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Photoremovable protective groups (PPGs) and related ‘‘caged” compounds have been recognized as a
powerful tool in an arsenal of life science methods. The present review is focused on recent advances
in design of ‘‘caged” compounds which function in red or near-infrared region. The naive comparison
of photon energy with that of organic bond leads to the illusion that long-wavelength activation is pos-
sible only for weak chemical bonds like N-N. However, there are different means to overcome this thresh-
old and shift the uncaging functionality into red or near-infrared regions for general organic bonds. We
overview these strategies, including the novel photochemical and photophysical mechanisms used in
newly developed PPGs, singlet-oxygen-mediated photolysis, and two-photon absorption. Recent
advances in science places the infrared-sensitive PPGs to the same usability level as traditional ones,
facilitating in vivo application of caged compounds.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Light is widely used in biology and medicine for research, diag-
nostics and therapy [1]. Different approaches are known which use
light for the manipulation of biological systems, including optoge-
netics, photopharmacology [2], light-sensitive liposomes [3] etc.
Photoremovable protective groups (PPGs) and related ‘‘caged”
compounds has been recognized as a powerful tool in an arsenal
of life science methods since photolabile cAMP [4] and ATP [5] ana-
logs were introduced. Switching on molecule’s bioactivity by light
is an attractive idea in several respects. Firstly, it allows one to acti-
vate the molecule after the diffusion step and study the unaltered
reaction kinetics. Secondly, the spatial resolution of such activation
is limited solely by the optical system. It results in new possibili-
ties, for instance, intercellular signaling or impulse propagation
can be easily studied. Finally, light can pass through cellular mem-
branes and organelles and thus enables the intracellular control of
chemical processes. However, traditionally used PPGs based on o-
nitrobenzyl, nitroanilide, phenacyl, benzoin, coumarin, etc. moi-
eties [6] are sensitive to UV radition (300–370 nm), which is dam-
aging to living cells. In contrast, near-infrared radiation
(approximately 700–1100 nm) is not cytotoxic and penetrates
much deeper into living tissues. This ability is used in many ther-
anostic applications. In vivo uncaging opens a new way in therapy,
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perhaps complementary to photopharmacology and photodynamic
therapy [7].

In the present review, we highlight recent advances in design of
‘‘caged” compounds sensitive to red and infrared light. ‘‘Caged”
compounds are defined as relatively small molecules that can
release substance of interest under the action of light. Several
approaches to carry this functionality to long-wavelength region
are known. However, this problem has no simple solution because
typical organic bond dissociation energy is about 350–400 kJ/mol,
which corresponds to a 340 nm UV light. Unfortunately, the energy
of infrared photon is at least twice less. Therefore, one needs to
either use the energy of multiple photons or somehow weaken
the bond. Below, we describe several strategies to solve the prob-
lem. First section is devoted to a near-infrared PPGs which work
through a direct single-photon photoprocess. Second section
describes compounds with photorelease step that involves a reac-
tion with singlet oxygen. In the third section, we give a brief over-
view of two-photon absorbing PPGs. Last section concludes the
paper and gives references for further reading on connected topics,
including photon upconversion-based photorelease technique.
2. Single-photon PPGs

The ‘‘uncaging” reaction implies the dissociation of covalent
bond between PPG and leaving group (LG) and therefore requires
energy. For a rough estimate the average bond energy can be used
to calculate the photon wavelength needed for the dissociation. For
instance, C-C and C-O bonds correspond to 320–350 nm light,
slightly weaker C-N bond – up to 395 nm. This simple considera-
tion shows why the majority of known PPGs works in the
near-UV spectral region. However, the process is far from simple
‘‘scission” and often proceeds through several stages which typi-
cally include intramolecular electron or hydrogen atom transfer,
rearrangements or cyclizations, and solvolysis.

Interesting example of weak chemical bond, still relevant
for biomedical applications, is N-NO. The average energy of
Fig. 1. Nitric oxide (NO) donors activated with long-wavelength light. a) NO-Rosa [10
uncaging wavelength is shown near each structure.
dissociation in this case corresponds to ~730 nm wavelength. The
nitric oxide produced upon dissociation is of high interest for bio-
logical studies [8], so much efforts were made to prepare pho-
totriggered NO-donors [9]. To achieve a cleavage of N-NO, a
chromophore with strong absorbance in near-infrared spectral
region needs to be attached to this group. For instance, in was
shown that the rhodamine moiety enables effective light absorp-
tion with electron transfer from N-NO to dye fragment which facil-
itates N-N bond dissociation. This is the basis of NO-Rosa (Fig. 1a)
[10] and related compounds [11] which release NO under illumina-
tion of 530–590 nm yellow-green light. Light-controlled rat aorta
vasolidation with NO-Rosa was demonstrated [10]. Besides, per-
spectives of such NO-donors for erectile dysfunction treatment
have been reported [12]. Rhodamine derivatives bearing N-NO
fragments attached to xanthene core such as N-nitrosorhodamine
6G (NOD550) (Fig. 1b) [13] also possess NO-releasing under green
light illumination. As NOD550 gives highly fluorescent dye upon
decomposition, it was used for monitoring mitochondrial dynam-
ics [14]. Another water-soluble rhodamine derivative NOD565
[15] showed antifungal activity and platelets activation inhibition
while irradiated by green light.

BODIPY core represents an attractive chromophore with strong
absorption in green region and easily tunable spectral properties.
NOBL-1 derivative was applied for vasodilatation [16] or rat penile
corpus cavernosum relaxation under blue light irradiation (470–
500 nm). An interesting feature of BODIPY-N-NO hybrid (Fig. 1c)
to generate singlet oxygen together with NO was reported [17].
This substance and its photodegradation product were not cyto-
toxic for normal and cancer cells, but the hybrid caused cancer cell
death under irradiation. Similar BODIPY-N-NO hybrid [18] has
close properties. It was noted that in all cases energy transfer from
dye fragment to N-NO proceeded through electron transfer from N-
NO to exited dye moiety.

The application of aza-BODIPY core (Fig. 1d, photoNOD-1 and
photoNOD-2) enabled NO release upon single-photon NIR irradia-
tion [19]. Both substances showed high stability toward biological
]; b) NOD550 [13]; c) NOBL-1 [16]; d) photoNOD-1 and photoNOD-2, [19]. The



Fig. 2. Analogs of vitamin B12 as ‘‘caging” groups [20,21].

Fig. 3. a) Benzoquinone-based photocage undergoes photocyclization and then thermal elimination of benzoic acid [23]; b) A ‘‘quinone trimethyl lock” PPG [24]; c) PPG based
on cis-alkenyl substituted quinones [25].
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red-ox systems, and showed low cytotoxicity and toxicity. Nitric
oxide donor photoNOD-1 possessed high activity to inhibit tumor
growth in mice under regular administration and NIR irradiation.

Another example of weaker bond recently used for ‘‘caging” is
carbon-cobalt connection in vitamin B12 analogs. The bond energy
is approximately 1.3–1.6 eV [22], corresponding to the wavelength
up to 950 nm. Although the vitamin B12 does not absorb light
above 550 nm, it was shown that various cyanine fluorophores
can be used as antennas to capture long wavelength light then
transfer energy to the ‘‘cage” and promote scission of the Co-C
bond at wavelengths up to 800 nm (Fig. 2; [20,21]). This principle
has been used for light-triggered anti-inflammatory drug release
with use of erythrocytes as carriers.

If the sole photon energy is not sufficient to bond breaking,
additional photochemical transformations are essential for unca-
ging [26]. For instance, benzoquinone-based photocage, first intro-
duced in 2006 [27], undergoes photocyclization at 458 nm and
then thermal elimination of LG. Recently, such type of compounds
was tuned to 626 nm activation by expanding the amine ring size
and rendering the C-H bond benzylic [23] (Fig. 3a). The ‘‘quinone
trimethyl lock” structures were described recently as general
design for long-wavelength photoremovable protecting groups
for alcohols and amines [24] (Fig. 3b). They also rely on photocy-
clization, and the detailed uncaging mechanism was exhaustively
described [28]. Analogous process takes place in cis-alkenyl substi-
tuted quinones (Fig. 3c) [25].

Blue-light activated versions of BODIPY-based PPGs for small
organic molecules, e.g. histamine, were reported (Fig. 4a) [29].
The uncaging process is based on photodissociation of B-O bond.
Several months later, another group reported a near-infrared
release of CO by styryl-substituted BODIPY meso-carboxylic acids
[30]. The reaction proceeds through intramolecular electron trans-
fer from CO2

� to heterocyclic core with further cyclization and CO
extrusion (Fig. 4b). meso-CH2X BODIPY derivatives were suggested



Fig. 4. BODIPY-based PPGs a) Group base on B-O bond and the uncaging mechanism; b) substituted BODIPY for CO photorelease; c) meso-CH2X BODIPY derivatives as near-
infrared caging groups; d) proposed scheme of photolysis [32].
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to be promising caging groups. Structure-function relationship for
such PPGs was systematically studied, and a strategy to obtain
near-infrared caged compounds was proposed and tested [31].

It was shown that extending of the conjugated system (for
instance, by additional styryl groups; Fig. 4c) allows one to shift
the absorption maximum to longer wavelength, up to 700 nm pre-
serving the uncaging capability. The question remains how far red
it can be shifted without significant loss of efficiency. It is remark-
able that uncaging launches by single-photon absorption and
quantum yield is comparable with traditionally used o-nitrobenzyl
groups.

The reason of low uncaging energy lies in the photochemistry of
such BODIPYs. Experimental results showed the enhancement of
uncaging quantum yield by the presence of a heavy atom and
reduced efficiency in presence of oxygen. It indicates that photo-
chemical reaction which lead to the dissociation of LG goes
through the triplet state [33]. The PPG-LG bond is cleaved by
heterolysis to yield the LG- and PPG residual as carbocation
(Fig. 4d). Importantly, the carbocation retains triplet character of
the whole molecule, and can be viewed as stable diradical in this
state [32]. Quantum mechanics calculations for the carbocation
in Fig. 3d show that triplet energy level of the carbocation residual
is only 1.63 eV, which is comparable to the infrared photon energy
at ~760 nm. The triplet energy level of the whole (neutral) mole-
cule is only slightly lower according to calculations (1.36 eV,
~910 nm) or even higher according to experimental estimations
[34].

The remarkably small gap might be explained by the conical
intersection between molecular triplet and the diradical energy
surfaces. It means that the triplet state of the whole caged mole-
cule can degrade to the dissociated state virtually free of energy.
In other words, the PPG-LG bond in this state is very weak. The
only requirement for the uncaging is to excite the molecule to
the triplet state, which can be done through the intersystem cross-
ing from the first singlet excited state. According to the quantum
mechanics calculations and fluorescence measurement for the
same compound, its energy level is 2.2–2.3 eV, which corresponds
to the photon wavelength of 560 nm. While it can be lowered by
extending conjugation system, it is still unclear where is the limit
of breaking the conical intersection nature of photodissociation.



Fig. 5. Singlet-oxygen mediated uncaging. a) Cyanine-based caged compound and the photorelease scheme [36]; b) Silicon phthalocyanines releasing phenolic compounds
used for tumor targeted treatment [42].
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Other molecular structures with similar properties may exist,
and low S0–S1 energy gap of the residual cation has been suggested
as a good predictor that conical intersection nature of photodisso-
ciation might take place [32]. Recently, coumarin-based PPG with
ability of intramolecular carbocation trapping was introduced [35].
3. Singlet oxygen-mediated uncaging

The strategy of so-called self-sensitization is employed in a
class of cyanine-based PPGs. It constitutes a formation of singlet
oxygen, which then oxidize the molecule and eventually leads to
the liberation of LG. Since the singlet oxygen is relatively long-
lived molecule, energy of several photons may be effectively stored
before the ‘‘oxidative attack”.

A disadvantage of this technique is that reactive oxygen species
could cause the undesired damage of surrounding tissues. On the
other hand, they are able to enhance the action of cytotoxic agents
as singlet oxygen is the main effector of photodynamic therapy.

The first example of such PPG was estblished by [36,37].
Efficient uncaging was reported under 690 nm light, which consists
of photooxidative and then hydrolytic steps (Fig. 5a). 4-
hydroxycyclofen bearing such caging group showed significant
cytotoxicity against breast cancer MCF-7 cells under irradiation.
Later this method was extended by two groups to uncage the aryl
amines by similar oxidation pathway [38,39]. Conjugation of cya-
nine dyes with antibodies and cytotoxic drugs provides unique
possibilities to tumor targeted drug release [40,41].

Silicon phthalocyanines with unsymmetrical axial substitution
(Fig. 5b) were found to release phenolic compounds under NIR irra-
diation in hypoxia conditions, whereas in oxygenated conditions
singlet oxygen was produced [42]. This property was used for
tumor targeted treatment.
4. Two-photon absorption PPGs

Two-photon (and multiphoton) techniques are powerful tools
in biomedicine, from microscopy to in vivo imaging and therapy.
They are based upon simultaneous absorption of two photons.
Unfortunately, the probability of this process is quite low. Suffi-
cient photon density is typically obtained using pulsed femtosec-
ond laser source, which limits the applicability to a scientific
research in specially equipped laboratories. On one hand, it enables
better spatial resolution because is effective only in small focal vol-
ume, where the density of photons is high enough. On the other
hand, specially designed molecules with significant two-photon
absorption cross section are needed. Below, we overview the PPGs
which can work in two-photon regime. It retains tissue-
penetrating advantages of infrared light activation, and the cumu-
lative energy of two photons is enough to cleave th PPG-LG bond.
There are excellent reviews on this topic (see e.g. [43,44]), so we
briefly designate the most widespread two-photon PPGs families
and focus on the most recent publications.

The most widespread o-nitrobenzyl groups have poor two-
photon absorption cross-section [45], although those with 3,4-
dimethoxy groups were used, for instance, to induce calcium
waves in astrocytes by uncaging of IP3 using 720 nm femtosecond
excitation [46]. Further advance was related to conjugation of
these groups with two-photon absorbing moieties [47]. The
absorbed energy is then transferred to the o-nitrobenzyl group to
induce uncaging. Perhaps the best examples of this strategy are



Fig. 6. Two-photon absorbing caged compounds a) Biphenyl-based PPGs [48]; b) PPG based on 1,2-dihydronaphthalene structure [49]; c) a two-photon absorbing antenna
with o-nitrobenzyl- and d) nitroindoline-caged acetic acid [54]; e) Structure of unsubstituted coumarin PPG; f) Structure of unsubstituted quinoline PPG.
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biphenyl-based PPGs [48] (Fig. 6a), groups based on 1,2-
dihydronaphthalene structure [49] (Fig. 6b) and caged calcium
chelators [50]. Similar group is incorporated into the newly
developed nitrodibenzofuran-based PPGs [51,52]. Same approach
was applied to other caging groups [53]. Fig. 6c shows a molecular
dyad described in [54], where the lower part of the molecule
serves as two-photon absorbing antenna, which excites usual
o-nitrobenzyl caging groups (upper part) via charge transfer,
inducing the release of acetic acid. Recently, compounds based
on bisstyrylthiophene (BIST) was developed for photorelease of
calcium and GABA [62,63].

Two-photon PPGs based on coumarin (Fig. 6d) and quinoline
(Fig. 6f) dyes are probably the most used. The structure-
efficiency relationship for aminoquinoline-based PPG was studied
in [55]. Coumarin photochemistry and the influence of different
substituents is the area of active research [35,56]. For instance,
coumarin-based cell-permeable caged phosphates were reported
that can be photolyzed by 800 nm two-photon photolysis. The
derivative of 7-diethylaminocoumarin DEAC450 was used for
‘‘caging” of glutamate (Fig. 6e; [57]). It was shown that two-
photon excitation at 900 nm at spine heads on pyramidal neurons
in acutely isolated brain slices generated postsynaptic responses.
Later the efficiency of this compound was improved using system-
atic approach, including calculations and experimental synthesis
[58]. It was shown that subtle tuning of polarization in the
ground-state and confinement of the photo-induced intramolecu-
lar charge transfer upon excitation is responsible for enhancing
two-photon absorption while maintaining large uncaging
efficiency.

5. Conclusion and outlook

The transfer of the ‘‘caged” compounds technique to near-
infrared region is the cornerstone for its in vivo application. In this
review, we highlighted recent papers where long-wavelength
uncaging was reported. There are three main strategies used for
this purpose. Firstly, several newly developed PPGs possess so little
uncaging threshold that infrared photon energy is enough. It, in
turn, may be achieved by different means, including the use of
weak bonds (e.g. N-NO, Co-C), additional energy release from
PPG molecular photorearrangement, and low-lying triplet carboca-
tion state of PPG residual. Secondly, some papers describe singlet-
oxygen-mediated photolysis, which relies on photocatalyzed oxi-
dation of ‘‘caged” compound by reactive oxygen species eventually
leading to the release of LG. Thirdly, molecules with significant
two-photon absorption may be activated using near-infrared light.
A related technique is photon upconversion, a process where the
energy of several photons is used to create one with correspond-
ingly shorter wavelength. In contrast to two-photon techniques,
the upconversion does not require enormous light intensities, but
specially designed nanoparticles should be used. For instance,
upconverting nanoparticles coated by protein kinase A, which
was in turn ‘‘caged” by UV PPG, was described [59]. It was shown
that illumination of nanoparticles by 980 nm laser induced activa-
tion of the enzyme. However, this strategy is a bit aside from the
present review; interested readers are encouraged to look at other
reviews on this topic [60,61].
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