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Background: Microglia are important myeloid cells present in the brain parenchyma
that serve a surveillance function in the central nervous system. Microglial cell activation
results in neuroinflammation that, when prolonged, can disrupt immune homeostasis
and neurogenesis. Activated microglia-derived extracellular vesicles (EVs) may be
involved in the propagation of inflammatory responses and modulation of cell-to-cell
communication. However, a complete understanding of how EVs are regulated by drugs
of abuse, such as cocaine, is still lacking.

Findings: Cocaine exposure reduced human microglial cell (HMC3) viability, decreased
expression of CD63 and dectin-1 in HMC3-derived EVs, and increased expression of
the apoptotic marker histone H2A.x in HMC3-derived EVs.

Conclusion: Cocaine impacts HMC3 cell viability and specific EV protein expression,
which could disrupt cellular signaling and cell-to-cell communication.

Keywords: HMC3, microglia, extracellular vesicles, cocaine, brain

INTRODUCTION

Microglial activation is a pivotal focus of neurobiology (Franco and Fernandez-Suarez, 2015;
Liddelow et al., 2017; Regen et al., 2017). Microglia can be neuroprotective by mediating
neuroinflammation and the release of various substrates (Polazzi and Monti, 2010; Chen and Trapp,
2016; Condello et al., 2018). However, this changes under various conditions (Szepesi et al., 2018).
In a study looking at meningitis there appeared to be a feedback mechanism involving IL-10 and Il-
6 which are anti-inflammatory and proinflammatory, respectively (Rock et al., 2004). Microglia can
release trophic factors which was evident when microglia were depleted with subsequent neuronal
loss. It appears that the pathological state may dictate whether the microglia is protective or not
(Szepesi et al., 2018).

One pathological state that causes microglial activation is stress (Bollinger et al., 2017; Lehmann
et al., 2018; Zhang et al., 2020). Stress can dictate the relationship between the nervous system and
the immune system. One known stress, alcohol, is well studied and in autopsy studies of alcoholics
it shows an increase in microglial activation (Dennis et al., 2014). Activation of microglia in this
case causes an increase in proinflammatory substances which can cause neuronal death (Dennis
et al., 2014). Chronic exposure does not induce microglial activation as much as an acute exposure

Abbreviations: EV, extracellular vesicles; NTA, NanoSight Tracking Analysis; CD, cluster of differentiation; HSP, heat shock
protein; TLR, Toll-like receptor.
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(Sutherland et al., 2013). Alcohol can affect many biological
processes but in a recent study it was shown that alcohol had
a significant effect on both the composition and production of
exosomes which can have significant physiological consequences
(Crenshaw et al., 2019).

Extracellular vesicles (EVs) are small nanovesicles which can
include exosomes (30–120 nm) and ectosomes (100–500 nm).
EVs are released from most cell types including cells of the
nervous system (Fitzner et al., 2011; Chivet et al., 2012; Wang
et al., 2012; Glebov et al., 2015). The formation of EVs
involves multivesicular bodies (exosomes) and plasma membrane
(ectosomes). EVs are heterogeneous as it pertains to its cargo
and membrane proteins. EVs contain lipids, proteins, RNA and
microRNA. EVs are involved in intercellular communication and
their regulation is paramount.

Another drug that is a potent activator of microglia
(Burkovetskaya et al., 2020; Linker et al., 2020) and may regulate
EVs is cocaine. Cocaine has been shown to increase microglial
activation in rodent striatum and hippocampus (Blanco-Calvo
et al., 2014). When human glioblastoma cells were treated with
cocaine the release of EVs was stimulated, in particular the
exosomes in a time dependent manner (Carone et al., 2015). The
greatest effect was seen at the highest concentration, 150 µM,
used. There is a paucity of data on what the effects of cocaine
may be on EV regulation and composition in microglia. Thus, in
this study we aimed to investigate what effect cocaine had on EV
composition, size, and quantity in human microglia.

MATERIALS AND METHODS

Cell Culture and Treatment
Human microglial cells (CRL-3304) were purchased from
American Type Culture Collection (ATCC) (VA, United States).
Human microglial cells (HMC3) were cultured in ATCC
recommended Eagle’s Minimum Essential Medium (EMEM)
supplemented with 11.2% Fetal Bovine Serum (FBS), 1%
Pen/strep, 0.05% Amphotericin-B at 37◦C in 5% CO2.

HMC3 microglia cells were plated at 2 × 106 cells/dish and
allowed to adjust overnight before cocaine dosing. The next
morning, old media was removed and fresh exosome-depleted
complete medium was added to each dish, Medium-only served
as experimental control; however, exosome-depleted complete
media containing 1 µM, and 100 µM of cocaine served as
experimental treated-group which were incubated for 24 h at
37◦C in 5% CO2. All experiments were performed either in three
or five independent replicates.

Assessment of Cell Viability
To test the percent cell viability trypan blue exclusion test was
performed. For trypan blue test 5 µL of cell suspension was mixed
with 45 µL of trypan blue dye and 10 µL of this cell mix was
loaded to hemocytometer to perform a live/dead cell count. Cells
were counted in four blocks of the hemocytometer under a light
microscope and the average of the four blocks was taken and
multiplied by the respective dilution factor and 10,000. The cell
viability was represented in percent cell viability.

Isolation of EVs
Isolation of microglia cell derived EVs was carried out using
condition medium after 24 h of cocaine exposure at 1 µM,
100 µM, and control (No-treatment). Condition media was
carefully collected and spun down at 300 × g [1,300 revolutions
per minute (rpm)] at 4◦C for 10 min using a Sorvall RT 6000
refrigerated centrifuge. The supernatant was further spun at
2,600 × g (3,900 rpm) at 4◦C for 10 min. The supernatant was
filtered with 0.22 µM membrane and tubes were balanced using
a 5% sucrose solution in phosphate buffer saline (PBS) containing
a 1x protease inhibitor cocktail. Ultracentrifuge tubes were spun
at 20,000 × g (10,800 rpm) at 4◦C for 45 min in an SW41T1
swinging bucket rotor at 4◦C using a Beckmann Coulter Optima
TML-70K Ultracentrifuge. Exosome fraction was collected after
70 min spun at 110,000 × g (32,000 rpm) at 4◦C and were
subjected to further experiments.

Assessment of EV-Size and
-Concentration
To analyze the size and concentration of HMC3 cell-derived
EVs (particle per mL), nanoparticle tracking analysis (NTA) was
performed using NanoSight-LM10, Malvern Instrument, Inc.,
Malvern, United Kingdom. The samples were prepared at a
dilution of 1:100 in 1x PBS and loaded in a 0.3 mL disposable
syringe. The NTA works on the principle of the Brownian
movement of the particle to analyze the size and concentration
of EVs in the samples. The mean values of the replicate were
recorded and processed for each reading frame of the five
independent experiments.

The size and morphology of exosomes analyzed using
transmission EM (TEM). For TEM, fixed exosome samples were
loaded on the EM-grid and incubated for 1 min at RT and
immediately stained with 7 µL of filtered uranyl acetate (UA)
solution on the surface of the EM-grid. After 15 s, samples
were observed under TEM (Tecnai 120 kV (FEI, Hillsboro, OR,
United States) at 80 kV within 24 h as compared to the negatively
stained grids. Digital images were captured with a BioSprint 29
CCD Camera (AMT, Woburn, MA, United States).

Dot Blot Analysis
To examine the expression of apoptotic markers, exosomal
markers, and HSPs, dot blots analysis was carried out using
5 µg per dot total EVs-lysate after boiling at 99◦C for 5 min.
Membranes were allowed to dry for 5 min and non-specific
binding was blocked with 1x Pierce Fast blocker for 10 min at
room temperature. Membranes were incubated with the primary
antibodies of CD9 (1 µg/mL), CD63 (0.5 µg/mL), cleaved
caspase-9 (1:1,000), cleaved caspase-3 (1:1,000), H2A.x (1:1,000),
Hsp70 (1:1,000), Hsp90-β, (1:1,000), Dectin-1 (1 µg/mL), TLR2
(1:2,000), for 1 h at room temperature. Membranes were washed
three times 10 min each with 1x TBST-20 buffer containing 0.09%
tween-20. HRP-conjugated appropriate secondary antibodies
either goat anti-rabbit (1:1,000) or goat Anti-mouse (1:1,000 were
used to incubate the membranes using 2% non-fat milk solution
in TBST-20 buffer for 1 h at room temperature. Membranes were
washed 3-times 10 min each with TBST-20. Targeted proteins on
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the membranes were detected using ECL liquid substrate system
(Invitrogen, MA, United States) under a Bio-Rad ChemiDoc
TM XRS+ system.

Statistical analysis: For multi group comparisons, one-way
ANOVA was used. Statistical significance was established to be
(∗) P < 0.05, (∗∗) P < 0.01.

RESULTS

HMC3 cells, an immortalized human microglial cell line, were
exposed to 1 or 100 µM cocaine, which was freshly prepared in
exosome-depleted medium from 5.9 mM stock, for 24 h. Cell
viability, assessed using trypan blue exclusion assay, showed a
significant decrease in cell viability after exposure to 1 or 100 µM
cocaine compared with the control condition (Figure 1A and
Supplementary Figures 1A, 5), indicating that cocaine has a
detrimental effect on microglia cells.

To test the effect of cocaine exposure on HMC3 cell-derived
EVs, we cultured cells in complete Eagle’s Minimum Essential
Medium using exosome-depleted fetal bovine serum with 1 or
100 µM cocaine. Medium only was used as a control. After
incubating cells with cocaine, EVs released into the medium
were isolated and purified using a standard ultracentrifugation
procedure (Bell et al., 2019; Crenshaw et al., 2019; Jones et al.,
2019). The size and quantity of isolated EVs were measured using
NTA and TEM. We found that cocaine did not alter the size
of EVs and EVs are visible and easily recognizable (Figure 1B
and Supplementary Figures 1B,D–F), which ranged from 30 to
150 nm in diameter across conditions, consistent with previous
studies (Bell et al., 2019; Crenshaw et al., 2019; Jones et al., 2019;
Kumar et al., 2020). However, 100 µM cocaine slightly reduced

the number of EV particles per mL compared with the 1 µM
cocaine and control conditions, although this difference was not
significant (Figure 1C and Supplementary Figures 1C,D–F).

Membrane-bound proteins perform a variety of vital functions
for the survival of organisms, including playing critical roles in
signal transduction, cell-to-cell communication, transportation,
and adhesion. Therefore, using western/dot blot analysis, we
evaluated the expression of select membrane-associated proteins
in HMC3 cell-derived EVs that are critical for cellular signaling
and are known EV-associated markers, including cluster of
differentiation (CD)9 and CD63 (Polazzi and Monti, 2010; Chen
and Trapp, 2016; Condello et al., 2018). Based on the evaluation
of calnexin western blot analysis we found that purified exosomes
(Figure 2A) after cocaine exposure did not alter CD9 expression
(Figure 2B and Supplementary Figure 2B) but significantly
reduced CD63 expression in EVs (Figure 2C and Supplementary
Figure 2C).

The proteolytic cleavage of caspases is a unique characteristic
of apoptotic cell death. We examined the effect of cocaine
exposure on expression of cleaved caspase-9 and -3
along with histone H2A.x (Figure 3A), a well-known
marker of double-stranded DNA break or damage (Talasz
et al., 2002; Stucki, 2009; Yin et al., 2019). We found
that cocaine exposure did not alter the expression of
cleaved caspase-9 or -3 (Figures 3B,C and Supplementary
Figures 3B,C). However, 100 µM cocaine significantly
increased histone H2A.x expression (Figure 3D and
Supplementary Figure 3D), supporting previous findings
(Bell et al., 2019).

Heat shock proteins (HSPs) are an evolutionarily conserved
group of proteins expressed in all eukaryotes and some
prokaryotes (Kumar et al., 2013, 2016). In particular, Hsp70

FIGURE 1 | Cocaine reduces HMC3 cell viability. HMC3 cells were exposed to 1 or 100 µM cocaine for 24 h, after which cell viability (trypan blue exclusion assay)
and EV size and quantity were evaluated using NTA and TEM. (A) Cocaine significantly reduced HMC3 cell viability when compared with the control condition.
Cocaine did not alter (B,D–F) EV size but (C) slightly decreased EV production (particles per mL) compared with the control condition, although this difference was
not significant. Data were obtained from 3 to 5 independent experiments performed in triplicate. Statistical significance is indicated as *P < 0.05 and **P < 0.01.
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FIGURE 2 | Cocaine modulates expression of EV markers in HMC3 cells. Equal amounts (5 µg/dot) of total protein from HMC3 cell-derived EVs derived after
cocaine treatment with 1 or 100 µM cocaine were loaded onto nitrocellulose membranes to assess the expression of CD9 and CD63. Cocaine (A) demonstrated
purity of exosomes (B) did not alter CD9 expression but (C) significantly decreased CD63 expression compared with the control condition. Statistical significant
difference obtained from 5-independent experiment is indicated as *P < 0.05 and **P < 0.01.

FIGURE 3 | Cocaine affects expression of apoptotic markers in HMC3 cell-derived EVs. (A) Equal amounts (5 µg/dot) of total protein from HMC3 cell-derived EVs
derived after cocaine treatment with 1 or 100 µM cocaine were loaded onto nitrocellulose membranes to assess the expression of cleaved caspase-9/-3 and
histone H2A.x. Cocaine did not alter the expression of (B) cleaved caspase-9 or (C) cleaved caspase-3. However, (D) 100 µM cocaine significantly reduced the
expression of histone H2A.x compared with the control condition. Statistical values obtained from 5-independent experiment is indicated as *P < 0.05.
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and Hsp90-β act as molecular chaperones that assist proper
folding or refolding of newly synthesized polypeptide chains
and thereby exert a cytoprotective effect against stress-induced
apoptosis. We found that cocaine exposure had no/minimal
effect on expression of Hsp70 or Hsp90-β (Figures 4A–C and
Supplementary Figures 4B,C).

Finally, we measured the expression of dectin-1 and
Toll-like receptor 2 (TLR2) in HMC3 cell-derived EVs.
Dectin-1 is a C-type glycoprotein/lectin receptor expressed on
macrophages, microglia, monocytes, dendritic cells, neutrophils,
and a subset of T cells (Shah et al., 2008; Maneu et al.,
2011) that plays important roles in the secretion of crucial
cellular proteins (e.g., pro-regenerative factors) and anti-
fungal immunity (Willment et al., 2001; Kato et al., 2006).
TLR2 is a key regulator that induces activation of NF-kB
and controls the expression of immune and inflammatory
response-related genes (Medzhitov et al., 1997). We found
that 100 µM cocaine significantly reduced the expression
of dectin-1 (Figures 4A,D and Supplementary Figure 4D)
but had no effect on TLR2 expression (Figure 4A,E and
Supplementary Figure 4E). These results are consistent with
previous reports that dectin-1 and TLR2 activation modulate
macrophage function in the central nervous system and reduce
the damaging effects of inflammation (Dennehy et al., 2008; Kelly
et al., 2008; Lee et al., 2009; Gensel et al., 2015). Furthermore,
these results support previous studies showing that cocaine

activates brain microglial cells and that activated microglia-
derived EVs play important roles in neuroinflammation and
modulation of cell-to-cell communication (Cotto et al., 2018;
Periyasamy et al., 2018).

DISCUSSION

Microglial cells are important cells in the CNS and are the
resident macrophages. Activated microglia release many harmful
substances such as free radicals which often times leads to death.
The current study was designed to examine cocaine induced
microglial cell death and focus on cocaine’s effect on EV proteins.
The study provides novel insight into cocaine’s effect on exosome
biogenesis in microglia. Prior to our work, there has been a
limited study of cocaine’s effect on extracellular vesicles in the
brain. Cocaine-induced EV regulation has been studied but not
in microglia. Cocaine induced EV regulation involves the sigma 1
receptor (Sig-1R), ADP ribosylation factor 6 (ARF6) and myosin
light chain kinase (Machado-Pineda et al., 2018) but still remains
poorly understood. Cocaine self-administration was shown to
alter the signaling of neuronal exosomes to astrocytes using a
CD63 reporter (Jarvis et al., 2019). However, no studies have
investigated the role of cocaine on extracellular vesicular proteins
in human microglia. Though the study is in an immortalized cell
line, and limited, it is the first attempt at understanding the role of

FIGURE 4 | Cocaine affects expression of dectin-1 in HMC3 cell-derived EVs. Equal amounts (5 µg/dot) of total protein from HMC3 cell-derived EVs were loaded
onto nitrocellulose membranes. Cocaine did not alter the expression of (A) representative dot blot, (B) Hsp70, and (C) Hsp90-β, or (E) TLR2. However, (D) 100 µM
cocaine significantly reduced the expression of dectin-1 compared with the control condition. *P < 0.05 indicates statistical significant difference between control vs.
treated.
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cocaine on EVs in microglia. These data allow us to design future
studies and investigate these finding in animal work.

Here we show targets of cocaine as it pertains to EV regulation.
Carone et al. demonstrated that cocaine increases EV release,
mainly exosomes in glioblastoma cultures. The conclusion of that
work was that cocaine could exert its’ effect on through lipid rafts
or potentially cocaine-induced modifications but not no evidence
that cocaine alters the ESCART pathway (Carone et al., 2015). We
demonstrated that cocaine does not affect some EV proteins like
CD9 but decreases CD63 which are both located on exosomes.
CD9 has been shown to enhance pathogenicity in HIV-1 infection
(Sims et al., 2018) and be involved in cell adhesion (Machado-
Pineda et al., 2018) and migration (Blake et al., 2018). CD63 is
a tetraspanin involved in cell development, activation, growth
and motility (Kang et al., 2014; Forte et al., 2017; Raaben et al.,
2017). There was not a significant difference in CD9 but we did
demonstrate a preferential effect on CD63 which may have a
role in microglia activation, growth and motility. Our findings
suggest that there is a decrease in CD63 but did not have a major
impact on EV characteristics. It is difficult to say if a more chronic
exposure to cocaine would cause a more dramatic effect. One
limitation of our study was it was over 24 h and a single dose of
cocaine. In a study using positron emission tomography imaging
in cocaine abusers, it did not show that there was a significant
difference in microglial activation when they analyzed the 18 kDa
translocator protein (TSPO) (Narendran et al., 2014).

At our higher concentration, cocaine did cause a significant
effect on cell viability. The dose corresponds to other
concentration reported in the literature (Liao et al., 2016;
Periyasamy et al., 2018). The effect of cocaine on apoptosis was
investigated by examining cleaved caspase 3 and 9. Cocaine
did not have any effect on the caspases examined. However,
histone 2A.x, which forms when double stranded breaks appear
(Johnston et al., 2015), was elevated. The results suggest that there
is evidence of cell injury/death which may be time dependent
and may be more dramatic with longer exposures. We also,
hypothesized that since cocaine administration caused cell death
the heat shock proteins would not be increased and that is
revealed in this study.

In many cases, when microglia were studied TLR2 has been
shown to be a target that is increased when microglia are activated
(Liao et al., 2016). Thus, we speculated that we would also see the
same response in the exosome fraction of TLR2 but cocaine had
no effect on these levels. However, these studies were performed
in BV2 microglial cells which suggests there may be differences
that are cell line specific (Baldwin et al., 2015). Dectin-1 is
involved in neuroinflammation and secretory cellular processes
and should be affected by cocaine administration (Baldwin et al.,
2015; Gensel et al., 2015; Ye et al., 2020). We demonstrated there
was a decrease as predicted in the dectin-1 levels.

CONCLUSION

Our findings demonstrate the impact of cocaine exposure on
HMC3 cells and HMC3 cell-derived EVs. We found that cocaine
exposure reduced HMC3 cell viability and has a slight downward

trend in the quantity of EVs. We have not answered in this study
whether a more chronic exposure could disrupt EV biogenesis
in microglia. We found that cocaine exposure dose-dependently
increased expression of the apoptotic marker histone H2A.x in
HMC3 cell-derived EVs, suggesting that cocaine reduces cell
viability. Although cocaine exposure did not affect levels of
various EV biogenesis proteins [(e.g., small GTPase RAB-5, 7, 11,
27A, and 35 (data not shown)], it reduced the expression of CD63
in HMC3 cell-derived EVs. This down-regulation of CD63 and
dectin-1 in HMC3 cell-derived EVs suggests that cocaine’s effects
are specific to these proteins but not others examined. CD63
has a major role in EV production and endosomal sorting and
a decrease in this protein may lead to altered exosome release and
subsequent cell-to-cell communication. These results contrast
with those found in murine-derived EVs. There may be more
specie-specific differences in cocaine disruption of EV formation.
More human studies are needed, and further investigations are
warranted to elucidate the mechanisms involved in the interplay
between cocaine and EVs.
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Supplementary Figure 1 | Cocaine reduces HMC3 cell viability. HMC3 cells were
exposed to 1 µM or 100 µM cocaine for 24 h, after which cell viability (trypan blue
exclusion assay) and EV size and quantity were evaluated using NTA and TEM. (A)
Cocaine significantly reduced HMC3 cell viability when compared with the control
condition. Cocaine did not alter (B and D–F) EV size but (C) slightly decreased EV
production (particles per mL) compared with the control condition, although this
difference was not significant. Data were obtained from 3–5 independent
experiments performed in triplicate. Statistical significance is indicated as
*P < 0.05 and **P < 0.01.

Supplementary Figure 2 | Cocaine modulates expression of EV markers in
HMC3 cells. Equal amounts (5 µg/dot) of total protein from HMC3 cell-derived
EVs derived after treatment with 1 µM or 100 µM cocaine. These samples were
loaded onto nitrocellulose membranes to assess the expression of CD9 and
CD63. Cocaine (A) demonstrated purity of exosomes (B) did not alter CD9
expression but (C) significantly decreased CD63 expression compared with the
control condition. Statistical significant difference obtained from 5-independent
experiment is indicated as *P < 0.05 and **P < 0.01.

Supplementary Figure 3 | Cocaine affects expression of apoptotic markers in
HMC3 cell-derived EVs. (A) Equal amounts (5 µg/dot) of total protein from HMC3

cell-derived EVs derived after treatment with 1 µM or 100 µM cocaine. These
samples were loaded onto nitrocellulose membranesto assess the expression of
cleaved caspase-9/-3 and histone H2A.x. Cocaine did not alter the expression of
(B) cleaved caspase-9 or (C) cleaved caspase-3. However, (D) 100 µM cocaine
significantly reduced the expression of histone H2A.x compared with the control
condition. Statistical values obtained from 5-independent experiment is indicated
as *P < 0.05.

Supplementary Figure 4 | Cocaine affects expression of dectin-1 in HMC3
cell-derived EVs. Equal amounts (5 µg/dot) of total protein from HMC3
cell-derived EVs were loaded onto nitrocellulose membranes. Cocaine did not
alter the expression of (A) Representative dot blot, (B) Hsp70, and (C) Hsp90-β,
or (E) TLR2. However, (D) 100 µM cocaine significantly reduced the expression of
dectin-1 compared with the control condition. *P < 0.05 indicates statistical
significant difference between control vs. treated.

Supplementary Figure 5 | Cocaine reduces HMC3 cell viability. HMC3 cells were
incubated with 1 µM or 100 µM cocaine for 24 h to test the cell viability using
MTT assay. Data indicated that cocaine significantly reduced HMC3 cell viability
when compared with the control.
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