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INTRODUCTION

Body scanners and operating microscopes have become standard of care for diagnostic imaging and
operative planning in neurosurgical oncology. Recently, the preclinical development of novel
nanoscale materials for use in enhancing imaging and visualization of brain tumors in vivo have
led to translational platforms that offer clinicians the potential for improving surgical outcomes and
tailoring personalized treatment regimens. In this piece written by three physician-scientists with
over 30 years of combined expertise in neurosurgery, neuroradiology, neuro-oncology, and CNS
nanotherapeutics, we provide our collective opinion regarding the emerging uses of nanotechnology
in our respective subspecialties.

NANOTECHNOLOGY IN NEURORADIOLOGY

Common neuroimaging modalities such as computed tomography (CT) and magnetic resonance
imaging (MRI) provide anatomical details of the brain and spine. Both CT and MRI scans
provide ~25–100 μm resolution of neural structures (Kaviarasi et al., 2019). CT uses X-rays while
MRI uses radiowaves and magnetic fields for image acquisition and iodine- or gadolinium (Gd)-
based contrast dye agents, respectively, for further enhancement and delineation of lesions such
as higher grade tumors, vascular lesions, or traumatic brain injuries that cause leakiness of the
blood-brain barrier (BBB) (Martina et al., 2005; Bauer et al., 2014). Tracer-based imaging
modalities such as positron emission spectroscopy (PET) and single-photon emission
computerized tomography (SPECT) have limits of resolution between 2 and 10 mm (Moses,
2011; Bailey and Willowson, 2013) and rely on costly, injectable radioactive tracers to detect
diseased cells.

Nanotechnology for neuroimaging largely remains in early stage preclinical development.
Functionalized nanoparticles containing iron oxide or gold or quantum dots have been tested in
mouse models of stroke and brain tumors, demonstrating enhanced visualization of tumor foci,
thrombi, or infarcted brain tissues (reviewed in Kaviarasi et al., 2019) (Kaviarasi et al., 2019). In
particular, high resolution magnetic particle imaging (MPI) utilizing superparamagnetic iron oxide
nanoparticles to acquire quantitative three-dimensional, in vivo real-time imaging shows promise in
the fields of vascular, tumor, and cell labeling and tracking (reviewed in Wu et al., 2019) (Wu et al.,
2019). Furthermore, the use of artificial intelligence and machine learning to deconvolute neural
networks with brain mapping will further compliment the uses of nanotechnology in molecular
neuroimaging (Lui et al., 2020; Yao et al., 2020).
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More recently, investigators have begun to use nanotechnology to
improve the functionality and safety of Gd-based contrast agents for
MRI. While Gd is the most frequently used metal ion for MRI
scanning due to its high magnetic moment causing significant
relaxation rates of nearby water protons, allowing for enhanced
anatomical resolution and the visualization of higher-grade primary
andmetastatic brain tumors, the known renal toxicity of free Gd ions
have led to the development of Gd-chelates such as Gd-DPTA
(Magnevist, Schering AG), which rapidly clears the contrast agent
through the kidneys to decrease the risk of kidney injury (Wang,
2011; Weidman et al., 2015; Russo et al., 2017). However, chelation
reduces the relaxivity of Gd by decreasing the number of sites for
water proton exchange, thus decreasing contrast enhancement.
Several nanotechnologies have been shown to increase the
relaxivity of Gd, including: 1) Geometric confinement of
Magnevist, gadofullerenes, or gadonanotubes in porous silicon
nanoparticles (Ananta et al., 2010); 2) Encapsulating Gd-DPTA
in hyaluronic acid hydrogel nanoparticles to increase its
hydrodenticity (Russo et al., 2017); and 3) Rigidification of Gd by
constraining it as a tricyclic tetraazatriacetic Gd chelate (Port et al.,
2006), all three methods of which have been shown to significantly
increase proton relaxivity compared to that of clinically available Gd-
based contrast agents.

Another emerging use of nanotechnology is in the field of
molecular imaging, including PET and SPECT, which with their
high sensitivity of detection, is being co-apted into multimodal
imaging systems (PET/CT, SPECT/CT, PET/MRI) to allow for
early cancer detection and/or personalized treatment algorithms
(Weissleder, 2006; James and Gambhir, 2012; Goel et al., 2017).
18F-fluorodeoxyglucose (18F-FDG) is the most common
radionuclide that is used as a PET tracer that is taken up by
rapidly metabolizing cells such as malignant tumor cells, however
its specificity for tumor cells is low–this has led to the development of
nanomaterials that can be deployed as targeted molecular imaging
probes simultaneously functionalized to target tumor cells and
deliver therapeutic payloads (Weissleder, 2006; Hong et al., 2009).
124I-labeled gold nanostars have recently been shown to serve as a
subcellular tracker for PET scanning in a preclinical mouse model of
glioma with the potential for translational applications (Liu et al.,
2019), while 99mTc-labeled peptide targeting nanoprobes have
shown promise in preclinical studies for glioma SPECT imaging
(Zhao, 2016). The ability to combine these targetedmolecular probes
with multimodal imaging has the potential to improve the
characterization of brain tumors at the time of diagnosis and
throughout a patient’s course of treatment.

NANOTECHNOLOGY IN NEUROSURGERY

The use of nanotechnology in neurosurgical procedures has gained
muchmore maturity than in neuroradiology, with the application of
nanomaterials across each subspecialty of neurosurgery. Nano-
roughened titanium interbody cages that stimulate osteoblastic
activation and osteointegration (Gittens et al., 2012); bioactive
nanofiber scaffolds as carriers for recombinant human bone
morphogenic protein (Lee et al., 2015), and polyethyl ether
ketone nanocomposite polymers that assist in implant

technologies for patients with osteoporotic bone (Li, 2012), are
commonly used in spinal fusion surgeries (reviewed in
Viswanathan et al., 2019) (Viswanathan et al., 2019).

Intra-operative fluorescence-guided surgery using the
fluorescent pro-agent 5-aminolevulenic acid (5-ALA) and the
fluorescent dye indocyanine green (ICG), both of which have
demonstrated good penetrance across the blood-brain barrier
(BBB), have shown promise in improving the extent of maximal
safe surgical resection of brain tumors (Valdés et al., 2015; Teng
et al., 2021). Similarly, a phase one safety trial of BLZ-100, a 36
amino acid synthetic peptide chlorotoxin derived from scorpion
venom conjugated to ICG (Tozuleristide), has established dose-
limiting toxicities and enhanced intra-operative fluorescence of
newly diagnosed or recurrent adult gliomas (Patil et al., 2019).
The increased prevalence of fluorescence-guided intraoperative
surgical resection of brain tumors have been aided by the
development of several intraoperative imaging systems, such
as: The commonly available Leica OH6 microscope (Wetzlar,
Germany) which is equipped with the FL800TMmodule that has a
high-sensitivity near-infrared (NIR) camera and 820–860 nm
filter that detects NIR fluorescence and generates a black and
white image that cannot be overlaid with visible light microscopy
images (Cho, 2018; Cho et al., 2018); The Zeiss CONVIVO®
confocal laser endomicroscopy digital biopsy probe that allows
for in situ visualization of fluorescein-labelled tissues and allows
for seamless interfacing with their KINEVO® 900 robotic
visualization system combining fluorescent views of tissue
microstructure with surgical views under the operating
microscope (Zeiss, Oberkochen, Germany); And finally, the
FDA-approved VisionSense IridiumTM handheld NIR
exoscope (VisionSense, Philadelphia, PA) which is less
commonly used in neurosurgery but more widely used in
plastic surgery and reconstructive general surgery procedures,
and allows for overlay of fluorescence and white light images in
real time (AV, 2016; Cho et al., 2018). These intra-operative
nanoscale imaging materials and fluorescence imaging systems
have the potential to maximize the extent of safe surgical
resection of highly malignant brain tumors with hopes of
prolonging patient survival.

Nanomaterials that promote osteoblastic stem cell growth in
intervertebral cages made out of titanium or
polyetheretherketone (PEEK) have dramatically improved the
fusion rates in spine surgery (Girasole et al., 2013). Nanofibrous
poly (D,L-lactide-co-e-caprolactone) balloons have been used in
verteplasty procedures to fill compressed fractured vertebra (Sun
et al., 2013). Finally, experimental collagen scaffolds of collagen-
binding brain-derived neurotrophic factor have been shown
therapeutic promise in a canine model of spinal cord injury
(Andrychowski et al., 2013).

NANOTECHNOLOGY IN
NEURO-ONCOLOGY

Currently, the food and drug administration (FDA) has approved
albumin-bound paclitaxel and pegylated liposomal doxorubicin
for used as systemic anti-cancer therapies. These nanomedicines
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do not cross the BBB and therefore are not appropriate for use in
the neuro-oncology space. A variety of nanoparticles have been
developed in the preclinical testing phases that have shown
promising results to be able to circumvent the BBB for
delivery of small molecule inhibitors, chemotherapies,
antibody-drug conjugates, and gene therapies in murine
models of gliomas (Glaser et al., 2017; Grabowska et al., 2019).
We recently reported enhanced safety and efficacy of
nanoliposomes functionalized with transferrin, which aids in
receptor-mediated endocytosis across the BBB and targeting to
glioma cells via the expression of transferrin receptors on the
surfaces of both endothelial and glioma cells, in the delivery of
combination anti-cancer therapies to murine models of gliomas
(Lam et al., 2018). However, all these nanoscale materials are still
restricted to preclinical studies and have yet to translate into the
clinical setting for the treatment of patients with brain tumors.

Recent advances in photon beam radiation therapy (RT)
techniques for the treatment of brain tumors have allowed for the
ability to deliver high doses of radiation precisely to different regions
of the brain. Treatment planning algorithms such as intensity- or
volume-modulated radiotherapy/arc therapy (Sheu et al., 2019),
when applied to techniques such as stereotactic radiosurgery and
fractionated RT (Scaringi et al., 2018), have allowed radiation
oncologists to deliver highly conformed doses of radiation to
tumors while sparing adjacent normal neurovasculature with
promising preliminary outcomes in maintaining high local control
rates (Ruggieri et al., 2018). However, RT treatments are associated
with acute and late central nervous system toxicities, including
headaches, vomiting, motor/sensory neuropathy, cognitive deficits,
and seizures (Brown et al., 2016; Chen et al., 2017). One emerging
modality to avoid these toxicities is proton beam therapy, which uses
positively charged elementary particles to deposit a sharp peak of
energy (the Bragg Peak) to the target tumor volumewithminimal exit
dose to decrease the rates of acute and late toxicities and increases the
therapeutic ratio of RT (Sherman et al., 2016; Indelicato et al., 2019;
Weber et al., 2020). However, it has also been postulated that the high
transfer of energy at the distal range of the beam may be also cause
toxicities (Peeler et al., 2016; Haas-Kogan et al., 2018). To further
increase the therapeutic window andminimize dose-related toxicities,
the development of nanoscintillators, down-conversion NPs that
absorb x-rays and emit a wide-range of photons, have been used
as photosensitizers in photodynamic therapy to produce high
amounts of reactive oxygen species when delivered locally into
tumor tissues, creating cytotoxicity and tumor cell killing (Castano
et al., 2006; Celli et al., 2010). These include rare-earth lanthanum/
iron/ceramide-based composite NPs that have shown promise in
reducing radiation treatment-induced toxicities and improving
therapeutic benefits in preclinical models of brain tumors (Bulin
et al., 2020).

CURRENT LIMITATIONS OF
NANOTECHNOLOGY FOR USE IN THE
HUMAN CENTRAL NERVOUS SYSTEM
Limitations to successful translation of most benchtop
nanotechnologies into the clinic have been due to the potential

systemic toxicities of NPs. FDA-approved pegylated liposomal
doxorubicin (Doxil®) has increased systemic circulation times,
reduced cardiotoxicity, and demonstrated similar efficacy
compared to conventional doxorubicin for the treatment of
metastatic breast cancer (O’Brien et al., 2004). Compared to
other types of nanotechnologies composed of organic, inorganic,
or metal components, liposomes and other lipid-based NPs appear
to have the lowest toxicity profiles in vivo (Puri et al., 2009).
However, patients taking Doxil® have reported increased
incidences of hand-foot syndrome and developed cutaneous
squamous cell carcinoma after repeated use (Anselmo and
Mitragotri, 2019; Pease et al., 2019). A recent systematic review
of 14 randomized clinical trials comparing the efficacy of liposomal
encapsulated cytotoxic therapies to equivalent conventional
formulations did not show improved efficacy in humans despite
showing significantly increased survival in tumor-bearing mice
(Petersen et al., 2016). This review exemplifies deficiencies in
understanding the pharmacokinetics and pharmacodynamics of
nanomedicines in humans and the limitations for clinical use.
Little is known regarding the long-term effects of NP deposition
in human organs, however animal studies have shown increased
cellular oxidative stress in different organs (Dick et al., 2003;
Donaldson, 2004). Other purported mechansims of toxicity
include generation of DNA damage, protein structural and
functional modifications, and disruption of membrane integrity
(reviewed in Najahi-Missaoui et al., 2021) (Najahi-Missaoui et al.,
2020). Furthermore, most preclinical studies have manufactured
NPs under non-GLP (Good Laboratory Practices)/non-GMP (Good
Manufacturing Practice) laboratory environments in relatively small
batches, thus without knowledge of how large scale-up production of
NPs can affect the quality and consistency of the final product, it
becomes difficult to assess the safety and efficacy of these
nanomedicines in humans.

Preclinical studies have also shown mechanisms of
neurotoxicity associated with nanomaterials. Interactions of
nanomaterials with glial cells and neurons have led to
oxidative burst activity in microglia (Long et al., 2006; Ze
et al., 2013; Shrivastava et al., 2014), inflammation due to the
release of cytokines and tumor necrosis factor-α by microglia (Li
et al., 2009; Ze et al., 2014), DNA damage (Golbamaki et al., 2015;
Ren et al., 2016), and apoptosis (Márquez-Ramírez et al., 2012;
Ganguly et al., 2018). Our experience with glioma-targeted
liposomal NP delivery of cytotoxic therapies across the BBB in
mouse models of glioma has demonstrated successful
accumulation of transferrin-functionalized NPs on the surface
of glioma tumors (Lam et al., 2018). Intravital multiphoton
imaging through a cranial window into the brains of these
glioma bearing mice (Figure 1A, glioma tumor in green)
immediately after systemic injection of fluorescence-conjugated
liposomal NPs demonstrates the presence of NPs flowing through
an adjacent tumor vessel (Figure 1A, white arrows pointing to
liposomal NPs in red). Twenty-four hours after systemic
injection, imaging demonstrated accumulation of NPs on the
surface of the tumor (Figure 1B, tumor signal in green, liposomal
NPs in red). Red fluorescence signal is seen in cells surrounding
the tumor with a bulls-eye appearance, likely suggestive of
scavenger uptake of NPs by resident microglia, which would
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serve as a mechanism for the eventual degradation and clearance
of NPs from the CNS milieu (Figure 1).

NEW HORIZONS

Despite the potential for nanoscale applications to revolutionize the
fields of neuroradiology, neuro-oncology, and neurosurgery, the largely
impenetrable BBB remains to be a major hindrance in the effective
delivery of payload into the CNS. To circumvent the BBB, researchers
have exploited both intranasal and intrathecal delivery routes for direct
delivery into the CNS. The nasal mucosa provides a direct route into
the brain via the olfactory epithelium through the cribriform plate of
the skull base (Tashima, 2020). Most intranasal medications have been
marketed for local or systemic delivery to the nose or the upper
respiratory tract for indications such as allergic rhinitis. More recently,
micellar, liposomal, and chitosanNPs have been used to deliver insulin
intranasally into the brain for the treatment of Alzheimer’s disease
(reviewed in Tashima et al., 2020), paving the road for the possibility of
using insulin as a backbone conjugate linker to carry other small
molecules intranasally into the CNS space to treat other CNS disorders
(Tashima, 2020).

Intrathecal delivery of therapeutics can also circumvent systemic
barriers to CNS drug delivery to achieve high concentrations of drugs
in the CSFwhile averting systemic exposure and have shown promise
in both the clinical and preclinical space for the treatment of
intraventricular tumors and leptomeningeal disease (Sandberg
et al., 2012; Bottros and Christo, 2014; Chen et al., 2015; Sandberg
et al., 2015). A recent study characterizing the biodistribution of
100 nm fluorescent-conjugated PEGylated NPs delivered into the
cisterna magna of healthy mice found that these NPs were evenly
distributed throughout the subarachnoid space along the brain and
spinal cord with retention in the leptomeninges for up to
3 weeks–however, there was minimal penetration into the brain
parenchyma (Householder et al., 2019). This points towards the
selective use of intrathecal delivery for the treatment of diseases with
an affinity for the meninges, such as leptomeningeal carcinomatosis,
for which implantable intraventricular devices such as the

NeuroinfuseTM multicatheter infusion device (Renishaw,
United Kingdom) are currently in human clinical trials (Chen
et al., 2015), or the need to further functionalize nanoparticles to
allow for cell type-specific delivery within the brain.

Finally, the field of theranostics–combining therapeutic and
diagnostic capabilities into a single NPs delivery system have
gradually come into the forefront of personalized medicine,
potentially offering time and cost savings while improving patient
outcomes (Lammers et al., 2010; Wang et al., 2014).
Multifunctionalized theranostic NPs that contain imaging agents
such as iron oxide, chemotherapeutic agents such as doxorubicin,
and tumor cell-targeting moieties such as folate, have the ability to
allow for real-time imaging and tracking of therapeutic responses for
the treatment of brain tumors (reviewed in d’Angelo et al., 2019)
(d’Angelo et al., 2019). Superparamagnetic iron oxide and
doxorubicin loaded into chitosan NPs have the ability to be
internalized by C6 glioma cells, demonstrating a decline in T2
relaxation times in vitro during MRI scanning, paving the road
for further preclinical testing of theranostic NPs for the treatment of
brain tumors (Gholami et al., 2019). The ability to deliver
multimodal NPs using novel routes of delivery into the CNS
space could further the field of personalized medicine for the
treatment of brain tumors.

DISCUSSION

From a neurosurgeon’s perspective, we often implant foreign
materials into the brain, including Ommaya reservoirs (Magill
et al., 2020), external ventricular catheters (Dey et al., 2015), and
deep brain stimulator electrodes (Engel et al., 2018), composed of
inert soft plastics, as well biodegradable wafers impregnated with the
cytotoxic agent carmustine (Gliadel®) into the surgical resection
cavity for the treatment of gliomas (Chowdhary et al., 2015). Some
reported side-effects of these implantable devices include migration
within the brain leading to inadvertent hemorrhage and neurologic
injury, brain swelling due to foreign body reactions, seizures, and
scarring. Extrapolating our experience using macromolecular

FIGURE 1 | Intravital multiphoton imaging demonstrates delivery of fluorescent tumor-targeting liposomal nanoparticles across the blood-brain barrier to a glioma
brain tumor in an intracranial orthotopic xenograft mouse model of glioma. (A) Left panel-intravital multiphoton image through a cranical window of a GFP-expressing
glioma tumor. White arrows show Cy5.5-conjugated liposomal nanoparticles coursing throught a blood vessel adjacent to the tumor. Imaged immediately after tail vein
injection of nanoparticles. (B) Intravital mutiphoton image taken 24 h following tail vein injection showing accumulation of Cy5.5-conjugated liposomal nanoparticles
on the surface of the brain tumor. Accumulation Cy5.5 signal in cells with a bulls-eye center suggestive of uptake of nanoparticles by resident brain microglia.
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intracranial implants, there is a need to design early phase clinical
trials to thoroughly determine the safety of all novel nanomaterials in
the CNS leading into larger phase II/III randomized trials to assess
the efficacy of these materials for their intended CNS applications.

CONCLUSION

Nanomaterials for use in CNS applications is a rapidly emerging
space with much potential for improving the care of patients with

neurological and neurosurgical issues. There remains a large
translational gap between benchtop to clinical studies but the
increasing involvement of clinician scientists with an interest in
nanomaterials research will undoubtedly narrow that gap.
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