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Mathematical models of voltage-gated ion channels are used in basic research,
industrial and clinical settings. These models range in complexity, but typi-
cally contain numerous variables representing the proportion of channels in
a given state, and parameters describing the voltage-dependent rates of tran-
sition between states. An open problem is selecting the appropriate degree of
complexity and structure for an ion channel model given data availability.
Here, we simplify a model of the cardiac human Ether-à-go-go related gene
(hERG) potassium ion channel, which carries cardiac IKr, using the manifold
boundary approximation method (MBAM). The MBAM approximates high-
dimensional model-output manifolds by reduced models describing their
boundaries, resulting in models with fewer parameters (and often variables).
We produced a series of models of reducing complexity starting from an
established five-state hERG model with 15 parameters. Models with up to
three fewer states and eight fewer parameters were shown to retain much
of the predictive capability of the full model and were validated using exper-
imental hERG1a data collected in HEK293 cells at 37°C. The method provides
a way to simplify complex models of ion channels that improves parameter
identifiability and will aid in future model development.
1. Introduction
Mathematical models of ion channel currents have been used for a wide variety
of applications in cardiac research and drug discovery, with an increasing focus
on making quantitative predictions for safety-critical applications [1]. However,
these models usually contain numerous parameters and variables, which makes
understanding their behaviour from the basic components challenging. The
manifold boundary approximation method (MBAM) is a recently developed
method which constructs submanifold approximations of high-dimensional
model manifolds at their boundaries [2], producing models with fewer par-
ameters (and variables) while retaining much of the predictive capability of
the original model. This reduction in complexity can improve parameter iden-
tifiability and offer greater insight into the connection between a model’s
components and its output. The development of reduced models that are
more practical to fit to experimental data may prove to be an important step
towards cell- and patient-specific modelling.

The MBAM has been applied to a wide variety of model classes [2,3], as well
as action potential models within a cardiac modelling context [4,5]. However, we
believe it has yet to be applied directly to cardiac ion channel models, which may
be another route to action potential model reduction. One disadvantage of
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applying the MBAM directly to action potential models is that
it can lead to the complete removal of whole currents (such as
IKr and IKs in [4]), which turns the model from a biophysically
detailed one to a semi-phenomenological one. Applying the
MBAM to ion current models within action potential models
offers the chance to reduce model complexity (and increase
parameter identifiability) without necessarily sacrificing the
biophysical detail of a whole-cell model.

Modelling the constituent ion channels/currents of the
whole-cell cardiac electrical response is an active area of
research with a rich history [6,7]. However, a previous
study revealed that the parameters in many models of car-
diac ion channels are likely to be unidentifiable [8], which
means it is not possible to determine their values uniquely
by measuring model outputs. This is in conflict with the
idea that a model’s structure and parameters provide
insights into the underlying biophysical processes. The
aim of this study was to create reduced models of the car-
diac human Ether-à-go-go related gene (hERG) ion
channel, a critical determinant of action potential repolariza-
tion and focus of safety pharmacology [9], which retained
the behaviour of the full model while containing fewer par-
ameters and dynamic variables.
2. Material and methods
2.1. Manifold boundary approximation method
The MBAM, first described in Transtrum & Qiu [2], is a model
reduction algorithm which exploits the fact that many model
outputs are bounded with a hierarchy of widths, a property
which enables lower dimensional model approximations to be
made at these boundaries. The model manifold, M, can be
thought of as an N-dimensional parameter space (θ1, θ2,…,
θN) manifold of a model embedded within an M-dimensional
data space (the space of model output observations). In the
data space, the coordinates of the model manifold correspond
to the system measurements (y1, y2,…, yM), with the point
along the manifold closest to some desired data point represent-
ing the best model fit. In our case, we chose a cost function
which represented the model fit to reference system measure-
ments of the full model, bym, the parameters of which were fit
to our own experimental data (see §2.4 for details), giving the
cost function

C ¼
XM
m¼1

(ym � bym)2: ð2:1Þ

Many models in systems biology possess the property that cer-
tain parameters can take a wide range of values without greatly
affecting the model output, which has been termed sloppiness
[10–12]. The key to the MBAM lies in the fact that the model
output space manifold can be extremely narrow in directions that
are very sloppy, or in other words the model output does not
change much even as you vary parameters (or combinations of par-
ameters) to their plausible limits. This feature allows one to
approximate the model with a manifold of reduced dimensionality
by removing or combining parameters along a manifold boundary.
We seek to reduce the dimensionality without greatly increasing
the cost function value, and so from our starting point on the par-
ameter manifold travel in the ‘sloppiest’ direction and then
approximate the model along the boundary first encountered.

The MBAM proceeds as an iterative four-step algorithm with
the following steps:
1. The sloppy directions along M are found by calculating the
eigenvalues of an N ×N matrix which has entries defined as

gi,j ¼
XM
m¼1

@ym
@ui

@ym
@uj

: ð2:2Þ

The eigenvector of g with the smallest eigenvalue, v0,
corresponds to the ‘sloppiest’ direction in parameter space.

2. In order to approach the manifold boundary, we use v0 as an
initial direction on M and solve numerically a geodesic
equation to find a path θ(τ) through parameter space,

d2ui
dt2

¼ �
XN
j¼1

XM
m¼1

ðg�1Þij
@ym
@u j

AmðvÞ, ð2:3Þ

where v = dθ/dτ and Am(v) is the directional second deriva-
tive of ym in the direction of the eigenvector v,

AmðvÞ ¼ Am
du
dt

� �
¼
XN
i¼1

XN
j¼1

dui
dt

duj
dt

@2ym
@ui@uj

: ð2:4Þ

When the calculated path θ(τ) approaches a boundary of M,
the smallest eigenvalue of g becomes small (much smaller
than the next smallest) and approaches 0. This corresponds
to a physically meaningful limit of the parameters in which
either a single parameter or combinations of parameters are
removed or combined to form new parameters.

For reasons of computational efficiency, we did not com-
pute second order sensitivities directly, rather estimating
Am(v) using finite differences,

AmðvÞ ¼ ymðuþ hvÞ � 2ymðuÞ þ ymðu� hvÞ
h2

þOðh2Þ, ð2:5Þ

where h is the step size.
3. Deduce the reduced form of the model (which now has one

fewer parameter). This model reduction step may be trivial,
or may involve the reformulation of model equations and
removal of state variables.

4. Calibrate the new model with reduced parameter vector, θ, to
the full (original) model output by minimizing the cost
function, C (equation (2.1)).

An example of steps 1 and 2 of this procedure is shown in figure 1
for the model we are going to introduce shortly (this example is
the fourth iteration in §3.1 below, going from the r3 to r4
model). Although initially the ‘sloppiest’ eigenvector had com-
ponents in multiple parameter directions, after following the
geodesic path to a boundary the final eigenvector pointed exclu-
sively in the direction of parameter 2 (figure 1a), with the
smallest eigenvalue approaching zero (figure 1b). In a two-dimen-
sional slice of the parameter space, the geodesic can be seen to
follow a canyon of the cost contour (figure 1c), indicating that
this path through parameter space incurs little to no change in
model output. We note here that for steps 1 and 2 of the
MBAM, all parameters were log-transformed to guarantee
positivity, as suggested in [2,3].

We repeated this four-step process until the original model be-
haviour could not be reproduced within a reasonable error, which
we defined using amixed rootmean square error [13], eMRMS,where

eMRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

byðt, buÞ � yðt, uÞ
1þ jbyðt, buÞj

 !2
vuut , ð2:6Þ

for an initial full model reference parameter vector bu and T distinct
time points (spaced 1ms apart along the whole current trace). We
chose an eMRMS threshold of 0.1 as the error beyond which a
model could no longer satisfactorily reproduce the full model
output.
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Figure 1. (a) Eigenvector components of the initial (sloppiest) and final parameter direction at the end of the geodesic path for an MBAM iteration (the fourth
MBAM iteration in the results section for revision r3→ r4). (b) Eigenvalue spectra of g at the start and end of the geodesic path. (c) A plot of the geodesic path
(black line) in a slice of log parameter space from the starting point denoted by a black circle. The plot is coloured according to evaluations of the cost function given
in equation (2.1), such that darker shades of blue represent worse agreement with the full model output.
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Software to perform the MBAM was adapted from available
python code provided by Dr Transtrum and colleagues (https://
github.com/mktranstrum/MBAM); for a visual explanation of
how the MBAM works, the interested reader is referred to a
Michaelis Menten reaction kinetics toy model found in this repo-
sitory and presented in detail in electronic supplementary
material, Results and figure S1). In this work, python scripts
were updated so that model equations are written as symbolic
expressions using SymPy/SymEngine. All simulation codes
and data pertaining to the MBAM and parameter inference
described in §2.4 are freely available at https://github.com/
CardiacModelling/model-reduction-manifold-boundaries.

2.2. Cardiac ion channel model
We used the well-established Wang model of hERG ion channel
kinetics as our starting model [14]. This model contains five state
variables (three closed states, one open state and one inactivated
state) and 15 parameters (14 kinetic parameters governing the
state transition rates and their voltage dependencies and 1 conduc-
tance parameter). A schematic of the model is shown in figure 2a,
marked as revision zero, ‘r0’. If X ¼ C1, C2, C3, O, Ið ÞT is a
vector of the state occupancies, the model is described by the
system

dX
dt

¼

�aa0 ba0 0 0 0
aa0 �ba0 � kf kb 0 0
0 kf �kb � aa1 ba1 0
0 0 aa1 �ba1 � a1 b1
0 0 0 a1 �b1

266664
377775X,

ð2:7Þ
where

aa0 ¼ p11 exp ðp12VÞ,
ba0 ¼ p13 exp ð�p14VÞ,
kf ¼ p5,
kb ¼ p6,

aa1 ¼ p1 exp ðp2VÞ,
ba1 ¼ p3 exp ð�p4VÞ,
a1 ¼ p7 exp ðp8VÞ,

and b1 ¼ p9 exp ð�p10VÞ:

The current through the hERG channels is then given by

IKr ¼ gKr½O�ðV � EKrÞ: ð2:8Þ

Here, p1,…, p14 represent kinetic parameters and gKr is the maxi-
mal conductance parameter; all are positive. In practice, we solve
just four of the five ODEs, using the fact the probabilities sum to
one to give C1 = 1− (C2 + C3 +O + I ). The initial parameters, bu,
were obtained by fitting the 15 parameters of the model to
data from our ‘staircase’ calibration protocol [15] at 37°C (see
§2.4 for more details). The model output of interest (ym) used
in equations (2.1) and (2.2) was the current, IKr, at time point m.

The input voltage protocol used for the MBAM procedure
was a 5000ms protocol which explored in a rapid way a similar
range of voltages and time scales as our previously published
‘staircase’ protocol [15], shown in electronic supplementary
material, figure S2. System measurements were made at 37
equally spaced points which captured the main features of the
current trace and appropriately weighted large, negative currents
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Figure 2. (a) Evolution of the Markov chain hERG model by Wang et al. [14] through subsequent iterations of the MBAM. Each structure shows a dynamic model
(starting with the full model, r0) and the parameter changes which took place to get to the next reduced model, as in table 1, guided by a grey arrow showing the
direction of model reduction (from r0 to r8). As in table 1, parameters highlighted blue →0 and red →∞ in the next reduction. The O0 and O00 states for the
Wang-r5 and Wang-r8 models relate to the actual open probability through the relations O = O0/(1 + ϕ3exp (− p4V )) and O = O00/(1 + ϕ7exp ( p8V )), respectively.
The dotted red line around the O00 state in the final reduction denotes that the maximal channel conductance →∞. (b) The eigenvalue spectra of g for selected
models (denoted by coloured stars) under the shortened ‘staircase’ protocol described in §2.2.
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during which the channel is close to maximally open. It should
be noted that in equation (2.1) we used M = 37 for steps 1 and
2 of the MBAM algorithm and M = 5000 (1ms spacing) when
calibrating the model to the full model output in step 4.

Regarding the eigenvalue stopping criterion, a default value
of 10−6 was used, which was typically sufficient to identify the
geodesic limit with ease. This value occasionally required
tuning, as geodesic calculations can become very stiff when a
boundary is approached (furthermore, ODE solver errors may
result from parameters approaching infinity). Exact input
settings including smallest eigenvalue thresholds used to gener-
ate the data in this study can be found in the Github repository
(https://github.com/CardiacModelling/model-reduction-manifold-
boundaries).
2.3. Electrophysiology experiments at 37°C
In order to test the predictive power of models reduced with the
MBAM, we subsequently re-calibrated them to real experimental
data. For parameter inference and model validation in this context,

https://github.com/CardiacModelling/model-reduction-manifold-boundaries
https://github.com/CardiacModelling/model-reduction-manifold-boundaries
https://github.com/CardiacModelling/model-reduction-manifold-boundaries


Table 1. A table showing parameter changes between iterations of the MBAM reduction algorithm. Each column shows a model (starting with the full model, r0)
and the changes which took place to get to the next reduced model. Parameters highlighted in blue→ 0 and red→∞. In some cases, parameters were combined
to form new parameters. The bottom row shows the calculated eMRMS. The rightmost column is highlighted in red as it exceeded our threshold eMRMS of 0.1.

r0 r1 r2 r3 r4 r5 r6 r7 r8

p1 p1 p1 p1 p1→∞
p2 p2 p2 p2→ 0

p3 p3 p3 p3 p3→∞ p3
p1
¼ f1 ! 0

p4 p4 p4 p4 p4 p4 p4 p4 p4

p5 p5 p5→∞ p5
f13

¼ f5 ϕ5 ϕ5 ϕ5 ϕ5 ϕ5

p6 p6 p6 p6 p6 p6→∞ p6 · ϕ3 = ϕ6 ϕ6 ϕ6→∞
p7 p7 p7 p7 p7 p7 p7 p7→∞ p7

p9
¼ f7 ! 1

p8 p8 p8 p8 p8 p8 p8 p8 p8

p9 p9 p9 p9 p9 p9 p9 p9→∞
p10 p10 p10 p10 p10 p10 p10→ 0

p11 p11→∞
p12 p12 p12 p12 p12 p12 p12 p12 p12

p13 p13→∞ p13
p11

¼ f13 ! 1
p14→ 0

p15 p15 p15 p15 p15 p15 p15 p15 p15→∞

1.19 × 10−4 1.12 × 10−4 7.30 × 10−3 1.13 × 10−2 2.33 × 10−2 2.36 × 10−2 2.62 × 10−2 5.11 × 10−2 1.61 × 10−1
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we used HEK293 wild-type hERG1a expression system current
traces at 37°C, which represented typical recordings from a pre-
vious study [16]. Briefly, HEK293 cells cultured in DMEM
supplemented with 10% FBS at 37°C with 5% CO2 were co-trans-
fected with hERG1a in pcDNA3 and GFP in pcDNA3 using
lipofectamine 3000 (Invitrogen). Cells were plated onto coverslips
14–16 h after transfection and cells with green fluorescence were
selected for recordings. Whole-cell patch clamp recordings were
performed with an Axon Instruments 200B amplifier and Digidata
1440 A/D interface. Signals were acquired at a sampling frequency
of 10 kHz and were filtered using a 4 kHz low-pass Bessel filter.

During recordings, cells were superfused at 2 ml min−1 with
solution containing (in mM): 140 NaCl, 4 KCl, 1.8 CaCl2,
1 MgCl2, 10 glucose, 10 HEPES (pH 7.4 with NaOH). Patch elec-
trodes formed from borosilicate glass (Sutter Instruments) using
a P-97 puller (Sutter Instruments) were filled with (in mM): 130
KCl, 1 MgCl2, 1 CaCl2, 10 EGTA, 10 HEPES, 5 Mg2þATP (pH 7.2
with KOH). Electrodes had a resistance of 3.7–4.5 MΩ and series
resistance was compensated 60–70%, without online leak sub-
traction, using the amplifier circuitry. The recording bath
temperature was maintained at 37°C using a TC-344B Warner
Instruments temperature controller unit with bath chamber
thermistor, heated platform and inline perfusion heater. Upon
whole-cell formation, hERG1a current was recorded during a
2 s step to +20 mV followed by a step to −65 mV (holding
potential −80 mV) applied repeatedly at 0.2 Hz. Once peak
tail current amplitude during the step to −65 mV stabilized,
experimental recordings were undertaken.
2.4. Parameter inference using real data
As described previously [16], maximum-likelihood estimation
was used to infer model parameters from the experimental
data, by constructing a likelihood function based on independent
and identically distributed Gaussian noise on each data point,

IdataKr ¼ Imodel
Kr þ e, ð2:9Þ
where e � N ð0, s2Þ [16]. Under this scheme, the log-likelihood of
a given set of parameters is proportional to

L/�
X

(Imodel
Kr � IdataKr )2, ð2:10Þ

where we sum over the time points in the current trace for the
calibration protocol data. The most likely parameter set is thus
identical to that given by a least-sum-of-square-errors fit as
used in our cost function C here, equation (2.1).

All fitting used a Myokit [17] model in PINTS [18], using the
CVODE solver [19] with absolute and relative tolerances of 10−8

and maximum time step of 0.1 ms. We used CMA-ES with 50
repeats from different initial guesses for optimization to real
data, and as in Kemp et al. [16] the optimizer worked with
log-transformed parameters for those that are non-voltage
dependent in the transition rates [7,20].
3. Results
3.1. A series of reduced models
A summary of model reductions at each iteration of the
MBAM and the eMRMS of the associated reduced model is
given in table 1. Figure 1 shows an example of the progress
of the algorithm from r3 to r4 as it establishes which par-
ameters will be reduced as the boundary is approached. The
first nine iterations only are shown in table 1, as after this the
reduced model exceeded our eMRMS threshold. We can see
that 4/9 of the reductions involved a single parameter tending
to 0, 4/9 of the reductions involved two parameters tending to
infinity, the finite ratio of which formed a new parameter, and
1 reduction involved one parameter tending to zero and
another tending to infinity, the finite product of which
formed a new parameter. A detailed breakdown of each
MBAM iteration and the effect it had on model equations is
given in electronic supplementary material, Information.
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Figure 2a shows model structures for the full model and the
series of models of reduced complexity obtained with the
MBAM. It should be noted that the Wang-r5 and Wang-r8
models have extra voltage dependence in the expressions for
the open probability which cannot be represented in the
Markov chain diagrams. In the case of the Wang-r8 model,
this corresponds to instantaneous inactivation, thus giving the
model more flexibility than suggested by the simple closed-
open model structure. The spread of eigenvalues of g (equation
(2.2)) for selected models is presented in figure 2b. From this we
can see that the eigenvalue spectrum of reduced models
spanned fewer orders of magnitude than the full model, with
the spread decreasing with the level of model reduction,
signifying reduced sloppiness of the parameter sensitivities.

3.2. Model reduction with the MBAM improves
parameter identifiability

In order to demonstrate the advantage of performing model
reduction, we next performed an exercise in which the par-
ameters of all reduced models were fit to our wild type
hERG channel current trace at 37°C (as was done to obtain
the initial parameter set, bu, in the full model). This process
was repeated 50 times for each model, sampling from the par-
ameter search space each time to give a different initial guess.
The best 30 parameter sets for the full model are plotted in
figure 3a. The results reveal that many of the parameters
could take on a wide range of values which spanned several
orders of magnitude while still giving a model output con-
sistent with the experimental data. To illustrate this point
further, figure 3c shows two parameter sets with huge differ-
ences in the values of many parameters which produce
highly similar model outputs in response to the same input
(figure 3d ). This tells us that the parameters in this model
are practically unidentifiable for this particular experiment. It
is important to stress that practical identifiability is a property
of both model and experiment—given that the parameters of
our full model are not a priori unidentifiable, we could in
theory design a new experiment which would enable us to
determine uniquely the values of all parameters (given struc-
tural identifiability) [7,8]. Indeed, the original Wang et al. [14]
model developers did use different experimental data and
carefully considered a range of structures when motivating
this choice of model [14].

Figure 3b shows the results of our repeated parameter fit-
ting exercise for a model which was reduced through six
iterations of the MBAM (termed the Wang-r6 model). We
focus on this model as it is the first model with fully
identifiable parameters from the experiment (electronic sup-
plementary material, figure S3) while also being the most
reduced model with simple, biophysically interpretable
rates of the form A · exp (B ·V ) on each of the transitions.
We can see in this case that we have convergence of our par-
ameter estimates—all of our inferred values in the best 30
parameter sets occupy a very small (overlapping) region of
parameter space. This tells us that the parameters in our
reduced model are practically identifiable for this particular
experiment, putting us in a stronger position to draw
conclusions about the underlying biophysical processes.
3.3. Reduced models retain high predictive capability
As described in the previous section, after reducing the Wang
model through several iterations using the MBAM we fit the
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Figure 4. (a) A comparison of the full Wang model and Wang-r6/Wang-r8 reduced model fits to experimental data under the ‘staircase’ calibration protocol.
(b) Prediction of the full Wang model and Wang-r6/Wang-r8 reduced models under a complex action potential waveform validation protocol. (c) Predictions
of the full Wang model and Wang-r6/Wang-r8 reduced models under shortened versions of traditional activation and inactivation protocols. (d ) Comparisons
of summary data between the full Wang model and Wang-r6/Wang-r8 reduced models and experiment corresponding to the data shown in (c). All experimental
data were recorded in HEK293 cells at 37°C [16] (see §2.3 for details).
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parameters of the new, reduced models to ‘staircase’ cali-
bration protocol experimental data (convergence of
parameter estimates from different initial guesses is shown
for the Wang-r6 model in figure 3b and for all models in elec-
tronic supplementary material, figure S3). Focusing again on
the Wang-r6 model and also the Wang-r8 model (the most
reduced model with acceptable error), the close correspon-
dence between model and experiment achieved in model
calibration is shown in figure 4a. Furthermore, the calibrated
reduced models excellently predicted the response to a
wealth of ‘unseen’ validation data collected in the same cell
[16]. Specifically, the Wang-r6 and Wang-r8 reduced models
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predicted with quantitative accuracy the response to a com-
plex series of cardiac action potential waveforms (figure 4b)
[21] and shortened versions of traditional activation and inac-
tivation voltage protocols (figure 4c) plus associated
summary data (figure 4d ) with highly similar model output
to the full Wang model. The only very notable area of
model discrepancy was in the time constant of deactivation
at higher voltages. This is due to the fact that the structures
of the Wang-r6 and Wang-r8 reduced models can only pro-
duce one time course of deactivation (where at least two
exist in the experimental data). However, we can see from
figure 4b that this is not an important feature of the model
for making predictions of resurgent hERG currents in a
physiologically relevant context-of-use.

Fits to the ‘staircase’ protocol for all models are shown in
electronic supplementary material, figure S4, from which it
can be seen that reducing the model through as many as
eight iterations of the MBAM had only a very small effect
on the ability of the models to fit the data. Similarly, all
reduced models were able to predict the response to a com-
plex series of cardiac action potential waveforms (electronic
supplementary material, figure S5) and shortened versions
of traditional activation and inactivation protocols (electronic
supplementary material, figure S6) with similar accuracy as
the full model. The only notable exceptions were that the
Wang-r7 and Wang-r8 models underestimated the amplitude
of hERG transient currents under the complex action poten-
tial validation protocol (electronic supplementary material,
figure S5), and all models reduced beyond the Wang-r3
model exhibited appreciable discrepancy in the time constant
of deactivation (electronic supplementary material, figure S6),
which we revisit in the Discussion.
4. Discussion
4.1. Main findings
Our study demonstrates that the MBAM is a viable approach
to reducing cardiac ion channel models. We reduced the
established Wang et al. [14] model of the critically important
cardiac hERG channel from one with 15 parameters and
five variables to a series of reduced models with as few
as seven parameters and two variables which preserved
the predictive capability of the full model. This was demon-
strated to improve the practical identifiability of the
parameters, as shown through the convergence of parameter
estimates when fitting to experimental data from different
initial guesses (figure 3b and electronic supplementary
material, figure S3). Another way of framing this is that
we reduced the ‘sloppiness’ of the parameter sensitivities,
as shown by the smaller spread of eigenvalues in figure 2b.
It has been suggested that sloppiness, in which well-
constrained predictions can arise from poorly constrained
parameters, is a ‘universal’ property of systems biology
models [10–12]. However, others have pointed out that this
sloppiness is simply unidentifiability which can be rectified
through novel experimental design, i.e. by performing the
‘right’ experiments [22], whereas others have proposed that
sloppiness and lack of identifiability are not equivalent [23].
Using the definition of a sloppy model provided by Chis
et al. [23], i.e. that lmin=lmax & 10�3, our three most reduced
models (Wang-r6, Wang-r7 and Wang-r8) would be con-
sidered sloppy yet identifiable. We demonstrated the
convergence of parameters from different initial guesses for
each of these models (electronic supplementary material,
figure S3), suggesting that the model complexity and
informativeness of the experiment are appropriately
matched—we would, therefore, favour identifiability criteria
over those pertaining to sloppiness, in line with the
conclusions of that study [23].

Using previously reported experimental data at 37°C [16],
we showed that models reduced with the MBAM retained a
large amount of flexibility and predictive power of the full
model (electronic supplementary material, figures S5 and S6).
Not only were the reduced models able to fit the calibration
data very well (this was partially by design, as the calibration
voltage protocol was highly similar to the voltage input proto-
col used to generate the system measurements for the MBAM),
they were also able to predict a vast amount of independent,
‘unseen’ validation data recorded from the same cell (e.g. see
Wang-r6 and Wang-r8 model predictions in figure 4).
Especially impressive is the fact that the reduced models
were found to be highly predictive in the context of a complex,
physiologically relevant series of cardiac action potential wave-
forms which explores channel dynamics under both normal
and abnormal action potential morphologies, including
delayed and early after-depolarizations [21].

The most notable area of model discrepancy (or model
mismatch—the interested reader is referred to table 1 in Lei
et al. [24] for a list of equivalent terminologies for inverse
problem concepts) was in the time constant of deactivation
(figure 4d ) extracted from the inactivation protocol validation
data (figure 4c). Electronic supplementary material, figure S6
highlights that the reduction which took place between the
Wang-r3 and Wang-r4 models in particular increased the
divergence between model and experiment. This step, illus-
trated in figure 1, corresponded to the parameter p2→ 0,
reducing the model from one with two voltage-dependent
deactivation transition rates to a model with two deactivation
transition rates, only one of which is voltage dependent.
Following this reduction, the model was no longer able to
deactivate following the bi-exponential time course seen
in the data, hence the greater discrepancy. Nonetheless,
models reduced past this point preserved the steady-state
channel kinetics well, and this feature of the model was
shown to be unimportant for making predictions of resurgent
hERG currents under physiologically relevant AP wave-
forms (figure 4b), although the two most reduced models
underestimated the amplitude of hERG transient currents
(electronic supplementary material, figure S5).

Model selection for ion channel models remains a challen-
ging and unresolved problem [25–27]. Starting from an
existing, established model in the literature, we showed that
ion channel model reduction by the MBAM can offer insights
into the underlying biophysical processes by reducing and
refining the structure and parameters of a model, thus
aiding in the model selection process. Rather than trying to
select from a large range of available models in the literature,
we demonstrated that theMBAMcan be used to distil the com-
ponents of an existing model which are necessary to give a
predictive model. In our case, we demonstrated that removing
two of the three closed states present in the original model of
hERG channel kinetics described byWang et al. [14] resulted in
models which retained predictive accuracy. While we are not
claiming that the structure of any of our reduced models
(such as the Wang-r6 model) give a more accurate
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representation of the true underlying molecular reality of the
channel, we do suggest that these fundamental components
of the system can explain a lot of the channel dynamics at
37°C and are thus sufficient to form the basis of a predictive
and well-parametrized mathematical model. Interestingly, Di
Veroli et al. [28] also settled on a simpler, single time
constant of activation/deactivation representation of hERG
channel dynamics at 37°C compared with their model at
room temperature, which could produce two time courses of
activation/deactivation.
rnal/rsif
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4.2. Relation to previous work and future outlook
The relationship between the MBAM and other reduction
techniques has been discussed in detail previously [2,3].
As outlined in this paper, cardiac ion channel models typi-
cally contain large numbers of parameters relating to
transition rates between numerous closed, open and
inactivated states, which may result in parameter uniden-
tifiability [8] and divergence in predictions between
models of the same channel kinetics [21,29]. Multiple plau-
sible models also means it is difficult to understand the
relationship between model outputs and model parameters,
suggesting there is a need for ion channel models of reduced
complexity. While this problem is well-known when it
comes to models of the cardiac action potential [30,31],
with several reduced/minimal models having been created
already [32–34] (including through use of the MBAM
[4,5]), considerably less has been done in terms of reducing
their constituent ion channel sub-models (more of a concern
for Markov chain models than simpler Hodgkin–Huxley
formulations).

Reducing the ion channel sub-models within full cellular
action potential models has the advantage of preserving bio-
physical detail and therefore drug or mutation targets whose
effects we may wish to model. For example, within a 67 vari-
able myocyte model Ariful Islam et al. [35] reduced a 13-state
sodium channel Markov model and 10-state potassium chan-
nel Markov model to two-gate Hodgkin–Huxley (HH)
models. That work relied on using approximate bisimulation
between the full Markov models and two-gate HH invariant
manifold reductions of the Markov channel dynamics [36].
Other model reduction techniques which have been applied
to ion channel models include combining states (‘lumping’)
and fast/slow analysis to separate time scales [37–39]. To
decide which states to combine in lumping approaches, the
intuition of the modelling problem may be used, or each
possible choice may be evaluated as in the ‘proper lumping’
technique [40]. In contrast, the MBAM seeks only to reduce
the number of parameters while having little impact on out-
puts. The MBAM may lump states, as it did in r1→ r2 and
r4→ r5 in our reductions. However, the MBAM is more
flexible in the sense that the resulting reduction in number
of parameters may be associated with model reductions
that do not use lumping, as we saw above for most of our
hERG model reductions, and has the benefit of semi-
automatically suggesting the next reduction based on
sensitivities rather than having to exhaustively try all
combinations of states.

Models of the cardiac hERG ion channel are frequently
used in the simulation of genetic mutations and drug effects,
due to the medical and pharmaceutical relevance of hERG-
related abnormalities. Some additional consideration is,
therefore, warranted regarding how this method might be
applied in these contexts. Regarding state-specific drug
block, the method allows one to choose which observations
to use to guide the model reduction. Accordingly, if we
have a trusted complex model, it would be possible to pre-
serve both the open and inactivated state occupancies,
which would ensure the model remains relevant for use in
conjunction with existing models of drug kinetics, which
for hERG typically include binding to only open and/or inac-
tivated states (e.g. [41]). As for genetic mutations, applying
the MBAM separately for each mutant would produce
models which are able to shed light on how a mutation
affects the channel, with no requirements to be defined
a priori.

An approach to parameter identification which circum-
vents the need for model reduction altogether is to fix the
values of certain parameters based on experimental estimates
or inheritance from previous models, fitting only the remain-
ing parameters in the model [3]. This approach is relatively
common not just in the field of cardiac modelling, but also
in the relatively new discipline of quantitative systems
pharmacology. While this does reduce the dimensionality
of the parameter search space, it does not make the model
conceptually simpler or necessarily help to illuminate the
connection between model parameters and output, unlike
model reduction methods such as the MBAM. The MBAM
may, therefore, also be of great utility in this context, in
which the desirability of models with identifiable parameters
has begun to be appreciated [42].
5. Conclusion
To conclude, we have demonstrated the viability of using
the MBAM to reduce models of ion channels while retaining
a high level of predictive power. This approach is a very
promising way to simplify ion channel models while
improving parameter identifiability. It maintains a strong
connection between the biophysically based model par-
ameters, states and outputs from complex models and the
same properties within algorithmically-derived simplified
models.
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