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Abstract
Transfer learning has ability to create learning task of weakly labeled or unlabeled target
domain by using knowledge of source domain to help, which can effectively improve the
performance of target learning task. At present, the increased awareness of privacy protection
restricts access to data sources and poses new challenges to the development of transfer learn-
ing. However, the research on privacy protection in transfer learning is very rare. The existing
work mainly uses differential privacy technology and does not consider the distribution dif-
ference between data sources, or does not consider the conditional probability distribution
of data, which causes negative transfer to harm the effect of algorithm. Therefore, this paper
proposes multi-source selection transfer learning algorithm with privacy-preserving Multi-
STLP, which is used in scenarios where target domain contains unlabeled data sets with only
a small amount of group probability information and multiple source domains with a large
number of labeled data sets. Group probability means that the class label of each sample in
target data set is unknown, but the probability of each class in a given data group is avail-
able, and multiple source domains indicate that there are more than two source domains. The
number of data set contains more than two data sets of source domain and one data set of
target domain. The algorithm adapts to the marginal probability distribution and conditional
probability distribution differences between domains, and can protect the privacy of target
data and improve classification accuracy by fusing the idea of multi-source transfer learning
and group probability into support vector machine. At the same time, it can select the repre-
sentative dataset in source domains to improve efficiency relied on speeding up the training
process of algorithm. Experimental results on several real datasets show the effectiveness
of MultiSTLP, and it also has some advantages compared with the state-of-the-art transfer
learning algorithm.
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1 Introduction

Machine learning has progressed dramatically over the past two decades, from laboratory
curiosity to a practical technology in widespread commercial use [1]. A prominent aspect of
machine learning is the ability to deal with large amounts of unorganized information prob-
lems by learning models from labeled data in domain, so sufficiently available labeled data is
the basis for reliable results from machine learning models. Currently, machine learning has
been widely used in computer vision [2], intrusion detection [3], speech emotion recognition
[4, 5], natural language processing [6] and text classification [7].

At present, in order to obtain better accuracy and reliability, the existing traditionalmachine
learning models usually need to meet two basic assumptions: there are enough available data
samples in training data set; the training and test data come from the same feature space and
distribution [8]. However, in practical applications, training and test data usually come from
different fields, and it is difficult to ensure that the data distribution is consistent. In addition,
labeled data is scarce in some areas. When the distribution changes, the machine learning
algorithm needs to re-collect and re-label training data. In many real-world applications,
the cost of re-collecting training data and reconstructing model is very expensive, or even
impossible [9]. In this case, transfer learning between learning task domains is desirable,
the motivation is that people can use the previously learned knowledge to better solve new
problems, and the purpose is to use the label information of another related domain (source
domain) for building the model of target domain [10–14]. Unlike traditional machine learn-
ing algorithms, them assume that training and test data have the same distribution, transfer
learning can use knowledge from different distributions of data. In view of the advantages of
transfer learning, a lot of research on it has been launched [15–18].

On the other hand, the smooth implementation of transfer learning usually requires source
and target domains to directly share the original data, which cannot be met in some cases,
especially when it involves some confidential or sensitive data. So, the protection of data
privacy in transfer learning is becoming an important issue that people pay attention to.
The research on privacy protection in transfer learning is very rare. The most recent related
work is the differential privacy hypothesis transfer learning method for logistic regression
proposed by Wang et al. [19], which uses the public unlabeled source data set to measure the
relationship between source and target domain with the hypothesis trained on source domain
to improve the learning of target hypothesis. Other related researches focus on variants of
transfer learning, such as iterative differential privacy multi-task learning [20], distributed
training data aggregation that considers covariate shift (covariate shift) [21], these works
either did not consider the distribution differences between data sources, or did not consider
the conditional distribution of data.

Recently, a class of machine learning methods that use information in group probabilities
to train classifier provides an effective way to protect data privacy, this is a type of semi-
supervised learning method between supervised learning and unsupervised learning [21–
24]. As shown in Fig. 1, for a set of training data without class labels, if you only know
the probability of belonging to a certain class label in each data group, that is, the group
probability, thenuse the groupprobability information to obtain a classifier that can effectively
label the data. A typical application related to group probability is in political election events,
where the number of voters in a constituency is known. In order to protect the privacy of
each voter, only the number of candidates votes will be provided, and the specific ballot
information for each voter is unknown. It can be seen that the group probability information
provides an effective means for protecting the privacy of data.
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Fig. 1 Leaning from group probability

In view of the advantages of group probability to protect the privacy of training data
in data classification, using group probability to solve the privacy protection problem in
transfer learning has attracted the attention of researchers [25, 26]. The existing algorithms
only consider the knowledge in a source domain to target learning task, and the marginal
probability difference. However, there is more than one source domain related to target
domain. Therefore, it is natural that many transfer learning algorithms related to multiple
source domains are proposed [27–29]. The multi-source transfer method extracts knowledge
fromdata sets of two ormore source domains for the learning task of target domain.Compared
with the transfer learningmethod that only uses one source domain, it can increase the chance
that transferring relevant knowledge from source domains to target domain and improve
learning result. Today, transfer learning has been applied to COVID-19 recognition [30],
law article prediction [31], the classification of histological images of colorectal cancer [32],
human action recognition [33], cross-domain recommendations [34] and EEG signal analysis
[35].

In this paper, we utilize the group probability and multi-source transfer learning theory,
in the case of the application scenarios that the target domain has only group probability
data with only a small amount of unlabeled data, and multiple source domains contain large
amount of labeled data in each source domain, a newmulti-source selection transfer learning
algorithm with privacy-preserving (MultiSTLP) is proposed. The idea of MultiSTLP algo-
rithm is to use the knowledge of group probability in target domain and the knowledge of
labeled data in multiple source domains into the framework of support vector machine struc-
ture risk minimization, by constructing the similar distance term between target and each
source domains. During the process, considering the marginal and conditional probability
differences the knowledge of the representative datasetwhich is selected form source domains
is transferred into target domain, and then the optimizable objective function is constructed.
The theoretical proof of the objective function shows that the solution process is a quadratic
programming problemwith optimal solution. In the algorithm, the group probability protects
the privacy of the target data, and the representative dataset of sources domain helps to reduce
the size of training samples and improve the efficiency of algorithm training.

Compared with the previous works, the contributions of this paper are:

(1) A new multi-source selection transfer learning algorithm with privacy-preserving Mul-
tiSTLP is proposed, which utilizes samples of the representative dataset that is selected
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from multiple sources and unlabeled group probability samples in target domain. Multi-
STLP not only improves training efficiency, but also protects data privacy. The objective
function ofMultiSTLP can be transformed into a traditional standard quadratic program-
ming problem and proved to have global optimal values through rigorous mathematical
proof.

(2) By reducing the marginal and conditional probability differences, the knowledge of each
source domain with similarity to target domain are transferred to the greatest extent,
which effectively solves the negative transfer and improves the effect of algorithm. In
addition, the representative dataset in source domains can make full use of high-quality
samples, reducing the number of training samples and speeding up the algorithm training
process.

(3) Extensive experiments have been carried out on real datasets, the experimental results
show that the result of MultiSTLP is better than the state-of-art algorithms or at least
comparable to them.

The rest of the paper is organized as follows. In Sect. 2, the related works of selective
transfer learning support vector machine and group probability are briefly reviewed. The
MultiSTLP is proposed in Sect. 3. In Sect. 4, we verify the effectiveness ofMultiSTLP on four
real-world datasets, and the experimental results are analyzed. The last section summarizes
the conclusions of this paper and researches in the future.

2 Brief Review of RelatedWorks

We briefly introduce the selective transfer learning support vector machine and group prob-
abilities in this section. In the group probability introduction, we focus on the IC technology
and the IC-SVM algorithm.

First of all, we start with the variable definitions of terminologies. For clarity, Table 1 lists
the frequently used notations.

2.1 Selective Transfer Learning Support Vector Machine

For SVM, a lot of training samples is a prerequisite for achieving better training results. This
not only requires a lot of manpower to label, but also a lot of time is consumed in the training
phase, so the training efficiency of SVM is not satisfactory. In order to improve the efficiency
of SVM training, a method of using training samples near the largest hyperplane to train
SVM approximate the extreme point support vector machine (AESVM) was proposed in
[36]. AESVM no longer needs all training samples to train the learning model. The training
sample size can be greatly reduced, so that the training cost of the learning model is reduced.

On this basis, Li et al. [10] proposed a selective transfer learning support vector machine
algorithm (STL-SVM), which uses AESVM to select representative dataset from source
domain. STL-SVM first utilizes an improved maximum mean discrepancy (MMD) to cal-
culate the weight vector of the importance of the sample in source domain relative to target
domain; then AESVM method is applied to select a representative dataset and the weight of
samples; finally, combined with the support vector to construct an objective function with
the ability the transfer learning.

Given a source domain DS containing n sample data, DS = {(x S1 , yS1 ), (x S2 , yS2 ), . . . ,

(x Sn , ySn )}, XS = {x S1 , x S2 , . . . , x Sn }, YS = {yS1 , yS2 , . . . , ySn }, YS ∈ {1 − 1}. Similarly,for
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Table 1 Notations and
descriptions

Notation Description

DS /DT Source/target domain

DSi Si -th Source domain

XS /XT Source/target sample set

Y S /YT Source/target class label set

nSi
′ Number of labeled Si -th source domain

M Number of source domain

n Number of target domain samples

ws/bs Parameters of source linear classifier

wt/bt Parameters of target linear classifier

pk Group probability

Gk k-th Groups

K Number of group

γ Weight of source domains

βSi Weight of representative data set in Si -th source domain

v Weight of samples

a target domain DT = {(xT1 , yT1 ), (xT2 , yT2 ), . . . , (xTm , yTm )} with m samples, XT =
{xT1 , xT2 , . . . , xTm }. The objective function of STL-SVM is shown in Eq. (1):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
wt ,bt

1
2 ||wt ||2 + Ct

∑n+m
i=n+1 ξ ti + 1

2 ||ws ||2 + Cs
n

∑n
i=1 βiξ

s
i

+ λ
2 ||wt − ws ||2

s.t . ys
i
(wT

s φ(xs
i
) + bs) ≥ 1 − ξ si

yt
i
(wT

t φ(xt
i
) + bt − w̃T

t φ(xt
i
) − b̃t ) ≥ 0

ξ si ≥ 0, i = 1, 2 . . . n

(1)

In Eq. (1), wt and bt represent the parameters in target domain, ws and bs represent the
parameters in source domain, these parameters include knowledge in domains; w̃T

t and b̃Tt
represent the knowledge obtained by SVM training only on dataset in target domain; φ(·) is
non-linear mapping function; ξ ti (ξ

t
i ≥ 0) and ξ si (ξ

s
i ≥ 0) are the slack variables in target and

source domains, respectively; n is the number of samples in source domain, n′ is the number
of samples in representative dataset calculated by AESVM; m is the number of samples in
target domain; βi ∈ [β1, β2, . . . , βM ] represents the weight value corresponding to each
sample in representative data set; Ct (Ct ≥ 0) and Cs (Cs ≥ 0) are the degree of penalty
error of the regularization coefficient in target and source domain, respectively; T represents
the transposition of the matrix; f (xi ) = w̃T

t φ(xt
i
) + b̃t is the decision function of SVM

classifier in target domain.
Solve the Eq. (1) to obtain the model parameters and, substitute them into the decision

function Eq. (2) of STL-SVM:

f (x) = wT
t φ(x) + bt (2)

On the one hand, STL-SVM reduces the size of training samples in source domain through
AESVM and accelerates the learning progress; on the other hand, it usesMMD and objective
function construction principles to effectively solve the negative transfer problem that is easy
to occur in transfer learning. Therefore, STL-SVM completes the knowledge transfer by
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effectively fusing the knowledge of the source and target domains, so as to obtain a better
classification effect. Experiments on artificial and real datasets show the effectiveness of STL-
SVM. Compared with previous research work on transfer learning algorithms, the STL-SVM
algorithm can better solve the negative transfer situation and the long training time of the
classifier due to too many training samples in source domain. However, the problem with
STL-SVM is that it only considers the marginal probability between domains and does not
discuss the conditional probability; it only uses the knowledge in one source domain, when
there are multiple source domains related to the target domain that will cause a waste of data
resources. In addition, it does not have the ability to protect privacy of target data.

2.2 Group Probabilities

Given a dataset X = {xi , i = 1, . . . , N }, xi is i-th sample, N represents the number of
samples, and the class label of samples is unknown. The group probability is defined as
follows:

Assuming that the dataset X is divided into K groups, Gk = {Xi,k, i = 1, . . . , Nk, k =
1 . . . , K }, Nk represents the total number of samples in each group, and the group probability
of each group Gk is known as pk , which represents the probability that the sample is positive
class in the group. In each group, we know the probability that the sample is a positive class,
however the class label of each sample is unknown. pk is called the group probability of
dataset X, which can effectively protect the privacy of dataset X.

For the purpose of solving the difficulty of applying the traditional classification model
directly to group probability, IC-SVM [22] first labels the group-probability data based on
platt model of the inverse calibration technique (IC), then uses these labeled data to train
the SVM. IC-SVM utilizes the sigmod function as an estimated SVM posterior probability
output method:

p(y = 1|x) = 1/(1 + exp(−A f (x) + B)) (3)

In Eq. (3), the parameters A and B are obtained by the minimum cross entropy, x is the
sample feature vector, y is a class label, p(y = 1|x) indicates the probability that the sample
is positive. Setting A = 1 and B = 0, the Eq. (3) can be converted into the following Eq. (4):

p = σ(y) = 1

1 + exp(−y)
(4)

Further deformation is as follows:

y = σ−1(p) = − log

(
1

p
− 1

)

(5)

In practice, it is difficult to obtain the class label of each sample, so the average values of
the class label estimated in each group is approximated as the predicted value of sample, as
in Eq. (6):

∀i : 1

|Gi |
∑

j∈Gi

(wT x j + b) = ỹi (6)

In Eq. (6), |Gi | is number of group Gi , w and b are the parameters in classification
hyperplane of SVM, which sets up a bridge between the group probability information and
SVM. The optimization problem of the IC combined with the SVM theory can be expressed
as follows:
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min
w,b

1

2
||w||2 + C

K∑

i=1

(ξi + ξ∗
i )

s.t . ∀K
i : 1

|Gi |
∑

j∈Gi

(wT x j + b) ≥ ỹi − εi − ξi ,

∀K
i : 1

|Gi |
∑

j∈Gi

(wT x j + b) ≤ ỹi + εi + ξ∗
i ,

ξi ≥ 0, ξ∗
i ≥ 0 (7)

In Eq. (7), K denotes the number of group, εi is defined minimum required precision of
the estimate. Equation (7) uses SVM classifier to conveniently process group probability
information, which also provides theoretical support for the proposed multi-source transfer
learning algorithm.

3 Implementation of MultiSTLP

This section describes the multi-source transfer algorithm with group probability in detail.
The algorithm framework is shown in Fig. 2. As shown in Fig. 2, the input information of
MultiSTLP framework consists of two parts: label samples in target domains which con-
tains unlabeled samples with only group probability information. For convenience, we only
consider the binary classification problem (Fig. 3).

M source domains are defined as: DS = {DSi = (x Sij , ySij )
nSi
j=1, i = 1, . . . , M}, x Sij

denotes j-th sample of Si -th source domain, the corresponding class label is ySij , nSi
′ is

the number of samples in source domain, PSimeans joint distribution. Analogously, target
domain is DT = (xi )i=1,..,d , d is the number of group and joint distribution is PT . As
a class label, pk = |{i ∈ Gk, yi = 1}|/|Gk | equals to P(Y = 1|Gk) that is estimating
probability of class label. PSi (x

Si ) and PT (xt ), PSi (y
Si |x Si ) and PT (yt |xt ) are the marginal

probability and conditional probability of source and target domains, respectively. Normally,
PSi (x

Si ) �= PT (xt ) and PSi (y
Si |x Si ) �= PT (yt |xt ). MultiSTLP not only considers the dif-

ferences between source and target domains, but also transferability of source domain by
simultaneously reducing the differences between the marginal and conditional probabilities.

3.1 Select Representative Data Set and Adapt the Probability of Partial Difference

Refer to reference [10], using the AESVM method to calculate the representative data set
in source domain DSi and its corresponding weight vector β

Si
j ∈ [βSi

1 , β
Si
2 , . . . , β

Si
nSi

], the
number of samples in representative data set is.

In order to effectively transfer knowledge from source domain that is similar to target
domain, this paper adapts both marginal and conditional probability differences. we use
MMD to calculate the weights of samples in source domain Si on the marginal probability
difference.
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Fig. 2 Framework of MultiSTLP

min
αSi

∥
∥
∥
∥
∥
∥

1

nSi

nSi∑

j=1

v
Si
i φ(x Sij )− 1

d

d∑

j=1

φ(xtj )

∥
∥
∥
∥
∥
∥

2

H
s.t . v

Si
j ≥ 0

i = 1, . . . ,m,

j = 1, . . . , nSi

(8)

φ(x) denotes that feature is mapped to a regenerative kernel Hilbert space H , nSi is the
number of the representative data set in source domain Si , the number of group in target
domain is d , nSi is also the dimension of vSi . The minimization problem of Eq. (8) is
a standard quadratic programming problem and can be solved using many existing solvers.
When constructing the objective functionMultiSTLP, byusing samples in each source domain
we add the corresponding weights as in Eq. (9).

v
Si
j = v

Si
j · x Sij · β

Si
j (9)
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Fig. 3 Flowchart of MultiSTLP

In Eq. (9), vSi represents the sample vector after weighting samples of source domain Si .
For the convenience of subsequent calculations, set x Si = vSi , that is, the samples of source
domain are weighted with vSi .

On the basis of the above calculation of marginal probability difference, calculate γ Si of
source domain DSi , which reflects similarity between source and target domains. First, we
learn the classifier hSi : x → y, this ensures that the classifier learned on source domain
with similar marginal probability distributions. Then, using hSi predicts unlabeled samples
in target domain. HS = [hS1 , . . . , hSM ] denotes M classifiers, γ S = [γ S1 , . . . , γ SM ]T is
corresponding weight vector. Therefore, the goal of Eq. (10) is to find the optimal weight
by minimizing the difference in prediction labels between two neighboring points in target
domain.

min
γ :γ ′e=1,γ≥0

d∑

i, j=1

(HS
i γ S − HS

j γ S)
2
Wi j (10)
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HS
i is the predicting result of i-th sample using HS Wi j is a similarity parameter between

two data samples of target domain. Equation (10) can be rewritten as the form of Eq. (11):

min
ϕ:γ ′e=1,γ≥0

d∑

i, j=1

(γ S)
T
(HS)

T
LH Sγ S (11)

In Eq. (11), L = D−W is the graph Laplacian associated with the data of target domain,
W is the similarity matrix, D is the diagonal matrix given by Dii = ∑M

j=1 Wi j . The mini-
mization problem of Eq. (11) is also a standard quadratic programming problem, which can
be calculated using many existing solvers.

3.2 Construction of Object Function

On the basis of 3.1, we combine the structural risk minimization theory and the similarity
distance minimization to construct the objective function of MultiSTLP as follows:

min
ft fs∈Hk

1

2M

M∑

i=1

|| fsi ||2 + 1

M

M∑

i=1

Csi

nSi∑

j=1

lsi ( fsi , y j ) + 1

2
|| ft ||2

+ Ct

d∑

i=1

lt ( ft , yi ) + λ
1

2M

M∑

i=1

d( ft , fsi ) (12)

fs is decision function vector of M source domains, ft is decision function in target domain.
|| fsi ||2 and || ft ||2 are the structure risk terms controlling the complexity of the classifier in
the source domain and the target domain, respectively. || f ||2 indicates L2-norm. Csi and
Ct are the regularization coefficients in source domain Si and target domain. l() is convex
non-negative loss function. d() is used to quantify the diversity between source and target
domains. λ is the trade-off parameter.

Equation (12) consists of three items, the first term ( 1
2M

∑M
i=1 || fsi ||2+ 1

M

∑M
i=1 Csi

∑nSi
j=1 lsi ( fsi , y j )) refers to the knowledge learning from source domains. The second term

( 12 || ft ||2 + Ct
∑d

i=1 lt ( ft , yi )) denotes the knowledge learning from target domain. The

third term (λ 1
2M

∑M
i=1 d( ft , fsi )) is that guarantees good generalization performance by

minimizing the differences between each source and target domains.
In further, λ

2M

∑M
i=1 ||wt − γ Siwsi ||2 is utilized to quantify the diversity between domains.

So, Eq. (12) can be rewritten into Eq. (13).

min
wt ,bt ,ws ,bs

1

2
||wt ||2 + Ct

d∑

i=1

lt (wT
t ϕ(x) + bt , yi )

+ 1

M

M∑

i=1

||wsi ||2 + 1

M

M∑

i=1

Csi

nSi∑

j=1

lsi (w
T
si ϕ(x) + bsi , y j )

+ λ

2M

M∑

i=1

||wt − γ Si wsi ||2 (13)

In Eq. (13), we chose two different hinge loss functions in source and target domains:
ls( f (xi ), yi ) = max{0, 1−yi f (xi )} and lt ( f (xi ), yi ) = max{0, | f (xi )− ỹi |−ε}. Therefore,
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Eq. (13) can be formulated as an optimization problem:

min
wt ,bt ,ws ,bs

1

2
||wt ||2 + Ct

M∑

j
nS j +d

∑

i=1+
M∑

j
nS j

(ξi+ξ∗
i )

+ 1

2M

M∑

i=1

||wsi ||2 + 1

2M

M∑

i=1

Csi

nSi∑

j=1

ξ
si
j

+ λ

2M

M∑

i=1

||wt − γ Siwsi ||2

s.t .

ySij (wT
si ϕ(xSij ) + bsi ) ≥ 1 − ξ

si
j , j = 1, . . . , nSi Si = 1, . . . , M

∀di=1 : 1

|Gi |
∑

j∈Gi

(wT
t ϕ(x j ) + bt )) ≥ ỹi − εi − ξi ,

∀di=1 : 1

|Gi |
∑

j∈Gi

(wT
t ϕ(x j ) + bt )) ≤ ỹi + εi + ξ∗

i (14)

In Eq. (14), ξ
si
j , ξi and ξ∗

i are slack variables; the first constraint guarantees that each
source domain is classified as accurately as possible; the second and three constraints control
estimating class probability of Gi in target domain to approximate pi . εi is the estimated
minimum precision of ỹi that satisfies the following function:

pi − ε ≤ 1

1 + exp(−ỹi )
≤ pi + ε (15)

According to [22], εi is set to be εi = τ
pi (1−pi )

, pi is the group probability P(Y = 1|Gk),
ε is a very small positive constant.

3.3 Theorems Related to the Objective Function

Theorem 1 The dual problem of Eq. (14) is a QP problem as shown in Eq. (16).

min
β

1

2
βT K̃β + ẽT β

s.t . fT β = 0

β = [αs1 , αs2 , . . . , αsM , α, α∗]T,

0 ≤ β ≤

⎡

⎢
⎢
⎣Cs1 , . . . ,Cs1

︸ ︷︷ ︸
nS1

, . . . ,CsM , . . . ,CsM
︸ ︷︷ ︸

nSM

,Ct , . . . ,Ct
︸ ︷︷ ︸

d

,Ct , . . . ,Ct
︸ ︷︷ ︸

d

⎤

⎥
⎥
⎦ ,

fT =
⎡

⎢
⎣yS11 , . . . , yS1nS1

, . . . , ySM1 , . . . , ySMnSM
, 1, . . . , 1
︸ ︷︷ ︸

d

,−1, . . . ,−1
︸ ︷︷ ︸

d

⎤

⎥
⎦ ,
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ẽ =

⎡

⎢
⎢
⎣0, . . . , 0

︸ ︷︷ ︸
nS1

, . . . , 0, . . . , 0
︸ ︷︷ ︸

nSM

, ε − ỹ, ε + ỹ

⎤

⎥
⎥
⎦

K̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M+λ
1+2λM Ks1 ,s1 + λ

M , . . . , M+λ
1+2λM Ks1 ,sM + λ

M , λ
1+2λM Ks1 ,t ,− λ

1+2λM Ks1 ,t
. . .
M+λ

1+2λM KsM ,s1 + λ
M , . . . , M+λ

1+2λM KsM ,sM + λ
M , λ

1+2λM KsM ,t ,− λ
1+2λM KsM ,t

λ
1+2λM KT

s1,t , . . . ,
λ

1+2λM KT
sM ,t ,

M+λ
1+2λM Kt,t − λ

1+2λM Kt ,t

− λ
1+2λM KT

s1,t , . . . ,− λ
1+2λM KT

sM ,t ,− M+λ
1+2λM Kt,t ,

M+λ
1+2λM Kt,t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(
∑

i∈M
nSi +2d

)

×
(

∑

i∈M
nSi +2d

)

Ksi ,si = (ySij ySiq k(x Sij x Siq )) j,q=1,2,...,nSi

Ksi ,t =
(

ỹSij
|Gk |

∑

q∈Gk
k(x j , xq )

)

j=1,..,nSi ,q=1,...,d

,

Kt,t =
(

1

|Gi ||G j |
∑

i ′∈Gi

∑

j ′=G j
k(xi ′ , x j ′ )

)

i, j=1,...,d
. (16)

The proof of Theorem 1 can be seen in “Appendix 1”.

Theorem 2 The quadratic form of the optimization problem of Eq. (16) is a standard convex
quadratic programming problem.

The proof of Theorem 1 can be seen in “Appendix 2”.
It is clear from the above results that the optimization problem in Eq. (16) for training can

be transformed into a convex QP problem and can be directly solved by the traditional SVM
solutions. Simultaneously, Eq. (16) is a convex quadratic programming problem, the KKT
condition is also a sufficient condition, and thus the obtained solution is the optimal solution.

According to the results obtained by Eq. (16), the results of the optimal solution are as
follows:

w∗
t = λM

1 + 2λM

M∑

i=1

nSi∑

j=1

α̃
si
j γ Si ySij ϕ(x Sij )

+ M + λ

1 + 2λM

M∑

j=1
nS j +d

∑

i=1+
M∑

j=1
nS j

α̃i − α̃∗
i

|Gi |
∑

j∈Gi

ϕ(x j ) (17)

b∗
t = yi − λM

1 + 2λM

M∑

i ′=1

γ Si ′
nSi∑

j=1

α̃
s j
j y j

|Gi |
∑

q∈Gi

k(x j , xq)

− λ + M

1 + 2λM

M∑

i ′=1

γ Si ′

∑

l∈M
nSl +d
∑

j=1+ ∑

l∈M
nSl

α̃ j − α̃∗
j

|G j ||Gi |
∑

j ′∈G j

∑

q∈Gi

k(x j ′ , xq) (18)

Finally, the decision function of MultiSTLP is expressed as follows:

f (x) = wtϕ(x) + bt (19)

As we can see from Eqs. (17) and (18), the results contain both information of M
source and target domains: such as w∗

t ,
λM

1+2λM

∑M
i=1

∑nSi
j=1 α̃

si
j γ Si ySij ϕ(x Sij ) is the knowl-
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Table 2 MultiSTLP algorithm training

Steps of MultiSTLP Algorithm

Input: Labeled source domains DS = {DSi = (x
Si
j , y

Si
j )

nsi
j=1, i = 1, . . . , M},

the number of sample in DSi is nSi .

An unlabeled training dataset DT = (xi )i=1,..,d in the target domain,

the group probability is {(Gk , pk )}dk=1.

Output: f (x) = wT
t φ(x) + bt

Step1 Compute the output of Inverse Calibration in the target domain by using

Eq. (3);

Step2 Calculate the representative data set and corresponding weight vector

according to [10];

Step3 Compute Eq. (8) to obtain weight vector of samples in each source domain;

Step4 Compute Eq. (9) to obtain weighting sample set of each source domain;

Step5 Compute Eq. (11) to get the weight vector of each source domain

γ S=[γ S1 , γ S2 , . . . , γ SM ];
Step6 Compute Lagrange multiplierβ by solving Eq. (16) with a QP solver;

Step7 Obtain the optimal value of wt by computing Eq. (17);

Step8 Compute Eq. (18) to get the optimal value of bt ;

Step9 Output the decision function in Eq. (19).

edge that is learned from source domains, otherwise the knowledge from target domain is

M+λ
1+2λM

∑
∑M

j=1 nS j +d

i=1+∑M
j=1 nS j

α̃i−α̃∗
i|Gi |

∑

j∈Gi

ϕ(x j ).

3.4 TrainingMultiSTLP

According to Sects. 3.1–3.3, the training process of MultiSTLP is now summarized and
described in Table 2.

4 Experimental Results

In this section, for the purpose of testing the generalization performance of MultiSTLP algo-
rithm, we compare MultiSTLP with the benchmark algorithms on four real-world datasets
20-Newsgroups, TRECVID video detection, sentiment analysis, and Email spam. In the
experiments, without loss of generality, we only consider the binary classification problem.

4.1 Experimental Environment and Evaluation Criteria

For the fairness of experiments, a 5-fold cross-validation strategy is selected, and we repeat
the strategy twice as the final comparison results. In the experiments, wewill run 10 times, the
average value of classification accuracy, recall, precision, training time with their standard
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deviations are recorded. The representation of classification accuracy is as follows:

Accuracy = |{x |xt ∈ Dt ∩ f (xi ) = yt }|
|{x |xt ∈ Dt }|

Dt represents datasets in the target domain, yt is true tag category, f (xt ) is the result of
classifying xt using the learned classifier.

The recall is expressed as follows:

Recall = TP

TP + FN

The precision is:

Pr ecision = TP

TP + FP

TP represents the number of positive class samples that are accurately classified as positive
classes by the classifier; FP is the number of negative class samples that are incorrectly
classified as positive classes; and FN is the number that indicates that the positive class
samples are incorrectly classified as negative classes.

For each algorithm, a Gaussian kernel function is selected in the form k(xi , x j ) =
exp(−||xi − x j ||)/2σ 2. The parameters Ct , Cs and λ of the proposed MultiSTLP are deter-
mined by searching the grid {10−410−310−2, 10−1, 10, 101, 102, 103, 104}. For baseline
algorithms, the default parameter settings in their literatures are adopted in our experiments.
The hardware setting of all experiments are as follows: Intel Core (TM), 3.6 GHz, 8 GB,
Windows 10 operating system.

The following state-of-the-art baseline algorithms are selected as the comparison algo-
rithms for MultiSTLP.

(1) TrGNB [25] integrates the transfer learning and group probability information into naive
Bayesian framework, the knowledge transfer is completed in the process of solving
the naive Bayes by using the maximum posterior probability method. Compared with
TrGNB, the advantages of our model are as follows: the marginal and conditional prob-
ability between source and target domains are considered; the knowledge in more than
one source domains is transferred.

(2) IC-SVM [22] is based on the framework of traditional SVM classifier, combined with
Inverse Calibration technology (IC) to construct an optimization function of classifier
for class labels, which have no the ability of privacy protection and transfer knowledge
compared with MultiSTLP.

(3) ARTL [17] learns the adaptive classifier by simultaneously optimizing the structural risk
function, the joint distribution matching between domains and the manifold consistency
behind the marginal distribution. The differences from the proposed method is that only
one source domain can be used.

(4) STL-SVM [10] comparedwith the proposedmethod, which have no the ability of privacy
protection and transfer knowledge of multi-source.

(5) TSVM-GP [26] integrates transfer term and group probability information into a support
vector machine (SVM) to improve the classification accuracy. This method considers
only a single source domain and marginal probability compared to the proposed method.

(6) SVM [35] is traditional support vector model, which has no ability to learn across
domains.
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Table 3 The statistics of 20-Newsgroups

Domains Comments Training Testing Positive (%) Feature

Books (B) 6465 2000 4465 50 30,000

DVDs (D) 5586 2000 3586 50 30,000

Electronics (E) 7681 2000 5681 50 30,000

Kitchen (K) 7945 2000 5945 50 30,000

4.2 Datasets

20-Newsgroups [8], TRECVID 2005 [24], Sentiment analysis [20], and Email spam [21]
are commonly used in transfer learning applications, so all experiments in this paper are
performed on these datasets.

(1) 20-Newsgroups

The 20-Newsgroups dataset are divided into 4 top categories: comp, rec, sci and talk, which
contains about 20,000 documents, and each top category can also be divided into four sub-
categories with detailed information as shown in Table 3. According to the construction of
task group in [8, 17], two top categories are randomly selected from top categories, one of
which is positive class and the other is negative class. Each task group is specifically: comp
vs rec, comp vs sci, comp vs talk, rec vs sci, rec vs talk, and sci vs talk.

(2) TRECVID 2005

TRCVID 2005 contains approximately 86h of video programs and consists of 74,523 video
shots. Each shot is represented by a video frame as a keyframe, and each keyframe is
depicted by a 273-dimensional feature vector. All shots are manually labeled with 39 seman-
tic categories. These semantics cover a variety of types, including outdoor scenes, indoor
scenes, news types, and generally common objects. TRCVID video are from CNN_ENG,
NBC_ENG, MSNBC_ENG, CCTV_CHN, NTDTV_CHN and LBC_ARB 6 channels, 13
news programs. Each channel represents a domain, except LBC containing 3 news programs,
the other channels contain 2 news programs. The source domains datasets are selected from
3 English channels and 2 Chinese channels, and the target domain dataset is selected from
the Arabic dataset.

(3) Sentiment analysis

The sentiment analysis dataset contains four different comments of Amazon products: books,
DVDs, electronics, and kitchen, which represent four domains Books (B), DVDs (D), Elec-
tronics (E), and Kitchen (K ). Each comment contains product name, comment title, date,
location, and comment content. We will evaluate the product with a rating of 3 stars (0–5
stars) or more as a positive example, a product with a rating of less 3 stars as a negative
example, and discard if a fuzzy evaluation is found. In the every domain, there are 2000
labeled instances, and about 4000 unlabeled instances, where the number of positive and
negative instances is substantially the same. The dataset details are shown in Table 4.

(4) Email spam Email spam dataset was released by ECML/PKDD 2006,see Table 5 for
details. It contains a set of 4000 publicly available labeled emails (U4) as well as three
email sets (each has 2500 emails) annotated by three different users (U1,U2 and U3).
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Table 4 The statistics of sentiment analysis dataset

Domains Comments Training Testing Positive (%) Feature

Books (B) 6465 2000 4465 50 30,000

DVDs (D) 5586 2000 3586 50 30,000

Electronics (E) 7681 2000 5681 50 30,000

Kitchen (K) 7945 2000 5945 50 30,000

Table 5 The statistics of spam
dataset

Domain Number Positive Negative Feature

U1 4000 2000 2000 206,908

U2 2500 1250 1250 206,908

U3 2500 1250 1250 206,908

U4 2500 1250 1250 206,908

Table 6 Description of source and target domains on TRECVID dataset

Domain Source domains Target domain

Channel CNN_ENG MSNBS_ENG NBC_ENG CCTV_CHN NTDTV_CHN LBC_ARB

# Keyframes 11,025 8905 9322 10,896 6481 15,272

Therefore, the data distributions of the three user-annotated email sets and the publicly
available email set are different from each other, in which one half of the emails are non-
spam and the other half are spam. Since the spam and non-spam in four email subsets
have been differentiated, their distributions are relevant but different.

4.3 Analysis of Experimental Results

In this section, the experimental results of MultiSTLP and six benchmark algorithms on real
datasets are analyzed and compared.

TRECVID 2005 dataset We utilize two Chinese channels CCTV_CHN(CC), three
English channels CNN_ENG(CN ), NBC_ENG(NB), MSNBC_ENG(MS) and NTDTV
_CHN(NT ) as the source domains, and LBC_ARB(L) as the target domain. The details are
shown in Table 6. The four transfer learning methods in the benchmarks can only use one
source domain, so in the experiment, one of these source domains is randomly selected as
the training dataset, and the MultiSTLP algorithm uses the datasets in all source domains
simultaneously.

20-Newsgroups dataset: in the experiment, we constructed 3 source domains and one
target domain. The details are shown in Table 7. For the four single source domain transfer
learning algorithms TrGNB, ARTL, STL-SVM and TSVM-GP randomly select one of the
source domains for training, and MultiSTLP can simultaneously use the datasets of the three
source domains for training.

123



Multi-Source Selection Transfer Learning with Privacy-Preserving 4937

Ta
bl
e
7

D
es
cr
ip
tio

n
of

so
ur
ce

an
d
ta
rg
et
do
m
ai
ns

on
20
-N

ew
sg
ro
up
s
da
ta
se
t

D
om

ai
n

So
ur
ce

do
m
ai
ns

Ta
rg
et
do
m
ai
n

re
c
vs

sc
i(
r
vs

s)
re
c.
au
to
s
&

sc
i.c
ry
pt

re
c.
sp
or
t.h

oc
ke
y
&

sc
i.s
pa
ce

re
c.
m
ot
or
cy
cl
es

&
sc
i.e
le
ct
ro
ni
cs

re
c.
sp
or
t.b

as
eb
al
l&

sc
i.m

ed

co
m

vs
sc
i(
c
vs

s)
co
m
p.
gr
ap
hi
cs

&
re
c.
au
to
s

co
m
p.
sy
s.
m
ac
.h
ar
dw

ar
e
&

re
c.
sp
or
t.h

oc
ke
y

co
m
p.
os
.m

s-
w
in
do
w
s.
m
is
c
&

re
c.
m
ot
or
cy
cl
es

co
m
p.
sy
s.
ib
m
.p
c.
ha
rd
w
ar
e
&

re
c.
sp
or
t.b

as
eb
al
l

sc
iv

s
co
m
(s
vs

c)
sc
i.c
ry
pt

&
co
m
p.
gr
ap
hi
cs

sc
i.s
pa
ce

&
co
m
p.
sy
s.
m
ac
.h
ar
dw

ar
e

sc
i.e
le
ct
ro
ni
cs

&
co
m
p.
os
.m

s-
w
in
do
w
s.
m
is
c

sc
i.m

ed
&

co
m
p.
sy
s.
ib
m
.p
c.
ha
rd
w
ar
e

123



4938 W. Wu

Table 8 Description of source and target domains on Sentiment analysis datase

Domain Source domains Target domain

Sentiment dataset Books DVDs Electronics (E) Kitchen (K)

# Sentiment 6465 5586 7681 7945

Table 9 Description of source
and target domains on email
spam dataset

Domain Source domains Target domain

Emails dataset U1 U2 U3 U4

#emails 2500 2500 2500 2500

Sentiment analysis dataset: in this dataset, we use Books, DVDs, and Electronics to con-
struct three source domains, and Kitchen as the target domain. The details of source and
target domains are shown in Table 8.

Email Spam dataset: for the MultiSTLP algorithm, three personal email datasets are used
as three source domains, and the public email dataset is used as target domain; the other four
single source domain transfer learning algorithms randomly select one of the three personal
email. The detailed information is shown in Table 9.

Tables 10, 11, 12 and 13 show the average classification accuracies, average recall and
average precision with their standard deviations of all the benchmarking classifiers on dif-
ferent transfer learning tasks. From these results, we can draw the following conclusions:

(1) In termsof the average classification accuracy, it canbe seen fromTable 10 that the transfer
learning algorithms TrGNB, ARTL, STL-SVM, TSVM-GP and MultiSTLP have better
classification results than the non-transfer learning algorithms SVM and IC-SVM. This
is because only a small amount of data set with probability information in target domain
is not enough to train a reliable learning model, and the transfer learning algorithms can
use the knowledge in a large amount of labeled data in source domain to assist target
domain to create classification task, so the trained model is better.

In addition, in the transfer learning algorithms TrGNB, ARTL, STL-SVM and TSVM-GP
only transfer the knowledge in one source domain, and only consider themarginal probability
difference between data between domains, without considering the conditional probability
difference. On the one hand, this resulted in insufficient knowledge to be transferred. On
the other hand, the large difference between the transferred knowledge and the data in target
domain resulted in a negative transfer phenomenon, which harmed the learning effect.

The MultiSTLP algorithm proposed in this paper makes up for the above problems. It
not only transfers the knowledge of multiple source domain, but also adapts the marginal
probability and conditional probability, and the classification effect is also better. Therefore,
the average accuracy of the MultiSTLP algorithm proposed in this article on the four data
sets 20-Newsgroups, TRECVID 2005, sentiment analysis and email spam is better than the
comparison algorithms, which are 92.45%, 91.16%, 89.25% and 95.05%, respectively.

(2) The average recall in Table 11 show that MultiSTLP has certain advantages compared
with non-transfer learning algorithms (SVM, IC-SVM) and single source transfer learn-
ing algorithms (TrGNB, ARTL, STL-SVMand TSVM-GP) on all transfer learning tasks.

(3) The average precision in Table 12, it is can be seen that MultiSTLP is better than
benchmark algorithms. On the four data sets 20-Newsgroups, TRECVID 2005, senti-
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ment analysis and email spam, the average precisions are 84.15%, 84.34%, 73.65% and
92.97%, respectively.

(4) In terms of training time shown inTable 13, it can also be seen thatMultiSTLPhas obvious
advantage over transfer learning algorithmsTrGNB,ARTL, STL-SVMandTSVM-GP in
training time, because of selecting representative data set from source domain. IC-SVM
needs less training time than other six classifiers in our experiments. This is because its
training data only contains the group probabilities constructed from the 5% randomly
selected unlabeled target data which is much less than the size of the training data for
the other classifiers. Even though, SVM is effective in training time, its classification
accuracy is not prominent on transfer learning problems.

In summary, through the comparative analysis of experimental results, we can see that the
algorithm proposed in this paper is effective and efficient. It also shows the rationality and
effectiveness of the proposed algorithm.

Finally, to test the differences betweenMultiSTLP and benchmark algorithmswith similar
classification results, the Wilcoxon signed rank test is applied to these methods. According
to the contents of Table 10, the average classification accuracy of all algorithms is shown.

In Table 10, we can see the average classification accuracy of all algorithms on real
datasets. The results of the Wilcoxon test on real-world datasets 20-Newsgroups, TRECVID
2005, Sentiment analysis and Email spam are discussed below.

20-Newsgroups: the classification accuracy of MultiSTLP is only 0.97% higher than
TrGNB; therefore, when using MultiSTLP and TrGNB to classify three cross-domain tasks,
each task is repeated 10 times, the values of W+ and W− are +143 and −24, respectively.
For the bilateral test of α = 0.05, when n = 30, by querying the distribution table of the
Wilcoxon signed rank test, T 0.025 = 137. Because of W+ > T 0.025, H0 was accepted: there
was no significant difference in the classification results between the two methods.

TRECVID2005: the classification accuracyofMultiSTLP increases 0.89%bycomparison
with TSVM-GP; therefore, when usingMultiSTLP andTSVM-GP to classify 5 cross-domain
tasks, each task is repeated 10 times, the values of W+ and W− are +576 and −89, respec-
tively. For the bilateral test of α = 0.05, when n = 50, by querying the distribution table of
the Wilcoxon signed rank test, T 0.025 = 434. Because of W+ > T 0.025, H0 was accepted:
there was no significant difference in the classification results between the two methods.

Sentiment analysis The classification accuracy of MultiSTLP is only 0.95% higher than
STL-SVM; therefore, when using MultiSTLP and STL-SVM to classify three cross-domain
tasks, each task is repeated 10 times, the values of W+ and W− are +169 and −29, respec-
tively. For the bilateral test of α = 0.05, when n = 30, by querying the distribution table of
the Wilcoxon signed rank test, T 0.025 = 137. Because of W+ > T 0.025, H0 was accepted:
there was no significant difference in the classification results between the two methods.

Email spam: compared with TrGNB and ARTL, the classification accuracy of MultiSTLP
increases 0.83 and 0.36%. When MultiSTLP, TrGNB and ARTL are used to classify three
cross-domain tasks, each task was repeated 10 times. For MultiSTLP and TrGNB, the values
of W+ and W− are +159 and −47, respectively. For the bilateral test of α = 0.05, when
n = 30, by querying the distribution table of the Wilcoxon signed rank test, T 0.025 = 137.
Because of W+ > T 0.025, H0 was accepted: there was no significant difference in the
classification results between the two methods. Similarly, for MultiSTLP and TrGNB, the
values ofW+ andW− are 182 and−26,W+ > T 0.025, H0 is accepted: there is no significant
difference in the classification results of the two methods.
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Fig. 4 Sensitivity of parameter Ct for MultiSTLP

4.4 Parameter Sensitivity Analysis

In TrGNB, ARTL and TSVM-GP, they performed sensitivity analysis of parameters with
large influence on performance of algorithm: TrGNB analyzed the difference parameter
between source and target domains; MMD regularization parameter and manifold regular-
ization parameter were analyzed to determine the influence of parameters on classification
performance for ARTL; TSVM-GP analyzed the regularization coefficient of source domain,
the regularization coefficient of source of target domains, and the trade-off term. Like them,
we analyze the sensitivity of three parameters: regularization coefficient of target domain
Ct , regularization coefficient of source domain Ct and trade-off coefficient λ in objective
function of MultiSTLP, which illustrates their influence on the classification performance
in this section. For each parameter, we fix the other two parameters at the optimal values
determined by cross-validation, and then observe the effect of parameter with different values
on the classification result. The experimental results are shown in Figs. 4, 5 and 6.

From the results of Figs. 4, 5 and 6, the following conclusions can be drawn:

(1) From Figs. 4 and 5, MultiSTLP is considerably sensitive to regularization parameters
Csand Ct with a wide range. This denotes that it is critical to determine the value of
parameter by some effective strategies.

(2) In Fig. 6, we can see that shows that MultiSTLP is sensitive to λ. When λ approaches 1,
MultiSTLPachieves the best classification performance.Asλ is too small, the distribution
differencebetween source and target domains is ignored, so the classificationperformance
will be poor. When it is too large, the distribution difference between source and target
domains will theoretically be larger, but this will also reduce the knowledge of source
domains that can be transferred to target domain, and the classification performance is
also poor.
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Fig. 5 Sensitivity of parameter Cs for MultiSTLP

Fig. 6 Sensitivity of parameter λ for MultiSTLP

5 Conclusion

Aiming at the current hot data privacy protection problem in machine learning, we propose
a MultiSTLP by combining group probability information with transfer learning. Multi-
STLP first uses AESVM to select representative dataset in each source domain; secondly,
based on minimizing the marginal probability difference calculate the weight of samples of
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representative dataset; then, according to conditional probability difference calculates the
weight of source domains; finally, the group probability knowledge in the target domain and
the weighted knowledge of representative dataset from multiple source domains are com-
bined into the support vector machine structure risk minimization framework, the objective
function of MultiSTLP is proposed and proved theoretically. MultiSTLP not only improves
training efficiency and result, but also protects data privacy. The effectiveness of the classi-
fier obtained by trainingMultiSTLP is demonstrated on experiments utilizing four real-world
datasets 20-Newsgroups, TRECVID 2005, Sentiment analysis and Email spam. Although the
experimental results show that the MultiSTLP algorithm has advantages over the benchmark
algorithms, it is still a problem worthy of further study in terms of training efficiency and
domain similarity.

Acknowledgements This work was supported by Information Technology Research Center,Beijing Institute
of Remote Sensing Equipment,the Second Academy of China Aerospace Science Industry Corp.

Appendix 1

Proof of Theorem 1 By using the Lagrangian optimization theorem, we can obtain the fol-
lowing Lagrangian function for Eq. (1.1):

L(wt , ws, bt , bs, ξ, ξ∗, ξ s, α, α∗, αs, r , r∗, rs) = 1

2
||wt ||2+ 1

2M

M∑

i=1

||wsi ||2

+ Ct
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∑
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∑

i=
M∑
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−
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⎠ (1.1)
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where αsi = (α
si
1 , α

si
2 , . . . , α

si
nsi

), α = (α1, α2, . . . , αd), α∗ = (α∗
1 , α

∗
2 , . . . , α

∗
d), r

si =
(rsi1 , rsi2 , . . . , rsinsi ), r = (r1, r2, . . . , rd) and r∗ = (r∗

1 , r∗
2 , . . . , r∗

d ) are Lagrange multipliers.
Then the following equations can be considered as the necessary conditions of the optimal
solution:

∂L

∂ξ
si
j

= 0 ⇒
M∑

i=1

nSi∑

j=1

(rsij + α
nSi
j ) = Csi (1.2)

∂L

∂ξ
(∗)
j

= 0 ⇒

M∑

j=1
n j+d

∑

i=
M∑

j=1
n j+1

(α
(∗)
i + r (∗)

i ) = Ct (1.3)

∂L

∂wsi
= 0 ⇒ 1

M

M∑

i=1

wsi − λ

M

M∑

i=1

(wt − γ Siwsi ) −
M∑

i=1

nSi∑

j=1

α
si
j y

Si
j ϕ(x Sij ) = 0 (1.4)

∂L

∂wt
= 0 ⇒ wt+ λ

M

M∑

i=1

(wt − γ Siwsi ) −

M∑

j=1
n j+d

∑

i=
M∑

j=1
n j+1

αi
1

|Gi |
∑

j∈Gi

ϕ(x j )

+

M∑

j=1
n j+d

∑

i=
M∑

j=1
n j+1

α∗
i

1

|Gi |
∑

j∈Gi

ϕ(x j ) = 0 (1.5)

∂L

∂bsi
= 0 ⇒

M∑

i=1

nSi∑

j=1

α
si
j y

Si
j = 0 (1.6)

∂L

∂bt
= 0 ⇒

M∑

j=1
n j+d

∑

i=
M∑

j=1
n j+1

(αi − α∗
i ) = 0 (1.7)

Substituting Eqs. (1.2)–(1.7) into Eq. (1.1) by simplification, and we can obtain the dual
of Eq. (1.8).

min
β

1

2
βT K̃β + ẽT β

s.t . fT β = 0

β = [αs1 , αs2 , . . . , αsM , α, α∗]T,

0 ≤ β ≤

⎡

⎢
⎢
⎣Cs1 , . . . ,Cs1

︸ ︷︷ ︸
nS1

, . . . ,CsM , . . . ,CsM
︸ ︷︷ ︸

nSM

,Ct , . . . ,Ct
︸ ︷︷ ︸

d

,Ct , . . . ,Ct
︸ ︷︷ ︸

d

⎤

⎥
⎥
⎦ ,
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fT =
⎡

⎢
⎣yS11 , . . . , yS1nS1

, . . . , ySM1 , . . . , ySMnSM
, 1, . . . , 1
︸ ︷︷ ︸

d

,−1, . . . ,−1
︸ ︷︷ ︸

d

⎤

⎥
⎦ ,

ẽ =

⎡

⎢
⎢
⎣0, . . . , 0

︸ ︷︷ ︸
nS1

, . . . , 0, . . . , 0
︸ ︷︷ ︸

nSM

, ε − ỹ, ε + ỹ

⎤

⎥
⎥
⎦

K̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M+λ
1+2λM Ks1 ,s1 + λ

M , . . . , M+λ
1+2λM Ks1 ,sM + λ

M , λ
1+2λM Ks1 ,t ,− λ

1+2λM Ks1 ,t
. . .
M+λ

1+2λM KsM ,s1 + λ
M , . . . , M+λ

1+2λM KsM ,sM + λ
M , λ

1+2λM KsM ,t ,− λ
1+2λM KsM ,t

λ
1+2λM KT

s1,t , . . . ,
λ

1+2λM KT
sM ,t ,

M+λ
1+2λM Kt,t − λ

1+2λM Kt ,t

− λ
1+2λM KT

s1,t , . . . ,− λ
1+2λM KT

sM ,t ,− M+λ
1+2λM Kt,t ,

M+λ
1+2λM Kt,t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(
∑

i∈M
nSi +2d

)

×
(

∑

i∈M
nSi +2d

)

Ksi ,si = (ySij ySiq k(x Sij x Siq )) j,q=1,2,...,nSi

Ksi ,t =
(

ỹSij
|Gk |

∑

q∈Gk
k(x j , xq )

)

j=1,..,nSi ,q=1,...,d

,

Kt,t =
(

1

|Gi ||G j |
∑

i ′∈Gi

∑

j ′=G j
k(xi ′ , x j ′ )

)

i, j=1,...,d
. (1.8)

�


Appendix 2

Proof of Theorem 2 The matrix K̃ can be decomposed into K̃ = K̃1+K̃2+K̃3+K̃4. Among
them, K̃1, K̃2, K̃3 and K̃4 are as follows.

K̃1 = λ

1+2λM

⎡

⎢
⎢
⎢
⎢
⎣

Ks1 ,s1 , . . . ,Ks1 ,sM ,Ks1 ,t ,−Ks1 ,t
. . .

KsM ,s1 , . . . ,KsM ,sM ,KsM ,t ,−KsM ,t
KT

s1,t , . . . ,K
T
sM ,t ,Kt,t ,−Kt,t

−KT
s1,t , . . . ,−KT

sM ,t ,−Kt,t ,Kt,t

⎤

⎥
⎥
⎥
⎥
⎦

(
∑

i∈M
nSi +2d

)

×
(

∑

i∈M
nSi +2d

)

K̃2 = M

1+2λM

⎡

⎢
⎢
⎢
⎢
⎣

Ks1 ,s1 , . . . ,Ks1 ,sM , 0, 0
. . .

KsM ,s1 , . . . ,KsM ,sM , 0, 0
0, . . . , 0, 0, 0
0, . . . , 0, 0, 0

⎤

⎥
⎥
⎥
⎥
⎦

(
∑

i∈M
nSi +2d

)

×
(

∑

i∈M
nSi +2d

)

K̃3 = λ

M

⎡

⎢
⎢
⎢
⎢
⎣

1, . . . , 1, 0, 0
. . .

1, . . . , 1, 0, 0
0, . . . , 0, 0, 0
0, . . . , 0, 0, 0

⎤

⎥
⎥
⎥
⎥
⎦

(
∑

i∈M
nSi +2d

)

×
(

∑

i∈M
nSi +2d

)
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K̃4 = M

1 + 2λM

⎡

⎢
⎢
⎣

0, . . . , 0, 0, 0
. . .

0, . . . ,Kt,t ,−Kt,t

0, . . . ,−Kt,t ,Kt,t

⎤

⎥
⎥
⎦

(
∑

i∈M
nSi +2d

)

×
(

∑

i∈M
nSi +2d

)

For K̃, setting

Q1 =
√

M

1 + 2λM

(

yS11 x S11 , . . . , yS1ns1
x S1ns1

, . . . , ySM1 x SM1 , . . . , ySMnsM
x SMnsM ,

1

|G1|
∑

i∈G1

xi , . . . ,
1

|Gd |
∑

i∈Gd

xi ,

− 1

|G1|
∑

i∈G1

xi , . . . ,− 1

|Gd |
∑

i∈Gd

xi

⎞

⎠ ,

it is symmetric and positive semidefinite matrix, so K̃1 = QT
1 Q1 is symmetric and positive

semidefinite matrix, too. Like this, K̃2, K̃3 and K̃4 are symmetric and positive semidefinite
matrix, thus K̃ is symmetric and positive semidefinitematrix. Therefore, Eq. (16) is a standard
convex quadratic programming problem. Theorem 2 is hold. �
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