (PHYMS) system (e.g., CIMS, chemically induced male sterility) [9]. For the genetic male
sterile system, the creation of excellent male-sterile lines, maintainer lines, and restorer lines remains a
roadblock for the production of hybrid seed [10]. By contrast, hybrid seed production using the CIMS
system does not have these limitations [11].

Previous studies have indicated that the chemical hybridization agent (CHA) SQ-1 is an effective
male-killing agent for wheat. It is worth noting that there are no evident interaction effects between
most genotype varieties and SQ-1, nor negative effects on agronomic traits [12–14]. These results
demonstrate that SQ-1 has tremendous application potential in wheat hybrid seed production. However,
the degree of male sterility induced by SQ-1 in some fine varieties is unsatisfactory for hybrid seed
production [15,16]. As a result, some fine varieties cannot be used as parents in hybrid seed production.
Elucidation of the molecular mechanism underlying SQ-1-induced male sterility has the potential
to improve the prospects for utilizing CHA. Nevertheless, the molecular mechanism underlying
SQ-1-induced wheat male sterility remains relatively unknown, representing an impediment to the
application of SQ-1-induced wheat male sterility. Previous research has indicated that pollen abortion
may be associated with impaired energy metabolism after spraying of SQ-1 [17–23]. For example,
SQ-1-induced sterility lines showed lower expression levels of the PDH-E1α gene, which is essential
for regulation of the tricarboxylic acid (TAC) cycle [24]. This is consistent with a study showing that
the inhibition of PDH-E1α expression in tobacco leads to male sterility [25]. In addition, pyruvate
dehydrogenase kinase (PDK) is a core regulator of the cell cycle and can block the function of protein
PDH-E1α through phosphorylation [26,27]. Meanwhile, TaPCNA is also an important regulator of
PDK in wheat [28].

In our previous study, the protein TaICK1 was identified in a yeast two-hybrid assay using
TaPCNA as the bait [29]. In plants, ICKs [30] are inhibitors of CDKs (cyclin-dependent kinases), which
play a central role in regulating the cell cycle in plants [31]. To date, seven ICK proteins have been
identified in the model plant Arabidopsis thaliana: ICK1/KRP1, ICK2/KRP2, KRP3, KRP4, KRP5, KRP6,
and KRP7 [32]. Simultaneously, in other plants, increasingly more ICKs have also been identified, such
as NtKIS1a and NtKIS1b in tobacco [33], Zeama;KRP;1 and Zeama;KRP;2 in maize [34], LeKRP1 and
LeKRP2 in tomato [35], and Orysa;KRP1 in rice [36].

It was reported that ICKs play an important role in the regulation of plant growth and development.
ICKs can bind CDK–Cycd protein complexes directly to regulate the activity of CDKs [37] and, thus,
regulate cell development [38]. Hence, a high level of ICKs can inhibit the CDK activity. For example, the
overexpression of NtKIS1a, an ICK-like inhibitor isolated from tobacco, inhibits nuclear re-replication
and reduces CDK activity in Arabidopsis thaliana, which demonstrates that plant organ size and shape
as well as organ cell number and cell size might be controlled by the modulation of the activity
of a single NtKIS1a gene [39]. Wang et al. (2000) reported that the growth of transgenic 35S::ICK1
Arabidopsis plants is significantly inhibited, and most of their organs are smaller [40]. Similar results
have been reported in other studies [39–43]. On the other hand, downregulation of both ICK4/KRP6
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and ICK5/KRP7 can affect pollen development [32,44]. Furthermore, some members of the ICK protein
family can interact with D-type cyclins (Cycds), which involves a number of CDK–Cycd protein
complexes and plays a crucial role in the cell cycle [45]. For example, excess ICK2 can interact with
CYCD2;1, thereby inhibiting lateral root formation [46]. Additionally, increased expression of CYCD
can suppress the negative effects of excess ICK/KRP levels on plant growth [39,47]. These results
suggest that ICKs may play an important role in the development of anther. Although there are some
studies on the functions of ICK1 in anther development, relatively little is known about this process in
common wheat. As wheat is one of the most important plants for humans, basic knowledge regarding
the molecular biology of anther development will promote a better understanding of male sterility
and, moreover, promote the utilization of heterosis.

In this study, we confirmed the full-length coding sequence of TaICK1 in Xinong1376 (XN1376)
wheat. The results show that TaICK1 mRNA could be detected in roots, stems, leaves, developing
seeds, and anthers. Remarkably, the transcript was most abundant in anthers, especially at the late
uninucleate stage of anthers. Similar expression patterns of TaICK1 were detected in the male sterile
lines Xinong1376-CIMS (XN1376-CIMS), but the detected expression level was higher than that in
XN1376 for all stages of anther development except at stage Bn. Meanwhile, the overexpression of
TaICK1 in rice may block the expression of cyclin (e.g., OsCYCD6;1 and OsCYCD2;1). In addition, the
seed setting rate significantly decreased in overexpressed TaICK1 transgenic rice. This study provides
a theoretical basis for further exploring the regulatory pathways related to energy metabolism in the
process of SQ-1-induced male sterility in wheat and lays a foundation for eventually revealing the
mechanism underlying wheat physiological male sterility induced by SQ-1.

2. Results

2.1. Morphological and Cytological Characteristics

In this study, the development of wheat anthers was divided into four stages (e.g., Eun, the early
uninucleate stage; Lun, the late uninucleate stage; Bn, the binucleate stage; and Tn, the trinucleate
stage). As shown in Figure 1, the pistil tissue showed the normal development of all four stages
of XN1376 and XN1376-CIMS. By contrast, the anthers from XN1376-CIMS showed a significant
difference compared to XN1376 from the Eun stage to the Tn stage. For example, the anthers from
XN1376-CIMS plants were smaller and lighter-colored than those from XN1376 plants (Figure 1A–H).
More importantly, the anthers of XN1376-CIMS were shriveled and indehiscent, and less pollen could
be deeply stained using the 1% KI–I2 solution compared to the anthers of XN1376 (Figure 1I,J). These
results indicate that CHA SQ-1 had a negative effect on anther development and destroyed the activity
of pollen grains.
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Figure 1. Anther phenotype and KI–I2 staining in XN1376 (A–D, I) and XN1376-CIMS (E–H, J). (A, 
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Figure 1. Anther phenotype and KI–I2 staining in XN1376 (A–D,I) and XN1376-CIMS (E–H,J). (A,E)
Eun, early uninucleate stage; (B,F) Lun, late uninucleate stage; (C,G) Bn, binucleate stage; (D,H) Tn,
trinucleate stage; and (I,J) KI–I2 staining. Scale bars are 1 mm in (A–H) and 50 µm in (I,J).

The surface characteristics of the anthers and pollen grains at the Tn stage in XN1376-CIMS and
XN1376 were analyzed using scanning electron microscopy (SEM) (Figure 2A,B,E,F,I,J). The anther
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surface characteristics were more irregular in shape in XN1376-CIMS compared to those in XN1376
(Figure 2E,F). In addition, the pollen grains exhibited a severely malformed, shrunken extine pattern,
with small and shrunken germination apertures in XN1376-CIMS (Figure 2J). By contrast, the pollen
grains from XN1376 looked round and did not shrink (Figure 2I).
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Figure 2. SEM observations of the mature pollen and phenotypes of transgenic rice plants. (A) Anthers
of XN1376. (B) Anthers of XN1376-CIMS. (C) Anthers of wild-type Nipponbare. (D) Anthers of
transgenic TaICK1 rice plants. (E) The outer epidermal cells of XN1376. (F) The outer epidermal cells of
XN1376-CIMS. (G) The outer epidermal cells of wild-type Nipponbare. (H) The outer epidermal cells
of transgenic TaICK1 rice plants. (I) The microspores of XN1376. (J) The microspores of XN1376-CIMS.
(K) The microspores of wild-type Nipponbare. (L) The microspores of transgenic TaICK1 rice plants.
(M) The phenotype of 35S::TaICK1 overexpression plants in young seedlings compared to the wild
type. The left is the wild type, and the right is the transgenic plant. (N) The phenotype of TaICK1
overexpression plants in the heading period compared to the wild type. The left is the wild type and
the right is the transgenic plant. Scale bars are 500 µm in A–D; 10 µm in E–H; and 50 µm in I–L.

2.2. Structure of the Gene TaICK1

The full-length CDS of TaICK1 was identified from XN1376 using PCR. The results of agarose
electrophoresis show the presence of only one DNA band corresponding to a specific product
(Figure 3D). Sequencing revealed that the gene TaICK1 contained a 690 bp (Figure 3E) open reading
frame that encoded 229 amino acid residues. The homology analysis indicated that the TaICK1 amino
acid residue sequence has a high similarity with that of Aegilops tauschii (GenBank XP_020153803.1)
and Hordeum (GenBank BAK08028.1)—99.56% and 83.26%, respectively (Figure 4).
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Figure 3. Recombinant expression analysis and full-length CDS of TaICK1. (A) Lane M: protein
marker; lane 1: pCold-TF; lane 2: TaICK1 recombinant protein. (B) Lane M: protein marker; lane 1:
pCold-TF; lane 2: TaCYCD2;1 recombinant protein. (C) Lane M: protein marker; lane 1: pCold-TF;
lane 2: TaCYCD6;1 recombinant protein. (D) The full-length CDS of TaICK1 was cloned by the reverse
transcription polymerase chain reaction of the RNA from wheat XN1376 anthers. M: marker; 1: PCR
product of TaICK1. (E) TaICK1 gene structure.

2.3. Expression Level of TaICK1 in XN1376-CIMS and XN1376

The expression patterns of TaICK1 were first studied in various tissues of XN1376. Meanwhile, the
expression patterns were further measured during the stages of Eun, Lun, Bn, and Tn in XN1376-CIMS
and XN1376. The expression of TaICK1 significantly differed depending on the tissue. As shown
in Figure 5A, the most abundant cDNA of TaICK1 was detected in anthers, followed by leaves and
developing seeds. The root and stem presented less TaICK1 cDNA compared to other tissues. Especially
in root, the expression level was lower than 14 times that in anthers (Figure 5A). These results indicate
that the expression pattern in wheat is organ-specific. In addition, the relative expression of TaICK1 was
further analyzed in the anthers of XN1376-CIMS and XN1376 and showed an increase from the Eun
to Lun stage followed by a continuous decrease from the Lun to Tn stage in XN1376-CIMS. XN1376
also exhibited a similar expression pattern: the highest expression level was detected at the Lun stage
(Figure 5B). Notably, the expression of TaICK1 was higher in XN1376-CIMS than that in XN1376 at
stages Eun, Lun, and Tn (Figure 5B).
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Figure 5. The expression patterns of TaICK1. (A) The expression pattern in various tissues of
XN1376. (B) The expression levels of TaICK1 in XN1376-CIMS and XN1376 at different stages of anther
development. (C) The expression levels of TaCYCD2;1 in XN1376-CIMS and XN1376 at different stages
of anther development. (D) The expression levels of TaCYCD6;1 in XN1376-CIMS and XN1376 at
different stages of anther development. Data are presented as the means ± SD; mean and error bars
indicate SD with three technical replicates and three independent biological replicates. The significance
of differences was assessed using Student’s t-test. * p < 0.05, ** p < 0.01.
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2.4. The Phenotype of TaICK1 Transgenic Rice Plants

The full-length CDS sequence of TaICK1 was cloned into the expression vector pCAMBIA1301,
which drives the expression of inserts through the 35S promoter. The vector was then introduced into
the rice variety Nipponbare. In total, 15 independent TaICK1 transgenic T0 plants were identified.
Homozygous transgenic plants were obtained from the T2 lines. In young seedlings, there were
no observable differences between the wild-type Nipponbare and transgenic plants (Figure 2M).
By contrast, at later stages, one striking change was observed: the heading period was delayed by 7–10
days in transgenic plants compared to control plants (Figure 2N). In addition, the seed setting rates of
transgenic plants and wild-type plants were investigated. The average seed setting rate was 46.5% in
the T1 generation, which was significantly lower than that in the wild type (Table 1). To confirm the
results, the homozygote T2 generation transgenic plants were selected for further analysis. Similar
to the T1 generation, the average seed setting rate of the T2 generation was 50.2%, which was also
significantly lower than that of the wild-type plants (Table 1).

Table 1. The seed-setting rate of the TaICK1 over-expressing plants and wild-type plants.

Plant OE-1 OE-3 OE-5 OE-7 OE-8 OE-10 OE-15 WT

T1 19.7% 58.6% 58.7% 63.5% 38.1% 57.4% 29.6% 94.1%
T2 33.4% 58.6% 66.2% 46.7% 47.3% 30.2% 68.9% 95.1%

OE: overexpression plants; the number following OE is the code of the independent overexpression plants.

SEM was used to observe the outside epidermal cells and pollen grains from transgenic and
wild-type plants. The results showed that the anthers from the wild type were large and full (Figure 2C).
By contrast, the anthers from the transgenic T2 generation were short and thin (Figure 2D). Meanwhile,
the outside epidermal cells showed a roughly uniform distribution in wild type (Figure 2G), which was
abnormal with relatively irregular distribution in the transgenic lines (Figure 2H). Further observations
showed that the pollen grains of the wild type were plump, round, and spherical (Figure 2K), while
the pollen grains of the transgenic plants were sunken into other irregular shapes (Figure 2L).

2.5. Expression Patterns of TaICK1 and OsICK1 in Transgenic Rice

The expression patterns of TaICK1 and OsICK1 were examined in transgenic and wild-type
rice plant anthers using qRT-PCR analyses (Figure 6A,B). The expression pattern of the OsICK1 gene
revealed that OsICK1 had relatively higher expression levels in wild-type plants than those in transgenic
plants during the Eun and Lun stages (Figure 6B). As shown in Figure 6A, the cDNA of TaICK1 was
detected only in the anthers of TaICK1 transgenic plants.

2.6. Subcellular Localization Assay of Protein TaICK1

To determine the intracellular distribution of protein TaICK1, the TaICK1-EGFP construct was
transformed into the leaf of Nicotiana benthamiana. Signals of the EGFP protein alone, as a positive
control, were distributed throughout the cell (Figure 7). By contrast, the green fluorescence of the
TaICK1-EGFP fusion protein was only detected in the nucleus (Figure 7).

2.7. Prokaryotic Expression of TaICK1 in E. coli

The expected molecular weight of TaICK1 is 24 kDa based on the coding sequence. The fusion
protein TF-TaICK1 was expressed in the E. coli strain BL21 (DE3). As shown in Figure 3A, the migration
of fusion protein corresponded with a molecular weight of about 75 kDa according to SDS-PAGE.
Hence, the objective protein was approximately 27 kDa after subtracting 48 kDa corresponding to the
fused trigger factor protein tag. This is approximate with the prediction based on the coding sequence.
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2.8. TaICK1 Interacts with TaCYCD2;1 and TaCYCD6;1

The pGBKT7-TaICK1 plasmid failed to autonomously activate reporter genes in the yeast strain
Y2H Gold (Figure 8A). Hence, this plasmid could be used to screen the yeast library. Ultimately, a
total of 24 individual yeast clones were obtained, in which AF512432.1 (NCBI) and AK450777.1 (NCBI)
were identified and annotated as TaCYCD2;1 and TaCYCD6;1, respectively. TaCYCD2;1 and TaCYCD6;1,
which have been identified as being involved in the regulation of the cell cycle, were selected for
further analysis. In addition, both the TaCYCD2;1-EGFP and TaCYCD6;1-EGFP fusion proteins were
localized to the nucleus in the epidermis leaf cells of Nicotiana benthamiana (Figure 7). The respective
protein molecular weights of TaCYCD2;1 and TaCYCD6;1 were approximately 38 and 33 kDa after
subtracting the 48 kDa trigger factor protein tag (Figure 3B,C).
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Figure 6. The expression levels of the genes TaICK1, OsICK1, OsCYCD2;1, and OsCYCD6;1 in TaICK1
transgenic rice and wild-type plants. (A) The expression levels of TaICK1. (B) The expression levels
of OsICK1. (C) The expression levels of OsCYCD2;1. (D) The expression levels of OsCYCD6;1. Data
are presented as the mean ± SD; the mean and error bars indicate SD from OE-1, OE-3, OE-5, and
OE-10 with three independent biological and three technical replicates. The mRNA of TaICK1 was not
detected in the anthers of wild-type plants; OE: overexpression plants of T2; the number following OE
is a code referring to an independent T2 overexpression plant. The significant differences were assessed
using Student’s t-test. * p < 0.05, ** p < 0.01.
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Figure 8. The interaction of TaICK1 with CYCD2;1 and CYCD6;1 in a yeast two-hybrid assay.
(A) Transcriptional activation analysis of the TaICK1 in yeast. (B) The interaction of TaICK1 with
TaCYCD2;1 and TaCYCD6;1 in the yeast two-hybrid assays.

The interactions between TaICK1 and TaCYCD2;1 and TaCYCD6;1 were confirmed in yeast
(Figure 8B). The interactions between TaICK1 and CYCD2;1 and TaCYCD6;1 were further validated using
a BiFC assay (Figure 9). pCAMBIA1302-35S::TaICK1-EGFPN1–155 and pCAMBIA1302-35S::TaCYCD2;1
-EGFPC156–237 or pCAMBIA1302-35S::TaCYCD6;1-EGFPC156–237 were co-expressed in Nicotiana
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benthamiana leaf cells. These results not only demonstrate that TaICK1 interacted with TaCYCD2;1 and
TaCYCD6;1 but also suggest that the protein complexes of TaICK1 and TaCYCD2;1, as well as that of
TaCYCD6;1, may act functionally in the nucleus.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 19 
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Figure 9. The interaction of TaICK1 with CYCD2;1 and CYCD6;1 in the BiFC system. Fluorescence
(EGFP), bright field, and merged images were obtained using a confocal microscope. The scale bars are
50 µm.

2.9. The Expression Patterns of CYCD2;1 and CYCD6;1 in Wheat and Transgenic Rice

The expression levels of CYCD2;1 and CYCD6;1 were analyzed in the wheat and transgenic rice
plants. As shown in Figure 5C, the expression level of TaCYCD2;1 was lower in XN1376-CIMS than
that in XN1376, especially at the Eun and Lun stages. In total, the trend of expression increased
initially and then decreased from the Eun to Tn stage (Figure 5C). The expression of TaCYCD6;1
was similar to that of TaCYCD2;1 (Figure 5D). Furthermore, the expression levels of OsCYCD2;1 and
OsCYCD6;1 were measured in transgenic and wild-type rice plants. The expression of OsCYCD2;1 was
higher in transgenic rice plants and wild-type plants at the Eun and Lun stages (Figure 6C), as was
OsCYCD6;1 (Figure 6D). Notably, in rice plants overexpressing TaICK1, the expression of OsCYCD2;1
and OsCYCD6;1 was significantly lower than that in wild-type plants (Figure 6C,D).

3. Discussion

CHA SQ-1 can effectively induce male sterility in most wheat varieties, reaching rates of up to
95%. Meanwhile, the seed setting rate of artificial saturation pollination can reach 98% [15]. This result
shows the great potential of utilizing heterosis. However, a small amount of self-fertility will affect
the purity of hybrid F1 seeds to some extent. Hence, it is urgently required to ameliorate the male
sterility induced by SQ-1. Thereafter, we could improve the induction efficiency of male sterility
to reduce this self-fertility.Therefore, several studies have investigated the molecular mechanism
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behind the sterility induced by SQ-1, including characterization of its physiological and biochemical
metabolism characteristics [48,49] as well as the genes related to pollen grain development [19,24,50]
and proteome [16,22,23,51] and epigenetic [52–55] profiles. However, the molecular mechanism
underlying SQ-1-induced male sterility remains unclear.

In our study, we confirmed that TaICK1 is a potential contributor to wheat male sterility induced
by SQ-1. A previous study indicated that ICK proteins are inhibitors of CDK proteins and can block
CDK activity by binding, generating CDK–Cycd protein complexes [56]. Some studies have indicated
that ICK1 expression level can be induced by ABA [37] or salt [57]. Interestingly, the expression level
of TaICK1 in XN1376-CIMS was significantly higher than that in the control plant XN1376 during
the Eun, Lun, and Tn stages (Figure 5B). Especially at the Eun and Lun stages, the expression level
of XN1376-CIMS was 2.8 and 1.7 times that of XN1376. These results report, for the first time, that
CHA SQ-1 may be able to increase the expression of TaICK1. Moreover, as shown in Figure 1J, the
pollen grains of XN1376-CIMS were only lightly stained while the pollen grains of XN1376 were
deeply stained (Figure 1I). This is consistent with the results of the OsiICK6 overexpression, which
showed that the normal pollen grain ratio was only 22% in transgenic plants, which is lower than
that in control plants [58]. Similar results were also observed in the Arabidopsis ICK1 overexpression
lines [59] and for overexpression of Orysa;KRP1 in rice [36]. Together, these results suggest that the
ICK1 gene may act as a key potential contributor to male sterile formation. Meanwhile, previous
studies have indicated that the expression levels of ICKs are crucially related to plant development.
For example, increased ICK1 expression resulted in reduced CDK activity and also a reduction in the
overall number of cells in transgenic Arabidopsis ICK1 plants [40]. A similar phenotype was observed
in the transgenic Arabidopsis plants overexpressing KRP2 (the leaves of mature transgenic plants are
serrated with enlarged cells) [41]. Similar results were also obtained in our study. The development of
TaICK1 transgenic plants showed a difference compared with control rice plants. For example, the seed
setting rate of TaICK1OE-1 decreased by 67% compared to the control plants (Table 1). This result is
similar to the experiment showing that the transgenic lines overexpressing OsiICK6 have a seed setting
rate of only 27.7% on average [58]. Furthermore, the heading period was markedly delayed in TaICK1
transgenic lines (Figure 2N). To the best of our knowledge, this is the first time that ICK genes have
been implicated in the regulation of the heading period. Taken together, these results demonstrate that
an excess of ICKs greatly impairs the seed setting rate [31,60]. Hence, these results also show that a
higher level of TaICK1 in XN1376-CIMS is closely related to male sterility.

Generally, cell division in a plant is controlled by CDK–cyclin protein complexes [56]. In the
current study, the expression patterns of TaICK1 in XN1376-CIMS after spraying with SQ-1 suggest
that TaICK1 might serve a key role in the process of SQ-1-induced physiological male sterility. Thus, it
is necessary to determine whether TaICK1 can interact with the cyclins in wheat. Therefore, a yeast
two-hybrid system was used to identify the possible interacting proteins by screening the yeast libraries.
Interestingly, TaCYCD2;1 and TaCYCD6;1 were identified from common wheat by using the protein
TaICK1 as the bait. It is known that D-type cyclins (Cycds) control the G1/S transition of the mitotic
cell cycle in mammals and plants [61], as well as cell growth [62]. CYCD2;1 increases cell formation in
leaf [63] and accelerates the rate of leaf initiation [64], suggesting that CYCD2;1 exerts a positive function
on cell development. Furthermore, the increased expression of CYCD can suppress the negative
effects of excessive ICK/KRP levels on plant growth [39,47]. In XN1376-CIMS, the expression levels
of TaCYCD2;1 and TaCYCD6;1 were significantly lower than in XN1376 (Figure 5C,D). One possible
explanation is that SQ-1 increased the expression level of TaICK1 and also reduced the TaCYCD2;1 and
TaCYCD6;1 expression levels in XN1376-CIMS. However, as shown in Figure 6C,D, the expression
levels of OsCYCD2;1 and OsCYCD6;1 were also lower in TaICK1 transgenic rice plants than in control
plants. This result demonstrates that reduced TaCYCD2;1 and TaCYCD6;1 expression is not related
to SQ-1.

In total, excess TaICK1 impaired the sterility of anthers in XN1376-CIMS. In addition, TaICK1 might
suppress the expression level of TaCYCD2;1 and TaCYCD6;1 in the anthers of XN1376-CIMS, which
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might then impair the fertility and seed setting rate. This study offers new insights into SQ-1-related
sterility in common wheat. However, more studies should be carried out to determine, in detail, the
molecular mechanism underlying wheat sterility.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

The wheat cultivar XN1376 was planted in the experimental field of Northwest A&F University,
Yangling, Shaanxi, China (108◦E, 34◦15′N) from 2015 to 2017 (as usual). Trenching was manual and
planting was single. The plants were evenly distributed using this approach. SQ-1, a novel CHA, was
readily dissolvable in water [49]. A total of 5.0 kg/ha SQ-1 was sprayed on leaves of wheat XN1376 at
the 8.5 stage of the Feekes scale to produce male sterile XN1376-CIMS lines [48]. Meanwhile, XN1376
was treated with water to produce control lines. Cytological characteristics were investigated at the
different microsporogenesis phases of male sterility and male fertility development. Fresh anthers from
four different developmental stages (e.g., Eun, the early uninucleate stage; Lun, the late uninucleate
stage; Bn, the binucleate stage; and Tn, the trinucleate stage) were collected and stored at −80 ◦C.

4.2. Phenotype Characterization of Wheat Anther Development

Photographs of the fresh anthers at each sequential stage were obtained from XN1376 and
XN1376-CIMS with a Nikon E995 digital camera (Nikon, Tokyo, Japan) fixed firmly to a Motic K400
dissecting microscope (Preiser Scientific, Louisville, KY, United States). Pollen grains were also
analyzed via 1% iodine–potassium iodide (1% KI–I2) staining to determine the viability of the mature
pollen, as previously described [65]. Scanning electron microscopy was used to characterize the surface
characteristics of the anthers. Before the experiment, fresh anthers and pollen grains were fixed in 4%
glutaraldehyde and then treated with an alcohol gradient, dried, and broken in sequence. Finally, the
anthers and pollen grains were mounted on a stub with colloidal silver and photographed using a
JSM-6360LV scanning electron microscope (JEOL, Tokyo, Japan) [66].

4.3. RNA Extraction and qRT-PCR Analysis

Total RNA was extracted from the anthers of four developmental stages (i.e., Eun, Lun, Bn, and
Tn) using TRIzol reagent (Takara Bio, Tokyo, Japan). The integrity of the RNA was assessed using
electrophoresis on a 1.5% agarose gel. Meanwhile, the concentration and purity of the RNA was
further determined using NanoDrop (Thermo Scientific, Wilmington, DE, USA). A PrimeScriptTM RT
reagent Kit with a gDNA Eraser (Takara Bio, Tokyo, Japan) was used to synthesize the first-strand
cDNA. 2× RealStar Green Power Mixture (GenStar BioSolutions Co., Ltd., China) was used to perform
qRT-PCR. The reaction mixture was used according to the manufacturer’s protocols. The data were
collected using a QuantStudioTM Real-Time PCR System (Thermo Fisher, Waltham, MA, USA Applied
Biosystems, USA) under the following PCR program: 95 ◦C for 10 min, followed by 40 cycles at 95 ◦C
for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s. All experiments were carried out with three technical
replicates and three independent biological replicates. The relative expression levels of the genes were
computed using the 2−∆∆Ct method, as described by Livak and Schmittgen [67].

4.4. Primer Design

The gene TaICK1 was identified from leaf cDNA of XN1376 based on the nucleotide sequence of
the ICK1 in Aegilops tauschii (NCBI reference sequence: XM_020298214.1). The primers used in this
study were designed using Oligo7 software. The forward primer sequence was 5′-GCGAAGATG
AGGAAGCAG-3′, and the reverse primer sequence was 5′-CATCATGCTCT GCTCACACGG-3′.
Gene-specific primers for the genes TaCYCD2;1 (GenBank AF512432.1) and TaCYCD6;1 (GenBank
XM_020345750.1) were also designed (Supplementary Table S1). The specific primers used for qRT-PCR
are listed in Supplementary Table S2.
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4.5. Plasmid Constructs

Plasmid pCAMBIA1301-35S::TaICK1, containing a hygromycin selection marker, was constructed
to generate transgenic rice plants. A cauliflower mosaic virus 35S (35S) promoter was used to drive
the expression of TaICK1. The pGBKT7-TaICK1 construct was used as the bait to screen the yeast
cDNA library of the wheat anthers. In order to confirm the interaction of TaICK1 with TaCYCD2;1 or
TaCYCD6;1, the coding sequences of TaCYCD2;1 and TaCYCD6;1 were cloned into pGADT7 as the
prey. To generate the subcellular localization vector, the full-length coding sequence of gene TaICK1
(without the termination codon) was cloned into the expression vector backbone pCAMBIA1302
under the control of the 35S promoter to create a pCAMBIA1302-2×35S::TaICK1-EGFP construct to
express the TaICK1-EGFP fusion protein. Likewise, the pCAMBIA1302-2×35S::TaCYCD2;1-EGFP and
pCAMBIA1302-2×35S::TaCYCD6;1-EGFP constructs were also created. For BiFC vector construction,
the full-length coding sequence of TaICK1 was ligated with DNA of EGFPN1–155 to produce the
pCAMBIA1302-TaICK1-EGFPN1–155 construct for fusion protein expression driven by the 35S promoter.
The pCAMBIA1302-TaCYCD2;1-EGFPC156–237 and pCAMBIA1302-TaCYCD6;1-EGFPC156–237 constructs
were similarly generated for fusion protein expression. The prokaryotic expression vector pCold-TF
(TaKaRa, Japan) was used to express the proteins TaICK1, TaCYCD2;1, and TaCYCD6;1, which generates
a fusion protein with an extra 48kD trigger factor protein tag. The details of primers used for vector
construction are given in Supplementary Table S1.

4.6. Generation of the TaICK1 Overexpression Rice Plants

To generate transgenic plants, the plasmid pCAMBIA1301-35S::TaICK1 was introduced into
Agrobacterium tumefaciens strain EHA105 using electroporation [68], and positive transformants were
identified using PCR assay. Nipponbare rice plants were transformed as described [69]. The transgenic
seedlings were initially identified using PCR with the primers described in Supplemental Table S2.
The transgenic lines were then further screened on an identification buffer containing 50 mg L−1 of
hygromycin and 0.5 mg L−1 6-BA [70]. The transgenic rice leaves were able to remain green in this
buffer, while the leaves from the non-transgenic rice showed a chlorotic phenotype. The T2 plants
derived from at least three independent T1 transgenic plants were used to characterize the phenotype
and assay gene expression using three independent biological replicates.

4.7. Yeast Two-Hybrid Assay

The yeast cDNA library of the anther tissue was introduced into the yeast strain Y187. The analyses
were performed according the manufacturer’s instructions (Clontech, USA). The transcription activation
activity of the bait protein was analyzed through the yeast growth status and an α-galactosidase activity
assay on medium SD (−Trp/−Ade/−His) plates. For yeast cDNA library screening, Y2H colonies
containing the pGBKT7-TaICK1 vector were mated with yeast strain Y187 (cDNA library of Anthers
tissue), according to the instructions of the Two-Hybrid System 3 (Clontech, USA). Then, the mating
type was selected on a high-stringency medium SD (−Ade/−His/−Leu/−Trp). Finally, after cloning
the full length CDS of the prey gene, the prey genes were reconstructed into pGADT7. To further
verify the protein interactions, the pGBKT7-bait vector and pGADT7-prey vector were co-transformed
into Y2H Gold yeast cells (yeast strain Y2H, Clontech, USA), and the positive clones were selected
on the SD medium (−Leu/−Trp). Positive yeast clones were picked and spread on the SD medium
(−Ade/−His/−Leu/−Trp/X-α-Gal) to assay for protein interactions.

4.8. Subcellular Localization and BiFC Assay

Subcellular localization vectors were transformed into Agrobacterium tumefaciens strain GV3101,
which was cultured in an LB medium with appropriate antibiotics (50 mg L−1 Kan, 25 mg L−1

gentamycin, and 25 mg L−1 rifampicin) under shaking at 200 rpm at 28 ◦C for about 36 h. Agrobacteria
tumefaciens was then centrifuged at 5000g for 5 min to collect the bacteria when the OD600 reached
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0.6. The cells were resuspended in resuspension buffer (containing 10 mM MES, 10 mM MgCl2, and
200 mM acetosyringone) and incubated for 2 h at room temperature. The suspension of Agrobacteria
tumefaciens was then used to infiltrate 4- to 6-week-old Nicotiana benthamiana leaves as previously
described [71,72]. Similarly, for the BiFC assay, pairs of EGFPN and EGFPC fusion proteins were
transiently co-expressed in the leaves of N. benthamiana. Infiltrated leaves were observed using a
laser confocal scanning microscope Olympus IX83 confocal microscope (Olympus, Tokyo, Japan).
The excitation and detection wavelengths for EGFP were 514 and 527 nm, respectively.

4.9. Recombinant Protein Expression in E. coli

Plasmids pCold-TF-TaICK1, pCold-TF-TaCYCD2;1, and pCold-TF-TaCYCD6;1 were introduced
into the E. coli BL21 (DE3) strain (TransGen Biotech, China) via the heat shock method, as described by
the manufacturer. Colonies of verified transformants were incubated in LB [73] medium containing
50 mg L−1 carbenicillin at 37 ◦C for 8–12 h until the optical density OD600 reached 0.6–0.8. IPTG
(Isopropyl β-D-Thiogalactoside) was then added into the medium at a final concentration of 0.5 mM,
followed by incubation at 16 ◦C overnight with shaking at 100 rpm. The control culture was treated
using the same protocol without IPTG. After incubation, the crude cell extracts were prepared as
described [74]. Then, the crude proteins were analyzed using SDS-PAGE and dyed with Coomassie
brilliant blue R-250 using the protocol of Sambrook and Russell [74].

5. Conclusions

In this study, the wheat TaICK1 gene was isolated and characterized. Moreover, the chemical
hybridization agent SQ-1 was shown to induce male sterility in common wheat, as well as a higher
expression level of TaICK1 in the anthers of sterile wheat lines. More importantly, the overexpression
of TaICK1 suppressed the expression of TaCYCD2;1 and TaCYCD6;1 and reduced the fertility seed
setting rates. These results provide new insights into the molecular mechanism of wheat male sterility
induced by the chemical hybridization agent SQ-1.
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