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INTRODUCTION

The term model-informed drug development, or MIDD, is 
used to describe the application of various quantitative mod-
els that leverage an understanding of physiology, disease pro-
cesses, and pharmacology to facilitate the decision-making 
process during drug development. MIDD has utility in all 
stages of the drug-development process, and improves the 

delivery of new therapies by: increasing confidence in deci-
sion making; improving efficiency; reducing late-stage at-
trition; reducing development time; reducing the number of 
studies required or study sample size; and lowering develop-
ment costs.1–4 Drug regulatory authorities in the United States 
and the European Union consider modeling and simulation as 
key enablers of efficient and effective drug development5–7; as 
such, MIDD has also been used to support the approval and 
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Abstract
Model-informed drug development (MIDD) is critical in all stages of the drug-
development process and almost all regulatory submissions for new agents incor-
porate some form of modeling and simulation. This review describes the MIDD 
approaches used in the end-to-end development of ertugliflozin, a sodium-glucose 
cotransporter 2 inhibitor approved for the treatment of adults with type 2 diabetes 
mellitus. Approaches included (1) quantitative systems pharmacology modeling to 
predict dose–response relationships, (2) dose–response modeling and model-based 
meta-analysis for dose selection and efficacy comparisons, (3) population pharma-
cokinetics (PKs) modeling to characterize PKs and quantify population variability in 
PK parameters, (4) regression modeling to evaluate ertugliflozin dose-proportionality 
and the impact of uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A9 genotype 
on ertugliflozin PKs, and (5) physiologically-based PK modeling to assess the risk 
of UGT-mediated drug–drug interactions. These end-to-end MIDD approaches for 
ertugliflozin facilitated decision making, resulted in time/cost savings, and supported 
registration and labeling.
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labeling decisions for a number of drugs,1,4–7 including ertugli-
flozin.1 Ertugliflozin is a selective inhibitor of sodium-glucose 
cotransporter 2 (SGLT2) approved for use in the United States,8 
Europe,9 and other countries as an adjunct to diet and exercise 
to control blood glucose levels in adults with type 2 diabetes 
mellitus (T2DM). Ertugliflozin is also approved as fixed-dose 
combination therapies with metformin10,11 and with the dipep-
tidyl peptidase-4 (DPP4) inhibitor sitagliptin.12,13

Inhibition of SGLT2 blocks the re-absorption of glucose 
in the kidneys, leading to increased urinary glucose excretion 
(UGE) and, in patients with hyperglycemia, reduced levels 
of glycated hemoglobin (HbA1c) in the plasma.14,15 As such, 
both HbA1c and the pharmacodynamic (PD) marker UGE are 
considered as effective markers for the assessment of clinical 
efficacy of this drug class. In phase III trials of ertugliflozin 
monotherapy or combination therapy with other antihyper-
glycemic agents,16–23 clinically meaningful reductions in 
HbA1c, systolic blood pressure, and body weight were ob-
served in patients with T2DM. Ertugliflozin also displayed 
a favorable safety and tolerability profile that was consistent 
with other members of the SGLT2 inhibitor drug class.24

The primary route of clearance for ertugliflozin is glu-
curonidation via the uridine 5'-diphospho-glucuronosyltra-  
nsferase (UGT) isoforms UGT1A9 and, to a lesser extent, 
UGT2B4 and UGT2B7.25–27 Ertugliflozin undergoes minimal 
oxidative metabolism by cytochrome P450 (CYP) isoforms.25,26 
Absorption of ertugliflozin is rapid, with time to peak plasma 
concentrations (Tmax) occurring 2 h postdose in the fed state, and 
1 h postdose in the fasted state.28 The half-life of ertugliflozin is 
11–18 h, and a dose-proportional increase in exposure is observed 
over the ertugliflozin dose range 0.5–300 mg.28 Ertugliflozin can 
be administered without regard to food, and drug–drug interaction 
(DDI) studies showed that there are no clinically meaningful effects 
on ertugliflozin pharmacokinetics (PKs) when co-administered 
with metformin, sitagliptin, glimepiride, simvastatin, or rifampin.28

In this review, we describe the MIDD approaches that were 
applied during the end-to-end development of ertugliflozin 
to characterize the PKs (dose proportionality and the impact 
of UGT1A9 genotype on PK), PDs (measured as 24-h UGE 
[UGE24]), efficacy (HbA1c levels), and DDI potential (via UGT 
enzyme inhibition) of ertugliflozin, and how these modeling 
approaches, including the use of all available SGLT2 inhibitor 
data through quantitative systems pharmacology (QSP) mod-
eling and model-based meta-analysis (MBMA), facilitated the 
drug development and registration process.

QUANTITATIVE SYSTEMS 
PHARMACOLOGY MODELING

Systems pharmacology refers to the quantitative assess-
ment of the dynamic relationships between a drug (or drugs) 
and a biological system to better understand the behavior 

of the system overall, rather than the behavior of the indi-
vidual components within that system.29 The Metabolism 
PhysioLab platform (Entelos, Inc.)30 is a mathematical model 
of human T2DM pathophysiology consisting of several hun-
dred ordinary differential and algebraic equations. The model 
is based on an extensive survey of published literature and 
represents the major physiological systems involved in the 
regulation of nutrient intake, utilization, storage, and disposal 
in health and disease. Using this platform,30 a QSP model of 
SGLT2 inhibition was developed1,31,32 to provide a frame-
work to improve the quality and speed of decision making 
during the clinical development of ertugliflozin (e.g., clini-
cal trial design, dose selection, and dosing regimens). This 
QSP model integrated information on the physiological 
mechanism of action of SGLT2 inhibitors, including early 
clinical development data published for dapagliflozin33–36 
(another SGLT2 inhibitor now approved for treatment of dia-
betes and in the same class as ertugliflozin), and ertugliflozin  
PK/PD data as they became available from phase I stud-
ies.28,37 The model1,31,32 described the relationship between 
SGLT2 inhibition and UGE, establishing a mechanistic link 
between UGE24 in healthy subjects and the improvements in 
glycemic control and body weight that were observed over 
the longer-term (up to 12 weeks) in patients with T2DM.

The development of the model was based on data from 
published single- and multiple-dose studies assessing the PK 
and UGE of dapagliflozin in healthy subjects and in patients 
with T2DM,33,34 and the model was validated by compari-
son to efficacy results from a 12-week dapagliflozin study.35 
As ertugliflozin PK and UGE data became available from a 
phase I single-dose study,28,37 the predicted population PK 
parameters for ertugliflozin were included in the model, and 
maximum effect (Emax) and drug potency (drug concentration 
producing 50% of the maximum effect [EC50]) were adjusted 
in “real time” to match the observed exposure–response data 
(UGE24 and time course of UGE) obtained from both sin-
gle- and multiple-dose phase I studies of ertugliflozin.28,37 
Ertugliflozin doses, fasted/fed dosing regimens, and calorie 
intake were implemented to match the clinical protocol.1,31,32

Using this final QSP model, predictions for the dose–
response relationship for HbA1c in patients with T2DM 
after 12  weeks of ertugliflozin treatment were generated 
(Figure 1).1 These predictions were based on a virtual popu-
lation of patients with T2DM with a mean baseline HbA1c of 
8.0% and a mean baseline body weight of 94 kg; additionally, 
estimated glomerular filtration rate (eGFR) and other renal 
glucose-handling parameters were varied to ensure consis-
tency with the reported variability in UGE from competitor 
SGLT2 inhibitor clinical trials.34,35 These data informed er-
tugliflozin dose selection for a 12-week dose-ranging phase 
II trial.38 In turn, data from this 12-week ertugliflozin study38 
were subsequently used to validate the efficacy projections 
from the QSP model (Figure 1).1
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The QSP model described above was critical in expediting 
the phase I and II clinical explorations for ertugliflozin1 as it 
enabled the design of efficient phase II studies with increased 
confidence in dose selection. This modeling approach also 
allowed the successful prediction of changes in body weight 
and circulating hormones (such as insulin) following treat-
ment with ertugliflozin, and simulation of the efficacy (UGE 
and HbA1c) of different ertugliflozin dosing regimens and 
combination therapies, including in patients with renal im-
pairment. Most notably, the QSP model was used alongside 
the dose–response modeling described below to corroborate 
the selection of ertugliflozin doses for phase III studies, high-
lighting how multiple modeling techniques can work together 
to achieve well-informed decisions.

DOSE–RESPONSE MODELING

Dose–response, or exposure–response, modeling is a math-
ematical approach that links dose/drug concentration or an 
exposure metric to the intensity of the observed response 
to characterize the dose–concentration–effect of a drug.39 
During the clinical development of ertugliflozin, dose–
response modeling was used to quantitatively assess the re-
lationship between ertugliflozin dose and HbA1c response, as 
well as ertugliflozin dose and UGE response, to inform dose 
selection for later-phase trials and to determine whether the 
evaluated covariates had a significant impact on response in 
patients with T2DM. The dose versus HbA1c response model 
also allowed an evaluation of the impact on dose–response 
of co-administration with rifampin, a UGT and CYP inducer 
known to decrease ertugliflozin exposure. Finally, MBMA 
incorporating published clinical trial data from other SGLT2 

inhibitors allowed an indirect comparison of HbA1c-lowering 
efficacy across the drug class.

Phase III dose selection using phase II data

In phase I and phase II studies, single oral doses of ertugliflo-
zin up to 300 mg, and multiple oral doses of ertugliflozin up 
to 100 mg once daily for 14 days or up to 25 mg once daily 
for up to 12  weeks, were safe and well-tolerated.28,37,38,40 
As such, the key driver for phase III dose selection41 was 
the dose–response relationships for change from baseline in 
HbA1c at week 12 in patients with T2DM from a 12-week 
phase II dose-ranging study of ertugliflozin.38 The relation-
ship between HbA1c change from baseline at week 12 versus 
dose was described by an empirical Emax model that included 
time as a continuous variable.41 Dose selection was also sup-
ported by dose–response modeling of UGE24 data (fitted by 
an Emax model) from a 4-week phase II ambulatory blood 
pressure study of ertugliflozin in patients with T2DM.40

Model-predicted responses for HbA1c and UGE24 at 
ertugliflozin doses of 5  mg and 15  mg are presented in 
Table  1.41 At 5-mg and 15-mg doses, the model-predicted 
responses were >80% and >90%, respectively, of the maxi-
mum response. Thus, both the 5-mg and 15-mg doses were 
expected to provide clinically meaningful efficacy, with the 
15-mg dose providing incremental HbA1c lowering and UGE 
compared with the 5-mg dose, and with adequate safety mar-
gins relative to the highest exposures tested in the early-phase 
studies.

These dose–response modeling results supported the se-
lection of ertugliflozin 5-mg and 15-mg once-daily doses for 
the phase III program and, together with the QSP modeling 

F I G U R E  1   Quantitative systems pharmacology model prediction. Model-predicted effect of ertugliflozin on (a) cumulative UGE24 in healthy 
subjects (red symbols; superimposed on observed data represented by the blue box plots with open circles indicating outliers in the data) and 
(b) placebo-adjusted change in HbA1c at 12 weeks in patients with T2DM (red line with shaded red area showing the 90% CI of the prediction; 
superimposed on observed data represented by the blue symbols with observed 80% CI). Values shown above each data point are for the number of 
subjects in each dose group contributing to the observed data. HbA1c, glycated hemoglobin; CI, confidence interval; ERTU, ertugliflozin; T2DM, 
type 2 diabetes mellitus; UGE24, 24-hour urinary glucose excretion. Figure from ref. 1 (© 2013 American Society for Clinical Pharmacology and 
Therapeutics. Published by John Wiley & Sons)
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described above, ensured a thorough assessment of the bene-
fit/risk profile for the ertugliflozin doses selected for the late-
stage development program.

Dose versus HbA1c response analysis using 
phase II/III data

The results of the initial dose–response analysis using only 
phase II ertugliflozin data were consistent with the results of 
a subsequent longitudinal dose–response model41 for HbA1c 
based on ertugliflozin data from one phase II study38 and four 
phase III studies (VERTIS RENAL, VERTIS FACTORIAL, 
VERTIS MONO, and VERTIS MET).19,23,42,43 A total of 
10,109 observations from 2185 subjects were included in the 
final model. A longitudinal exposure–response model was 
also fitted to the HbA1c data; however, this did not provide 
any additional predictive performance benefit over the dose–
response model.

The final longitudinal dose–response model included 
two first-order rate constant parameters describing the 
temporal profiles of HbA1c: one for the placebo data and a 
second for the ertugliflozin data. A point estimate placebo 
parameter characterized the placebo response, with Emax 
and dose producing 50% of the maximum effect (ED50) 
parameters characterizing the ertugliflozin response. The 
ED50 and Emax values were 1.30 mg (95% confidence inter-
val [CI]: 0.070 to 2.64) and −0.745% (95% CI: −0.899 to 
−0.624), respectively (Table 1). Covariates included base-
line HbA1c (normalized to 8.0%) on placebo response, and 
baseline HbA1c (normalized to 8.0%), eGFR (normalized to 
90 ml/min/1.73 m2), diabetes disease duration (normalized 
to 8 years), and background treatment other than metformin 
on Emax. Baseline body weight (normalized to 85 kg) and 
age (normalized to 65 years) were included on ED50. The 
estimated effect of baseline body weight on ED50 was not 

significant (the 95% CI included the null-effect value); diet 
and exercise alone as a background treatment on Emax was 
also not significant. All other covariates were significant. 
Higher baseline HbA1c and eGFR were associated with a 
higher Emax, and longer diabetes disease duration was as-
sociated with a lower Emax. Therefore, any estimate of Emax 
would need to account for these three influential covari-
ates. Although age was found to be a significant predictor 
of ED50, the effect of age on ED50 was not well-estimated; 
therefore, any predictions incorporating age should be in-
terpreted with caution.

Based on the final model parameter estimates, the 
5-mg and 15-mg doses of ertugliflozin elicited HbA1c re-
sponses (−0.617% and −0.698%, respectively) that were 
>80% and >90%, respectively, of the model-estimated 
Emax (−0.745%), consistent with the results from the dose–
response model using phase II data (see Table 1). Observed 
and final model-predicted mean HbA1c responses versus 
ertugliflozin dose by study at week 26 for the final longitu-
dinal dose–response model are shown in Figure 2.44 For a 
representative patient with T2DM (age: 57.3 years; weight: 
85 kg; baseline HbA1c: 8.1%; eGFR: 88.9 ml/min/1.73 m2; 
disease duration: 7.5  years; and background treatment: 
metformin), the model-predicted mean placebo-adjusted 
change from baseline HbA1c for the ertugliflozin 5-mg and 
15-mg doses at week 26 was −0.674% (95% CI: −0.805 
to −0.565) and −0.735% (95% CI: −0.869 to −0.626), 
respectively.

Dose versus HbA1c response analysis following 
rifampin co-administration

The phase II/III dose–response model41 described above was 
used to evaluate the impact of reduced ertugliflozin exposure 
following co-administration with rifampin, a UGT and CYP 

T A B L E  1   Model-predicted placebo-adjusted change from baseline response for key end points based on phase II and phase II/III study data

Phase II study data Phase II/III study data

HbA1c UGE24 HbA1c

ED50 1.03 mg (80% CI: not reported)a  0.752 mg (95% CI: 0.299 to 1.58) 1.30 mg (95% CI: 0.070 to 2.64)

Emax −0.77% (80% CI: −0.95 to −0.59) 71.5 g (95% CI: 57.9 to 87.3) −0.745% (95% CI: −0.899 to −0.624)

Treatment

Ertugliflozin 5 mg −0.64% (80% CI: −0.81 to −0.47) 62.5 g (90% CI: 54.9 to 69.7) −0.617% (95% CI: −0.753 to −0.491)

Ertugliflozin 15 mg −0.72% (80% CI: −0.89 to −0.56) 68.9 g (90% CI: 58.9 to 78.7) −0.698% (95% CI: −0.821 to −0.596)

Note: Baseline HbA1c was normalized to 8%.
Abbreviations: HbA1c, glycated hemoglobin; CI, confidence interval; ED50, dose producing 50% of the maximal effect; Emax, maximum effect; UGE24, 24-h urinary 
glucose excretion.
aThe CI for the ED50 value from the dose versus HbA1c model was not estimated precisely due to limited data at the inflection of the dose–response relationship, and is 
therefore not reported. However, the ED50 point estimate is consistent with the ED50 estimate from the dose versus UGE model and the dose versus HbA1c model based 
on phase II and phase III study data.
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inducer that decreased ertugliflozin exposure by 39% in a 
phase I clinical study.28,45

As ertugliflozin exposure increases in a dose-
proportional manner and PK variability was low, the 
decrease in exposure with rifampin co-administration (as-
suming a similar decrease in ertugliflozin exposure in pa-
tients with T2DM as was observed in healthy volunteers 
in the phase I study) was included within the model as a 
decrease in dose with associated uncertainty. Using repre-
sentative patient demographics, the model-predicted mean 
placebo-adjusted change from baseline HbA1c for the er-
tugliflozin 5-mg and 15-mg doses following rifampin co-
administration was −0.625% (95% CI: −0.783 to −0.482) 
and −0.713% (95% CI: −0.841 to −0.604), respectively. 
Based on the results, the 5-mg ertugliflozin dose following 
co-administration with rifampin was predicted to maintain 
clinically meaningful glycemic efficacy. This supports er-
tugliflozin dosing recommendations for co-administration 
with inducers of UGT and CYP enzymes without any dose 
adjustment.8,9

Dose versus HbA1c response analysis 
using MBMA

MBMA was conducted alongside other MIDD approaches 
during the clinical development of ertugliflozin, and incorpo-
rated all publicly available data on SGLT2 inhibitors to allow 
an assessment of comparative efficacy across the SGLT2 in-
hibitor class.

One such MBMA46 utilized summary-level data from 
the Quantify Diabetes Clinical Database (version 2017-04-
04; Certara USA Inc.) that included published, randomized 
placebo- and active-controlled trials of ≤54  weeks’ dura-
tion evaluating the safety and efficacy of antihyperglycemic 
agents in patients with T2DM. Of the 496 randomized con-
trolled trials in the database, 94 studies representing >30,000 
patients with T2DM were with SGLT2 inhibitors, including 
canagliflozin, dapagliflozin, empagliflozin, ertugliflozin, 
ipragliflozin, luseogliflozin, remogliflozin, sotagliflozin, or 
tofogliflozin. This MBMA allowed an indirect comparison 
of SGLT2 inhibitor efficacy across trials by quantifying the 

F I G U R E  2   Observed and final model-predicted mean HbA1c response versus ertugliflozin dose by study at week 26. Mean observed (black 
circles) and estimated (red circles) HbA1c change from baseline (%). Vertical black lines represent associated 5th and 95th quantiles of observed 
individual patient data for each dose in the respective studies. Values shown above each data point are for the number of subjects in each dose 
group contributing to the observed data. Estimated HbA1c was generated as the difference between each subject’s individual prediction of HbA1c 
and baseline HbA1c. ERTU, ertugliflozin; HbA1c, glycated hemoglobin; Ph, phase. Figure from data on file and also available from ref. 44
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time course of dose versus HbA1c response of the included 
SGLT2 inhibitors. Overall, ertugliflozin 5-mg and 15-mg 
doses demonstrated similar or numerically greater HbA1c 
lowering compared with therapeutic doses of other SGLT2 
inhibitors, with predicted HbA1c responses (95% CI) of 
−0.70% (−0.77 to −0.62) and −0.79% (−0.86 to −0.70), re-
spectively, at 26 weeks for a patient on background oral an-
tidiabetic treatment and with baseline HbA1c of 8.0% and an 
eGFR of 90 ml/min/1.73 m2.

POPULATION PHARMACOKINETICS 
MODELING

Population PKs (PopPK) analyses aim to characterize the PK 
properties of a drug and to quantify sources of variability in 
drug concentrations among individuals by estimating the im-
pact of intrinsic and extrinsic factors that may affect the PKs.47 
Therefore, the results of PopPK analyses are often included 
in drug labels, typically supporting dosing recommenda-
tions for special populations (e.g., renal/hepatic impairment, 

pediatrics, elderly, etc.) as well as the clinical relevance of 
drug–drug interactions. In the case of ertugliflozin, PopPK 
modeling was used successfully in assessing the clinical rel-
evance of patient demographic and clinical characteristics on 
ertugliflozin PKs to support product registration and inform 
the product label. A PopPK model was developed48 using 
nonlinear mixed-effects modeling to describe ertugliflozin 
disposition, characterize the effects of intrinsic and extrinsic 
factors on ertugliflozin exposure, and quantify the population 
variability in ertugliflozin PK parameters. Data from nine 
phase I, two phase II, and four phase III ertugliflozin stud-
ies contributed to the final PopPK data file, which contained 
13,691 PK observations from 2276 subjects.

A two-compartment model with first-order absorption 
with lag time, and first-order elimination, described the 
plasma concentration–time profile of ertugliflozin after sin-
gle and multiple doses. The PopPK model was used to deter-
mine the effect of several covariates (body weight, age, sex, 
race, eGFR, T2DM, and food) on the PK parameters of er-
tugliflozin. Covariate effects on apparent clearance (CL/F)—
translated to the effect on area under the concentration–time 

F I G U R E  3   Covariate effects on (a) AUCτ and (b) Vc/F in the PopPK model. Solid squares represent the ratio of the typical predicted AUCτ 
or Vc/F relative to the reference subject; a value of 1 represents unity or a null covariate effect. Horizontal lines represent the 95% CI. AUCτ, area 
under the concentration–time curve for dosing interval at steady state; CI, confidence interval; eGFR, estimated glomerular filtration rate; PopPK, 
population pharmacokinetics; T2DM, type 2 diabetes mellitus; Vc/F, apparent central volume of distribution. Figure reproduced from ref. 48 
(published under CC BY-NC-ND 4.0)
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curve (AUC) for a dosing interval at steady-state (AUCτ)—
and apparent central volume of distribution (Vc/F) at steady-
state were compared to the reference subject: a 65-year-old, 
healthy, White male with a baseline body weight of 85 kg, 
eGFR of 90 ml/min/1.73 m2, and taking ertugliflozin in the 
fasted state.

In the model, CL/F increased with increasing eGFR up 
to 120 ml/min/1.73 m2. CL/F was slightly lower in patients 
with T2DM and in women, and slightly higher in Asian sub-
jects. Covariate effects on CL/F were translated to an effect 
on AUCτ. The AUCτ decreased with increasing baseline 
body weight and eGFR, was slightly higher in patients with 
T2DM, and slightly lower in Asian subjects (Figure  3a). 
Early phase I and phase II studies of ertugliflozin found that 
single oral doses of up to 300 mg, and multiple oral doses 
of up to 100 mg once daily for 14 days or up to 25 mg once 
daily for up to 12 weeks, were not associated with any safety 
concerns and a maximum tolerated dose of ertugliflozin 
was not identified.28,37,38,40 Conversely, based on the phase I 
clinical pharmacology studies,28 the maximum expected de-
crease in ertugliflozin exposure due to extrinsic or intrinsic 
factors was 39%, which was observed following rifampin co-
administration.28,45 However, the phase II/III dose–response 
model described above41 demonstrated that the lower (5-mg) 
dose of ertugliflozin was predicted to maintain clinically 
meaningful glycemic efficacy following co-administration 
with rifampin. As such, increases or decreases in exposure 
of the magnitudes obtained following PopPK modeling were 
not considered clinically relevant. Regarding the impact of 
renal function on ertugliflozin PKs/PDs, consistent with the 
mechanism of action for SGLT2 inhibitors, a decrease in UGE 
was observed with declining renal function despite increased 
ertugliflozin exposures.49 It is well-recognized that HbA1c 
lowering for SGLT2 inhibitors is diminished in patients with 
moderate or severe renal impairment.50,51 Indeed, eGFR was 
found to be a significant predictor of HbA1c response in the 
longitudinal dose–response model incorporating ertugli-
flozin phase II/III data (described above). Therefore, dose 
adjustments based on matching exposures are not appropriate 
for the SGLT2 inhibitor class. However, although dose ad-
justments for ertugliflozin are not required in patients with 
renal impairment based on PKs, initiation of ertugliflozin is 
not currently recommended in patients with an eGFR of 30 to 
<60 ml/min/1.73 m2.8,9

Vc/F increased with increasing body weight and was 
higher in women and Asian subjects (Figure 3b). Increases 
in Vc/F would result in a decrease in maximum plasma con-
centration (Cmax). However, the results of a phase I PK/PD 
study comparing twice-daily versus once-daily dosing of 
ertugliflozin total daily doses of 5 and 15  mg52 found no 
meaningful differences in UGE24 or AUC over 24 h (AUC24) 
between the two dose regimens despite Cmax values being 
lower for twice-daily versus once-daily dosing (as would be 

expected), indicating that ertugliflozin efficacy is driven by 
AUC rather than Cmax. Hence, the increases in Vc/F observed 
in the PopPK model were not considered clinically relevant.

Administration of ertugliflozin with food decreased the 
absorption rate constant (ka) by 27% and relative bioavailabil-
ity (F1) by 7% relative to the fasted state; similar estimates of 
ka and F1 were observed when ertugliflozin was administered 
without regard to food relative to the fasted state (34% and 
8%, respectively). These findings were consistent with the re-
sults of a phase I food-effect study in healthy subjects where 
ertugliflozin AUC from time zero extrapolated to infinite 
time (AUCinf) was similar in the fed versus fasted state de-
spite decreases in Cmax when ertugliflozin was administered 
with food.53 Given the dependence of ertugliflozin efficacy 
on AUC rather than Cmax,

52 the effect of food on ertugliflozin 
PK was not considered to be clinically meaningful.

To further explore the effect of Asian descent on ertugli-
flozin PK parameters, two additional PopPK analyses were 
conducted in selected ethnic subgroups: (1) East/South-East 
(E/SE) Asian versus non-E/SE Asian subjects; and (2) Asian 
subjects from mainland China versus Asian subjects from the 
rest of the world (ROW) versus non-Asian subjects.54 As ob-
served in the overall PopPK model, increases in CL/F and 
Vc/F were observed in E/SE Asian subjects compared with 
non-E/SE Asian subjects, and in Asian subjects from main-
land China and Asian subjects from the ROW compared with 
non-Asian subjects. As noted above for the overall model re-
sults, increases in Vc/F would result in a decrease in ertugli-
flozin Cmax; however, the magnitude of the increases in CL/F 
would not substantially impact ertugliflozin AUC, which is 
the driver of ertugliflozin efficacy. As such, the differences in 
CL/F and Vc/F were considered unlikely to result in meaning-
ful differences in ertugliflozin PKs among the Asian ethnic 
subgroups assessed in these analyses. The results of these ad-
ditional PopPK models were used to support the registration 
of ertugliflozin in China and E/SE Asian countries.

Overall, none of the covariates assessed in the PopPK 
models had a clinically relevant effect on the PKs of ertugli-
flozin, and the results of these analyses were used to support 
product registration and labeling recommendations that er-
tugliflozin can be administered without regard to food, age, 
body weight, gender, and race.8,9

REGRESSION MODELING

Regression analysis is a statistical technique widely used 
to investigate the dependence of a variable on one or more 
independent variables and to estimate the value of the de-
pendent variable in terms of fixed values of the independent 
variable(s).55 Regression modeling was used to evaluate the 
dose proportionality of ertugliflozin to determine whether the 
increase in ertugliflozin exposure is linear with increasing 
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dose, indicating constant clearance over the dose range, as 
well as the impact of UGT1A9 polymorphism on the ertugli-
flozin AUC versus dose relationship.

Dose-proportionality analysis

Dose proportionality in ertugliflozin systemic exposure was 
assessed as part of a linear mixed-effects analysis56 of AUC 
and Cmax pooled datasets (derived using noncompartmental 
methods) from 17 phase I studies with ertugliflozin doses of 
0.5–300 mg. A total of 344 records from 309 subjects and 
307 records from 260 subjects were used in the analysis for 
AUC and Cmax, respectively.

Linear regression models were constructed using AUC or 
Cmax as the dependent variable, and dose as the independent 
variable. Full models for AUC and Cmax were produced by the 
addition of formulation (tablet as reference) and food status (light 
meal vs. fasted) as covariates to the base model. The observed 
AUC and Cmax values and the model predictions from this analy-
sis, including the model fit for the lower dose range of 0 to 15 mg, 
are shown in Figure 4. The dose–AUC relationship and dose–
Cmax relationship were adequately described by a linear model 
fit to the data. The population-predicted mean (90% CI) AUC 
values following administration of the 5-mg and 15-mg doses in 

the fasted state were 437 (422 and 451) ng.h/ml and 1380 (1350 
and 1410) ng.h/ml, respectively. For Cmax, these values were 88.7 
(86.0 and 91.4) ng/ml and 266 (258 and 274) ng/ml, respectively.

Based on the final parameter estimates, it was con-
cluded that ertugliflozin AUC and Cmax increase in a dose-
proportional manner over the dose range of 0.5 to 300 mg, 
and there were no clinically relevant effects of formulation or 
food on ertugliflozin AUC or Cmax. This dose-proportionality 
analysis corroborated the results obtained from individual 
clinical studies28,37,53 and the PopPK model48 described 
above, and was used to support ertugliflozin product regis-
tration. Moreover, the model structure provided a framework 
for an assessment of the impact of UGT1A9 genotype on er-
tugliflozin exposure, as described below.

UGT1A9 genotype analysis

Ertugliflozin clearance is mediated primarily via metabo-
lism, with glucuronidation playing the major role in ertug-
liflozin biotransformation. The principal enzyme involved 
in the glucuronidation of ertugliflozin is the UGT isoform 
UGT1A9.25,26 As the prevalence of UGT1A9 genetic vari-
ants is low, data from 20 phase I studies were pooled and an 
analysis of AUC values was conducted to evaluate the impact 

F I G U R E  4   Ertugliflozin AUC (a) full dose range; (b) 0–15 mg dose range and Cmax (c) full dose range; (d) 0–15 mg dose range versus dose. 
AUC, area under the concentration–time curve; Cmax, maximum observed concentration; ERTU, ertugliflozin. Figure from ref. 56 (published under 
CC BY-NC-ND 4.0)
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of UGT1A9 genotype on the overall exposure of ertugliflo-
zin.56 A total of 417 subjects (one record per subject) were 
included in the analysis.

Using the model structure from the AUC dose-
proportionality analysis described above, the final model was 
developed by the addition of the three UGT1A9 polymorphic 
alleles as covariates: UGT1A9 −2152(C>T), UGT1A9*3 
98(T>C), and UGT1A9*1b −118(dT)9>10 (previously re-
ferred to as UGT1A9*22). These alleles were chosen due 
to their relatively high allelic frequency across populations 
and the potential for a clinical effect on drug disposition.57 
Within the dataset, 100 subjects were wild type for the three 
UGT1A9 variants; 33 subjects carried heterozygous variants 
of UGT1A9–2152; 74 subjects carried heterozygous variants 
of UGT1A9*3; and 264 subjects carried homozygous or het-
erozygous variants of UGT1A9*1b. The UGT1A9–2152 het-
erozygous variant and the UGT1A9*1b homozygous variant 
did not have a statistically significant impact on ertugliflozin 
AUC, as the 95% CI included 1. The UGT1A9*3 heterozy-
gous variant increased ertugliflozin AUC by 10%, whereas 
the UGT1A9*1b heterozygous variant decreased ertugli-
flozin AUC by 6%. The fold change of ertugliflozin AUC 
for each UGT1A9 variant relative to the wild-type variant is 
shown in Figure 5.

Overall, the mean effects of UGT1A9 allelic variants on 
ertugliflozin AUC were within ± 10% of wild-type UGT1A9 
and were not considered clinically relevant.56 Current reg-
ulatory guidance recommends an assessment of the effect 
of pharmacogenetics on PKs for drugs where the primary 
biotransformation pathway is governed by a genetically 

polymorphic enzyme or transporter.58,59 The use of a pooled, 
meta-analysis approach relating ertugliflozin AUC and 
UGT1A9 genotype data fulfilled this requirement without the 
need for a dedicated clinical pharmacogenetic study, which 
would not be feasible given the low prevalence of UGT1A9 
variants in the general population.

PHYSIOLOGICALLY-BASED 
PHARMACOKINETIC MODELING

Physiologically-based pharmacokinetic (PBPK) modeling 
utilizes a mathematical model to simulate the PKs of a drug 
over time by considering the absorption, distribution, metab-
olism, and excretion (ADME) properties of a drug and the 
inter-relation between the physiological and chemical de-
terminants of the disposition of the drug.60 PBPK modeling 
supports the complexity required to evaluate mechanistic 
questions that require an in-depth understanding of human 
physiology and can be used to support decisions related to 
conduct of clinical pharmacology studies and support dosing 
recommendations in product labeling. As glucuronidation by 
UGT1A9 is the primary route of metabolism for ertugliflo-
zin,25,26 it was important to assess the potential for DDIs be-
tween ertugliflozin and UGT enzyme inhibitors. Previously, 
clinical DDI studies have shown that UGT inhibitors typi-
cally elicit less than twofold increases in substrate drug expo-
sures.61 Indeed, a clinical study found that co-administration 
of an SGLT2 inhibitor (dapagliflozin) and the UGT inhibitor 
mefenamic acid (MFA) resulted in a weak DDI, with an AUC 
ratio (AUC of dapagliflozin co-administered with MFA:AUC 
of dapagliflozin alone) of 1.51 and Cmax ratio (Cmax of da-
pagliflozin co-administered with MFA:Cmax of dapagliflozin 
alone) of 1.13.62 Therefore, the sponsor decided to assess 
UGT-mediated DDI for ertugliflozin in humans by PBPK 
modeling using the Simcyp platform (version 15, release 1; 
Certara USA Inc.) and MFA as the UGT inhibitor.63 The use 
of the PBPK model supported the registration and labeling of 
ertugliflozin, without the need for a dedicated clinical study 
to assess the potential for UGT-mediated DDIs.

As dapagliflozin has similar ADME properties and is me-
tabolized by the same UGT enzymes as ertugliflozin,36 the 
results from dapagliflozin–MFA co-administration study62 
were used in conjunction with published clinical and in vitro 
data for MFA in a “top-down” approach to develop and verify 
a PBPK model for MFA. A common “middle-out” approach, 
where clinical PK and human ADME results were combined 
with in vitro data, was used in the development and verifi-
cation of PBPK models for ertugliflozin and dapagliflozin. 
For the ertugliflozin PBPK model, ertugliflozin PK pa-
rameters following intravenous administration were used as 
input parameters into Simcyp. The simulations captured the 
biphasic distribution kinetics of ertugliflozin. Subsequently, 

F I G U R E  5   UGT1A9 genotype effects on ertugliflozin AUC. 
The 90th percentiles of the bootstrap confidence intervals for 
AUC are provided. Effects are reported relative to the wild-type 
UGT1A9 subjects in the analysis. A value of 1 represents no change. 
AUC, area under the concentration–time curve; het, heterozygous 
variant; hom, homozygous variant; UGT1A9, uridine 5'-diphospho-
glucuronosyltransferase 1A9. Figure from ref. 56 (published under CC 
BY-NC-ND 4.0)

UGT1A9*1b_het

UGT1A9*1b_hom

UGT1A9-2152_het

UGT1A9*3_het

0.8 0.9 1.0 1.1 1.2
Change relative to wild type UGT1A9



538  |      FEDIUK et al.

absorption and elimination model parameters were incorpo-
rated into the ertugliflozin PBPK model, which was verified 
with results from oral single-dose (0.5–300 mg) and multiple-
dose (5 and 15 mg) phase I PK studies.28,37

The verified MFA and ertugliflozin PBPK models were 
then used to simulate the co-administration of MFA (500-mg 
loading dose then 250 mg every 6 h for 4 days) and ertug-
liflozin (15-mg single dose on day 2) to assess the impact 
of the UGT inhibitor on the PKs of ertugliflozin (Figure 6). 
Similar to the dapagliflozin clinical DDI results with MFA, 
the simulation predicted a weak DDI between ertugliflozin 
and MFA, with an AUC ratio of 1.51 (95% CI: 1.48–1.54) 
and Cmax ratio of 1.19 (95% CI: 1.17–1.20); this DDI was not 
considered clinically relevant.63

The ertugliflozin PBPK model-based DDI results were 
included in the ertugliflozin regulatory submission and the 
results incorporated into the DDI section of the label8 with-
out the need for a clinical DDI study with a UGT inhibitor.

DISCUSSION

This review details the end-to-end application of MIDD 
throughout the early- and late-stage clinical development of 
a single drug. A previous review1 described the evolution of 
MIDD and provided a series of examples to illustrate the role 

of MIDD approaches in accelerating and optimizing devel-
opment strategies across a number of different compounds 
at various stages of the drug-development process, includ-
ing ertugliflozin. This current review focuses on how MIDD 
was used throughout the drug-development continuum for 
ertugliflozin: from a real-time, model-based approach during 
early clinical development to guide dose selection and design 
of longer-term studies, through to the further development 
and refinement of PK, PD, and PBPK models during late-
stage development to support the successful regulatory filing 
and labeling of this novel SGLT2 inhibitor for the treatment 
of T2DM in adults.8,9 Moreover, this review highlights how 
the use of multiple MIDD approaches allowed for the cor-
roboration of individual model outputs at various stages of 
development.

By integrating information on the mechanism of action 
of SGLT2 inhibition with early-phase PK/PD and glycemic 
efficacy data from trials of a competitor SGLT2 inhibitor, 
QSP modeling1,31,32 was used to establish a mechanistic 
link between UGE24 in healthy subjects and improvements 
in HbA1c in patients with T2DM. Through the addition of 
early phase I PK/PD data for ertugliflozin, the final QSP 
model predicted the dose–response relationship for HbA1c 
in patients with T2DM and informed ertugliflozin dose 
selection for the 12-week dose-ranging phase II study.38 
HbA1c and UGE24 data from phase II studies38,40 were 

F I G U R E  6   Clinically observed and PBPK model-predicted plasma concentrations of ertugliflozin and dapagliflozin in the presence or absence 
of MFA. (a) dapagliflozin 10 mg, (b) ertugliflozin 10 mg, (c) dapagliflozin 10 mg following MFA administration, and (d) ertugliflozin 15 mg 
following MFA administration. Observed (green or purple circles) and predicted (green or purple lines) plasma concentrations were expressed as 
mean, with 5th and 95th percentiles shown (gray lines), in the control treatment (green) and following coadministration with MFA (purple). Where 
available, standard deviation around the observed means is also shown (black whiskers). CSys, systemic concentration; DAPA, dapagliflozin; 
ERTU, ertugliflozin; MFA, mefenamic acid; PBPK, physiologically-based pharmacokinetic; PO, oral. Figure reproduced from ref. 63 (published 
under CC BY-NC-ND 4.0)
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subsequently used to fit Emax dose–response models41 to in-
form ertugliflozin dose selection for phase III trials. Dose–
response modeling of ertugliflozin was further refined 
using phase II/III data, where a longitudinal dose–response 
model was fitted to the data for the primary evaluation 
of the HbA1c-lowering effect of ertugliflozin.41 Overall, 
these dose–response models demonstrated that the 5-mg 
and 15-mg doses of ertugliflozin elicited HbA1c responses 
that were >80% and >90%, respectively, of the model-
estimated maximum response, thus establishing the clini-
cally meaningful efficacy of these doses, with incremental 
HbA1c lowering with the 15-mg dose over the 5-mg dose. 
These dose–response modeling results were supported and 
corroborated by MBMA using the totality of available data 
on SGLT2 inhibitors to allow an indirect comparison of 
efficacy across the SGLT2 inhibitor class.46 This MBMA 
approach demonstrated that ertugliflozin 5-mg and 15-mg 
doses show similar or numerically greater HbA1c lowering 
to approved doses of other SGLT2 inhibitors.46

Data from initial phase I clinical studies demon-
strated that ertugliflozin exposure is dose proportional 
over the range of 0.5–300 mg.28 This was corroborated 
by the results of regression modeling using a linear 
mixed-effects analysis, which found that ertugliflozin 
AUC and Cmax increased in a dose-proportional manner 
over the same dose range.56 Based on phase I clinical 
pharmacology studies28 and the PopPK analysis,48 the 
maximum expected decrease in ertugliflozin exposure 
due to extrinsic or intrinsic factors was 39%, which 
was observed following rifampin co-administration.28,45 
However, in the phase II/III dose–response model,41 
the lower (5-mg) dose of ertugliflozin was predicted 
to maintain clinically meaningful glycemic efficacy 
following co-administration with rifampin. Therefore, 
dose adjustment is not required when ertugliflozin is 
co-administered with a UGT and CYP inducer, such 
as rifampin.8,9 Furthermore, the results of the PopPK 
analysis48 demonstrated that ertugliflozin can also be 
administered without regard to food, age, body weight, 
gender, and race.8,9 An increase in ertugliflozin expo-
sure of ~1.5-fold following concomitant administration 
of the higher (15-mg) dose of ertugliflozin with the UGT 
inhibitor MFA was predicted by PBPK modeling.63 As 
ertugliflozin exposure increases in a dose-proportional 
manner, and as oral doses of ertugliflozin as high as 
300  mg as a single dose, up to 100  mg once daily for 
14 days, and up to 25 mg once daily for up to 12 weeks 
have not been associated with any safety concerns in 
early phase I and II studies (i.e., exposures that are up 
to 20-fold higher relative to the exposure for the 15-mg 
dose),28,37,38,40 no dosing adjustments are proposed when 
ertugliflozin is co-administered with a UGT inhibitor.8,9 
In phase III studies,16–23 both 5-mg and 15-mg doses of 

ertugliflozin provided significant and clinically mean-
ingful glycemic efficacy alone or in combination with 
other antihyperglycemic agents through up to 104 weeks, 
and were safe and well-tolerated.24 Thus, the approved 
ertugliflozin doses8,9 of 5  mg or 15  mg once daily are 
based on the totality of the efficacy and safety data from 
clinical studies and are robustly supported by the appli-
cation of various quantitative models to inform the dos-
ing recommendations.

An important aspect of the MIDD approaches described 
in this review was the utilization of published data from 
other SGLT2 inhibitors alongside existing ertugliflozin data, 
which was key to the successful use of QSP modeling, PBPK 
modeling, and MBMA during the clinical development of 
ertugliflozin.41 The QSP model1,31,32 was developed by in-
tegrating information on the general mechanism of action of 
SGLT2 inhibitors, as well as published early-phase PK/PD 
data for dapagliflozin, which shares similar ADME prop-
erties to ertugliflozin. The published DDI data of dapagli-
flozin with MFA also underpinned the PBPK modeling63 
approach used to assess the potential for a DDI following 
co-administration of ertugliflozin with the UGT enzyme in-
hibitor MFA. Finally, published summary-level data from 94 
trials of SGLT2 inhibitors contributed to the development 
of an MBMA46 to examine the comparative effectiveness of 
ertugliflozin in the wider SGLT2 inhibitor landscape. These 
examples demonstrate how MIDD approaches can enable re-
searchers to leverage the totality of data pooled from different 
candidates across a drug class.64,65

The use of MIDD during the drug development and ap-
proval process is increasing as the benefits of this approach 
become ever more apparent.66–70 MIDD has the potential to 
streamline the development of new therapies by improving 
overall efficiency through increased confidence in decision 
making, a reduction in the attrition of drugs in late-phase 
drug development, and the minimization of the requirement 
for (or size of) clinical studies, which can translate to sig-
nificant time and cost savings for pharmaceutical organiza-
tions.1–4 The numerous regulatory applications of MIDD also 
support approval and labeling decisions during the registra-
tion of new agents.1,4–7 In the case of ertugliflozin, MIDD 
expedited the clinical development of the drug by facilitat-
ing a comprehensive pharmacological characterization with 
cost and time savings prior to regulatory approval of ertug-
liflozin in 2017–2018. For example, QSP modeling enabled 
the completion of ertugliflozin phase I and II clinical explo-
rations within ~15 months by negating the need for a phase 
IIa dose-ranging study in patients with T2DM.1 Furthermore, 
pooled regression analyses and PBPK modeling negated the 
need for dedicated clinical trials to examine the impact of 
UGT1A9 genotype on ertugliflozin PKs and the potential for 
UGT-mediated DDIs, respectively.56,63 However, an import-
ant consideration in the successful adoption and realization 
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of the maximum benefits of MIDD approaches is the need for 
them to be integrated early and throughout the development 
lifecycle of a drug.6,71

Both the US Food and Drug Administration (FDA) and 
the European Medicines Agency support the implementa-
tion of good practice and consistent standards governing the 
use of MIDD strategies during the development and reg-
ulatory review of new therapies.3,72,73 Recent publications 
by the FDA underline this supportive outlook, encouraging 
the incorporation of MIDD into rational drug development 
and for best practices to be established and shared.6,70,74 
However, the continued use of MIDD depends on the ac-
ceptance of the techniques by all those involved in bring-
ing a new drug to patients, including decision makers in 
regulatory agencies as well as the pharmaceutical industry, 
medical experts, physicians, and payers.75 This includes 
the ability to rely on alternative technical expertise and to 
overcome perceptions that modeled data are less robust 
than data from clinical trials.76 During the development 
of ertugliflozin, each MIDD approach was developed in a 
collaborative and supportive manner whereby clinical, clin-
ical pharmacology, pharmacometrics, statistics, QSP, biol-
ogy, and regulatory colleagues aligned on the principles of 
MIDD to develop a comprehensive analysis plan, with com-
munication and feedback a key component throughout the 
model-development process.

In conclusion, the clinical development of ertugliflozin 
employed a range of end-to-end MIDD approaches that fa-
cilitated decision making, saved resources, and supported the 
successful registration and labeling of this novel SGLT2 in-
hibitor for the treatment of T2DM in adults.
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