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Gut microbiota has been proposed as an important environmental factor which can

intervene and modulate central nervous system autoimmunity. Here, we altered the

composition of gut flora with Clostridium butyricum and norfloxacin in experimental

autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We found

that appropriate C. butyricum (5.0 × 106 CFU/mL intragastrically daily, staring at

weaning period of age) and norfloxacin (5 mg/kg intragastrically daily, 1 week prior

to EAE induction) treatment could both ameliorate EAE although there are obvious

differences in gut microbiota composition between these two interventions. C. butyricum

increased while norfloxacin decreased the abundance and diversity of the gut microbiota

in EAE mice, and both of the treatments decreased firmicutes/bacteroidetes ratio.

In the genus level, C. butyricum treatment increased the abundance of Prevotella

while Akkermansia and Allobaculum increased in norfloxacin treatment. Moreover, both

interventions reduced Desulfovibroneceae and Ruminococcus species. Although there

was discrepancy in the gut microbiota composition with the two interventions, C.

butyricum and norfloxacin treatment both reduced Th17 response and increased Treg

response in the gastrointestinal tract and extra-gastrointestinal organ systems in EAE

mice. And the reduced activity of p38 mitogen-activated kinase and c-Jun N-terminal

kinase signaling in spinal cord could be observed in the two interventions. The results

suggested that manipulation of gut microbiota interventions should take factors such as

timing, duration, and dosage into consideration. The discrepancy in the gut microbiota

composition and the similar protective T cells response of C. butyricum and norfloxacin

implies that achieving intestinal microecology balance by promoting and/or inhibiting the

gut microbiota contribute to the well-being of immune response in EAE mice.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune inflammatory
demyelinating disease of the central nervous system (CNS)
and its incidence continues to increase worldwide (1). The
pathogenesis of MS is complex and therapeutic effects
are not satisfying. Besides genetic factors, environmental
factors also play an important role in pathogenesis of MS.
Among them, gut microbiota can make a major contribution
to the disease both in susceptibility and protection (2–
4). Thus, the discovery of MS-related pathogenic and/or
protective gut microbiota organisms or their products would
provide novel opportunities for diagnosis and therapy of the
disease. The latter would mainly rely on appropriate probiotic
and/or antibiotic treatments, dietary modification, and fecal
microbial transplantation.

Probiotics are live bacteria that can exert beneficial effects on
the host when administered in appropriate amounts. Clostridium
butyricum (C. butyricum) is a butyric acid-producing bacterium
which has been widely used for improving gastrointestinal
function as probiotics. It has been demonstrated to ameliorate
experimental colitis and asthmatic in mice by reversing the
imbalance of Th1/Th2 through IL-10 dependent mechanism
(5, 6).C. butyricum also can protect against autoimmune diabetes
in mice by modulating Treg/Th17 differentiation and generate
a less pro-inflammatory immunological microenvironment in
the gut (7). Moreover, it has been used for treatment of human
gastrointestinal disease in clinical practice (8, 9). Rare reports
was investigated the effects of C. butyricum on experimental
autoimmune encephalomyelitis (EAE), a classical animal model
of MS.

Antibiotics can easily affect the components of the gut
microbiota and alleviate EAE (10, 11). The study of antibiotics
on EAE did not focus on gut microbiota, but on other
EAE pathogenesis-related components (12). Norfloxacin is a
fluoroquinolone antibiotic which has pleiotropic effects beyond
its bactericidal effect (13–15). It exerts immunomodulatory
effects via maintaining low endotoxin levels and stimulating
the production of IL-10 in experimental cirrhosis mice
(13, 14). Moreover, norfloxacin inhibits lipopolysaccharide-
induced pro-inflammatory cytokine production such as
tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-
1β), then modifies inflammatory responses (15). However,
gut microbiota intervention with norfloxacin on EAE has
never been examined.

In the present study, C. butyricum and norfloxacin were
selected as gut microbiota interventions on EAE. We found
that appropriate C. butyricum and norfloxacin can ameliorate
EAE although there are obviously different changes in gut
microbiota composition between the two interventions.
The benefit of these two interventions is associated with
reduced Th17 response and increased Treg response in the
gastrointestinal (GI) tract and extra-GI organ systems in
EAE mice. And the reduced activity of p38 p38 mitogen-
activated kinase (MARK) and c-Jun N-terminal kinase (JNK)
signaling may contribute to the molecular mechanisms of these
benefit effects.

MATERIALS AND METHODS

Mice and Reagents
C57BL/6J WT female mice were purchased from Guangdong
Medical Laboratory Animal Center (Guangzhou, China). All
mice were maintained under specific pathogen free conditions at
South China Agricultural University (Guangzhou, China). The
mice were allowed to acclimatize to the laboratory for 1 week
prior to beginning of the study. All experiments were performed
using female mice in accordance with guidelines for animal care,
created by according to the National Institutes of Health Guide
for Care and Use of Laboratory Animals and approved by the
Bioethics Committee of South China Agricultural University
(Approval ID: 2018-D006). C. butyricum powder (GDBIO1501,
GDBIO-TECHBiotechnology) was stored at−20◦C.Norfloxacin
were purchased from Ji Lin SUNFUNG MEDCINE Co., Ltd,
and MOG35-55 peptide (MEVGWYRSPFSRVVHLYRNGK) was
synthesized by CL. BioScientific CO., LTD (Xi’an, China).
Amino acid sequences were confirmed by aminoacid analysis
and mass spectroscopy. The purity of the peptide was >95%.
Mycobacterium tuberculosis H37RA was purchased from Difco
(Detroit, MI). Pertussis toxin (PTX) was purchased from Alexis
Corp (San Diego, CA). FITC- or PC-5.5-conjugated anti-mouse
CD4, PC-7A-conjugated anti-mouse IFN-γ (interferon-gamma),
PE-conjugated anti-mouse IL-17A, PE-conjugated anti-mouse
Foxp3 were purchased from eBioscience (San Diego, CA, USA).
P38 MAPK, p-p38 MAPK, extracellular signal-regulated kinase
(ERK) 1/2, p-ERK 1/2, JNK, p-SAPK/JNK were purchased from
Cell Signaling Technology (USA).

Dose-Finding Experiments and Treatment
of Mice
Mice were randomly assigned to four groups: control mice,
PBS-treated EAE mice, C. butyricum-treated EAE mice, and
norfloxacin-treated EAE mice. The concentrations of C.
butyricum and norfloxacin were chosen on the basis of previous
in vivo data and our preliminary dose-finding experiment.
Because 3–4 weeks (weaning period) of age, is an ideal time
for probiotic intervention (7, 16), 5.0 × 105, 5.0 × 106, and
5.0 × 107 CFU/mL concentrations of C. butyricum in PBS
(200 µL) was intragastrical administration 3 weeks before
EAE induction, and 5.0 × 106 CFU/mL concentration of C.
butyricum was selected as the optimal dosage. One week prior
to EAE induction, mice received norfloxacin in PBS 5 mg/kg
intragastrically daily (14, 17).

Induction and Assessment of EAE
EAE was induced by the procedure which had been described
previously (18, 19). Briefly, 6–8 week female mice received a
subcutaneous injection in the flanks with 300 µg of MOG35-
55 peptide per animal emulsified in CFA containing 500 ug
of Mycobacterium tuberculosis H37RA. Immediately thereafter,
and again 48 h later, the mice received an intraperitoneal (i.p.)
injection of 300 ng of PTX in 100 µL of phosphate buffered
saline (PBS). An additional injection of MOG35-55 peptide in
CFA was delivered 7 days later. The animals were examined daily
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for disability. Clinical assessment of EAE scores was performed
daily on a scale of 0–5 as instructed (19).

Histology Evaluation
After 21 days post immunization, different treated mice (n = 6)
were fixed by heart perfusion with 4% (w/v) paraformaldehyde,
and the lumbosacral spinal cords were obtained and embedded
in paraffin. Paraffin sections were stained with hematoxylin
and eosin and solochrome cyanin impregnation for evaluating
inflammatory infiltration and demyelination, respectively. The
scale evaluated for inflammation was as follows (20): 0, no
inflammatory cells; 1, a few scattered inflammatory cells; 2,
organization of inflammatory infiltrates around blood vessels;
3, extensive perivascular cuffing with extension into adjacent
parenchyma, or parenchymal infiltration without obvious
cuffing. Demyelination in the spinal cord was scored as
previously described (21, 22): 1, traces of subpial demyelination;
2, marked subpial and perivascular demyelination; 3, confluent
perivascular or subpial demyelination; 4, massive perivascular
and subpial demyelination involving one half of the spinal cord
with presence of cellular infiltrates into CNS parenchyma; 5,
extensive perivascular and subpial demyelination involving the
whole cord section with presence of cellular infiltrates into
CNS parenchyma.

16S rRNA Gene Sequencing
Fresh extruded stools were collected before EAE treatment
and immediately positioned in carbon dioxide ice for the gut
microbial analysis. Feces DNA was extracted using QuickGene
DNA tissue kit from Kurabo Company (Neyagawa, Japan) and
sent for PCR amplification and sequencing of the V3 and V4
region of bacterial 16S rRNA genes using the Illumina MiSeq
technology at BGI Co. (Shenzhen, China).

For alpha diversity analysis, we rarified the OTU to several
metrics, including curves of OTU rank, rarefaction and Shannon,
and calculated indexes of Shannon, Chao1, Simpson, and
ACE. For beta diversity analysis, principal component analysis
(PCA) was performed using QIIME (23). The LDA effect size
(LEfSe) analysis was performed for the quantitative analysis of
biomarkers among each group (24). Briefly, LEfSe analysis, LDA
threshold of >4, used the non-parametric factorial Kruskal-
Wallis (KW) sum-rank test and then used the (unpaired)
Wilcoxon rank-sum test to identify the most differently
abundant taxa.

Intracellular Cytokine and Intra-Nuclear
Foxp3 Staining
For intracellular cytokine staining, lymphocytes isolated from
designated organs 21 days after immunization were stimulated,
fixed and permeabilized as instructed (25), followed by
fluorescent-conjugated intracellular cytokine antibody staining.
Intra-nuclear fork-head box p3 (Foxp3) was stained using the
Foxp3 Staining Buffer Set (eBioscience, San Diego, CA, USA).

Western Blot
To investigate the protein expression of p38 MAPK, p-p38
MAPK, ERK1/2, p-ERK1/2, JNK, p-JNK in the spinal cord of

control mice, PBS-treated EAE mice, C. butyricum-treated EAE
mice, and norfloxacin-treated EAE mice, we performed Western
blot analysis. Samples of the spinal cord from differently treated
mice were loaded on 10% gradient sodium dodecyl sulfate-
polyacrylamide gels (20mg protein per lane). Proteins were
transferred onto PVDF membrane (Bio-Rad). The membranes
were blocked by 5% non-fat milk. Afterward, the membranes
were incubated with p38 MAPK (1:1,000), p-p38 MAPK
(1:1,000), ERK1/2 (1:1,000), p-ERK1/2 (1:1,000), JNK (1:1,000),
p-JNK (1:1,000) overnight, respectively. After three times, washes
with TBST buffer, themembrane was incubated with anti-mouse-
HRP and goat anti-rabbit-HRP for 30min, respectively. The
experiment was repeated in triplicate and β-actin was used as
internal control.

Statistical Analysis
Data were expressed as mean ± s.d., except for the clinical
EAE score, which was expressed as mean ± s.e.m. Differences
between two groups were analyzed by a two-tailed Student’s
t-test. ANOVA was used to compare difference of data from
more than two groups, and the non-parametric data. Statistically
significant data are indicated by asterisks (∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001, and ∗∗∗∗ P < 0.0001). Experiments were repeated
three time.

RESULTS

Gut Microbiota Interventions With C.

butyricum and Norfloxacin Ameliorated
EAE
In an attempt to study the effects of the gut intervention on EAE,
C.butyricum and norfloxacin treatment were used.We found that
5.0 × 105 CFU/mL C. butyricum treatment could not produce
protective effects on EAE mice. Both 5.0 × 106 and 5.0 × 107

CFU/mL C. butyricum could suppress the severity of EAE while
there were no significant differences between these two groups.
Therefore, 5.0× 106 CFU/mL was selected as the optimal dose in
the following experiments. Results showed that both treatments
significantly ameliorated the disease severity, as evidenced by
reduced disease score (Figure 1A). As for neuropathology, both
treatments could decrease lymphocyte infiltration and plaques
of demyelination in lumber spinal cord (Figures 1B–E). These
results indicated that gut microbiota interventions with C.
butyricum and norfloxacin both could ameliorate clinical severity
and neuropathology of EAE mice. And we did not find any
obvious adverse effects of C. butyricum or norfloxacin at the
chosen doses.

Gut Microbiota Interventions With C.

butyricum and Norfloxacin Reconstituted
the Composition of Intestinal Flora in
EAE Mice
In order to investigate the gut microbial profile under C.
butyricum and norfloxacin treatment, we analyzed the fecal
bacteria from EAE mice by sequencing the bacterial 16s
rRNA V3+V4 region. Based on 97% similarity level, all of
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FIGURE 1 | C.butyricum and norfloxacin treatment both ameliorated clinical severity and neuropathology of EAE mice. (A) Clinical score was assessed daily and

shown (n = 8). (B–E) At 21 days post immunization, lumbosacral spinal cords were isolated and performed H&E (n = 6) (D) or Solochrome cyanin impregnation (E)

staining for assessment of histopathology. Representative sections (D,E) and statistical analysis (B,C) data are shown. The infiltration of lymphocytes and

demyelination are highlighted by arrow. Experiments were repeated three times with similar results. Statistically significant data are indicated by asterisks (**P < 0.01

and ***P < 0.001).

the effective reads were clustered into operational taxonomic
units (OTUs). The intestinal microbiota structural changes
were then analyzed using unsupervised multivariate statistical
methods PCA. Genus species phylogeny tree revealed the
relationship between intestinal flora compositions in mice
(Figure 2A). As shown in Figures 2B–J, three groups presented
a distinct clustering of microbiota composition and norfloxacin
decreased the number of OTUs while C. butyricum increased
the numbers of OTUs. The observed species (Figure 2D), as
well as the indexes of Chao1 (Figure 2E), ACE (Figure 2F),

Shannon (Figure 2G), and Simpson (Figure 2H) were calculated.
Consistent with the number of OTUs, norfloxacin treatment
significantly reduced both the abundance and diversity while C.
butyricum treatment increased the abundance and diversity of
the intestinal microbiota.

As shown in Figures 2I,J, the phylum level and genus
level analysis demonstrated that both C. butyricum and
norfloxacin administration significantly increased the relative
abundance of Bacteroidetes and decreased the relative abundance
of Firmicutes. Furthermore, norfloxacin notably increased
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FIGURE 2 | Responses of the diversity, richness, and structure of the gut microbiota to sham, C. butyricum, and norfloxacin treatment in EAE mice. (A) Genus

species phylogeny tree of all three groups. (B) Venn diagram of each group and the number of differences between species are shown. (C) Unweighted Unifrac

principal coordinates analysis plots 3D of each sample and the distance of each group are shown. Each sample was collected from three mice (n = 3). (D–H) shows

the Observed species index, Shannon index, Chao index, Simpson index, and ACE index of each group. (I–J) Relative abundances of the gut microbiota at phylum

level and genus level. Statistically significant data are indicated by asterisks (*P < 0.05 and ***P < 0.001). ns, not significant.
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the abundance of Verrucomicrobia. LEfSe and LDA score
were employed to identify the differential distribution of
microbiota among three groups (Figure 3). We found that
C. butyricum induced a trend of a large increase in Prevotella
while norfloxacin administration induced a trend of a large
increase in Akkermansia and Allobaculum. Both C. butyricum
and norfloxacin treatment can reduce the abundance of
Desulfovibroneceae and Ruminococcus. Collectively, these
results revealed the reconstitution of the gut microbiota
composition in EAE mice when treated by C. butyricum
or norfloxacin.

Gut Microbiota Interventions With C.

butyricum and Norfloxacin Suppressed
Th17 Cells Response and Increased Treg
Response in EAE Mice
EAE is caused by aberrant T-cell responses to myelin self-
peptides (26). And alterations of gut microbiota are involved
in the changed T cells response in autoimmune diseases in
the gastrointestinal (GI) tract and extra-GI organ systems (27).
We further detected the levels of Th17 (CD4+ IL-17A+) and
Th1 (CD4+ IFN-γ+) in the CNS, inguinal lymph nodes (LN),
spleen, small intestine, and colon (Figure 4). And CD4+ Foxp3+

Treg cells in the LN, spleen, colon and small intestine were
also analyzed in EAE mice (Figure 5). Results showed that C.
butyricum reduced Th17 cells in all above-mentioned regions
while norfloxacin reduced Th17 cells in CNS, LN, colon,
and spleen except small intestine (Figures 4A–D). When it
comes to Th1 cells, only the proportion of IFN-γ producing
CD4+ T cells in the spleen from the C. butyricum group was
reduced (Figures 4A–D). And no significant differences were
noted in the percentages of Th1 cells in norfloxacin treatment
in EAE mice (Figures 4A–D). We also found no statistical
differences in IL-17A+ IFN-γ+ positive CD4T cells in the
treated groups (data not shown). Moreover, Treg cells decreased
in the above regions while treatment with C. butyricum and
norfloxacin promoted the Treg differentiation in EAE mice
(Figures 5A,B).

Gut Microbiota Interventions With C.

butyricum and Norfloxacin Suppressed the
MAPK Pathway in EAE Mice
T cell activation depends upon phosphorylation of MAPKs,
which plays a critical role in the regulation of immune
responses. MAPKs signaling, including p38 MAPK, ERK1/2,
and JNKs, plays important roles in Th17 cell differentiation,
which is a central player in MS and EAE (28, 29). We
evaluated the expressions of MAPK signaling in the lumbar
spinal cord of different groups by Western blot. We found
that the level of phosphorylation of p38 MAPK, ERK1/2 and
JNK was significantly increased in the lumbar spinal cord
of EAE mice. Both C. butyricum and norfloxacin treatment
suppressed the elevation of p38 MAPK and JNK, whereas the
phosphorylation of ERK1/2 was not affected in the EAE mice
(Figure 6).

DISCUSSION

Gut microbiota, particularly bacterial community has been
proposed as an important environmental factor which can
intervene and modulate CNS autoimmunity. Here, we
demonstrated that altering gut flora by C. butyricum and
norfloxacin could alleviate EAE in C57 BL/6 mice. In this
experiment, the timing and duration of the two interventions
were different. C. butyricum (5.0 × 106 CFU/mL) treatment
started at 3–4 weeks aged mice because weaning period in C57
BL/6 mice is important for the development of its immune
system (7, 16, 30). Early life antibiotics intervention can
predispose an individual to develop CNS autoimmunity diseases
in latter life, thus norfloxacin (5 mg/kg intragastrically/daily)
treatment started 1 week prior to EAE induction (31, 32). We
found that both interventions could ameliorate EAE while
the alteration of gut microbiota composition is different. C.
butyricum treatment increased the abundance and diversity
of the gut microbiota in EAE mice. The results are consisted
with previous reports that C. butyricum could regulate gut
homeostasis and improve gastrointestinal function as probiotics.
Also, it reconfirmed that weaning period of age is an ideal time
for probiotic intervention (7, 16, 30). Norfloxacin treatment
significantly reduced both the abundance and diversity of
the gut microbiota in EAE mice. The reduced abundance
and diversity of gut microbiota in different situation could
produce discrepancy results after norfloxacin treatment
(31, 32). It was reported that norfloxacin administration
for 2 weeks could suppress gut flora thus enhance glucose
tolerance in diabetes mice and show beneficial effects for
improving glycemic control (31), while norfloxacin treatment
for the same time duration induced gut drug resistance
gene expression and restricted the growth of collembolans
(32). In our experiment, 5 mg/kg/d norfloxacin treatment
for 1 week before EAE immunization produced beneficial
effects on EAE mice. The results remind us that manipulating
gut microbiota interventions on EAE should consider the
timing, dosage and duration, which may consequently lead to
divergent outcomes.

In the phylum level analysis, supply of C. butyricum and
norfloxacin both can significantly increase the abundance of
Bacteroidetes and decrease the richness of firmicutes in EAE
mice. Firmicutes and Bacteroidetes are the two major members
of gut bacteria at the phylum level and play an important
role in modulating host inflammation and immune status (33).
And the elevated firmicutes/bacteroidetes ratio (F/B ratio) can
describe pro-inflammatory environment and immunological
imbalance characteristic of autoimmune disorders (34, 35). It
was reported that bacteroidetes can regulate intestinal epithelium
function and reduce inflammation (34, 35). Some of them
produce short chain fatty acids (SCFAs) including acetate,
propionate and butyrate. SCFAs were reported to promote
production of anti-inflammatory cytokines transforming growth
factor-β (TGFβ) and IL-10, then activate Treg cells and
modulate inflammatory and immune responses in host (36).
Firmicutes are thought to have important and core roles in
the host’s metabolism (37). It could lead to the increased
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FIGURE 3 | Identification of differential microbes in response to C.butyricum and norfloxacin treatment in mice based on the linear discriminant analysis (LDA) and

effect size (LEfSe) pipeline. (A) Cladogram using LEfSe method indicated the phylogenetic distribution of gut microbiota associated with mice in three groups. (B) LDA

scores showed the significant bacterial differences in three groups.

production of metabolic endotoxins like lipopolysaccharides,
which was able to enter the blood streams and caused the
chronic inflammation (38). We found that decreased F/B

ratio in C. butyricum and norfloxacin treated EAE mice.
This may be one of the important factors that contribute
to the alleviation of EAE. Moreover, norfloxacin treatment
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FIGURE 4 | Gut microbiota intervention diminish Th17 responses in EAE. Lymphocytes from CNS, LN, small intestine, colon, and spleen were isolated 21 days post

immunization and used for assessment of different CD4T cell subsets. (A) Representative staining of different CD4T cell subsets in CNS and LN, gated on TCRβ+

CD4+. (B) Statistical analysis of the percentages of IL-17 and IFN-γ in (A). Representative staining (D) and statistical analysis (C) of IL-17 and IFN-γ in CD4T cells

isolated from small intestine, colon, and spleen of mice, gated on TCRβ+ CD4+. Statistically significant data are indicated by asterisks (**P < 0.01 and ***P < 0.001).

ns, not significant.

increased abundance of Verrucomicrobia which is usually used
as probiotics for its capacity of reducing inflammatory immune
responses (25).

When it comes to the genus level analysis, we found that
treatment with C. butyricum was associated with increased
relative abundance of Prevotella, while genus Akkermansia

Frontiers in Immunology | www.frontiersin.org 8 July 2019 | Volume 10 | Article 1662

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Gut Microbiota Intervention Ameliorate EAE

FIGURE 5 | Gut microbiota intervention expanded the Treg cells in EAE. (B) Representative staining of different CD4T cell subsets in inguinal LN, colon and small

intestine, gated on TCRβ+ CD4+. Statistical analysis of data in (A). Statistically significant data are indicated by asterisks (*P < 0.05, **P < 0.01, and ***P < 0.001).

and Allobaculum increased in norfloxacin treated EAE mice.
In MS patients, Prevotella was decreased without treatment
but increased after treated with disease-modifying drugs
such as interferon-β (IFN-β) and glatiramer acetate (GA)
(3). Prevotella could also metabolize phytoestrogens into
beneficial metabolites and promote the generation of butyrate
(one of SCFAs) which has anti-inflammatory and immune-
modulating effects (39–41). Akkermansia and Allobaculum
are mucin-degrading bacteria and increased in norfloxacin
treated EAE mice. Whether the increase of Akkermansia
could exhibit beneficial activities by mucin degradation is
controversial (42–47). It was reported that Akkermansia have
immunoregulatory effects on converting mucin to SCFAs, and
attenuating inflammation in adipose tissue through induction
of Foxp3 regulatory T cells, and suppression of IL-6 and
IL-1β (42, 43). And Akkermansia also plays a reverse role
in degrading the mucus layer in proinflammation function
(44, 45). The discrepancy suggests that whether Akkermansia

produce pro- or anti-inflammatory effects depending on the
immune status of the host. Allobaculum was reported to be
inversely correlated with dietary-induced inflammation markers,
including leptin and IL-22 (46, 47). Furthermore, both C.
butyricum and norfloxacin treatment reducedDesulfovibroneceae
and Ruminococcus species which are reported to be the IL-17
provocating bacteria (48, 49).

Moreover, we found although both C. butyricum and
norfloxacin could decrease F/B ratio and alleviate EAE, the genus
level analysis of gut microbiota was obviously different. This
suggested that the overall change and outcome of intervention
of gut microbiota is intricate. Each strain of bacteria may
have good or bad or no effect on EAE, and the balance of
the all the bacteria may determine the overall effect of gut
microbiota. The final outcome of an intervention may depend
on whether it could promote the good bacteria and/or inhibit
bad bacteria to achieve a balanced and beneficial community
in EAE mice. In different situation, a balanced community
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FIGURE 6 | Gut microbiota intervention suppressed the phosphorylation of p38 MAPK and JNK, but not ERK1/2 in the lumbar spinal cord of EAE mice. The

expressions of p38 MAPK, JNK, ERK1/2 and their phosphorylation expression were analyzed by Western blot. Statistically significant data are indicated by

asterisks (**P < 0.01 and **** P < 0.0001). ns, not significant.

of gut microbiota may show inter-individual differences, so
“good” or “bad” bacteria may be a shift status at different
condition. And this can explain why the specific bacterial strains
have distinct effects in different hosts as well as the same
treatment may produce divergent outcomes in different status in
autoimmune diseases.

Gut microbiota can modulate the immune response in a
variety of ways, such as affecting antigen presentation and
regulating the production of cytokines and the function of
lymphocytes (50). We further investigated the effects of C.
butyricum and norfloxacin treatment on T cell responses
which play an important role in regulation and propagation
of encephalitogenic immune damage (51). We found that C.
butyricum treatment reduced CNS-, LN-, small intestine-, colon-
, and spleen- infiltration of pro-inflammatory Th17 cells, and
increased the percentages of Tregs in LN, colon, and small
intestine. The above mentioned gut microbiota alternation may
be responsible for this effect. As Th17 cells are considered
as the main population of pathogenic T cells driving EAE
while Treg cells are of paramount importance for suppressing
inflammatory immune responses in EAE (25, 51, 52), the change
of T cells response in our study account for the reduced clinical
and neuropathology score in EAE mice in our experiment.
The results are consistent with a series of researches in which
beneficial effects of gut microbes intervention with probiotics
on EAE were achieved through generation of Tregs (53–55). No
significant differences were observed in the IFN-γ producing

Th1 cells in CNS, LN, small intestine and colon. The results
suggested that the Th1 response in these locations may not
be affected by C. butyricum treatment in this experiment.
Interestingly, C. butyricum decreased the frequency of Th1 cells
in spleen. Since spleen is an important peripheral immune
organ in EAE, reduced Th1 in spleen may attenuate the
severity of EAE. Further studies to explore the relationships
of C. butyricum, the gut microbes and the Th1 response are
highly wanted.

Norfloxacin displayed reduced CNS-, LN-, colon-, and spleen-
infiltration of pro-inflammatory Th17 cells and increased the
percentages of Tregs were observed in LN, colon, and small
intestine. Our results are consistent with previous studies
which found that the protective effect of antibiotic treatment
in EAE is related with a regulation of the abnormal in T
cell responses including increasing secretion of Treg cells (10,
56). Besides the reduced F/B ratio and Desulfovibroneceae
and Ruminococcus species, increased the Akkermansia and
Allobaculum may also contribute to the beneficial effects.
However, the Th17 of small intestine was not decreased in
EAE mice. This result may be partly due to that Th17
cells mostly differentiate in small-intestinal lamina propria
(57–59). And it may have better resistance capacity to
norfloxacin treatment. No significant differences were noted
in the percentages of Th1 cells in norfloxacin treatment. Our
results verified the extra-anti-infective effects of norfloxacin
on hosts through the modulation of gut microbiota and
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immune response in EAE mice. And this is consistent
with previous reports that norfloxacin could enhance a
regulatory T cell-mediated inflammatory control in cirrhosis by
maintaining low IL-2 and IFN-γ levels and stimulating IL-10
production (13, 14).

The molecular mechanisms behind the protective effect
of C. butyricum and norfloxacin may be associated with
MAPK signaling. We found that the p38 MAPK and
JNK, but not ERK1/2, were not activated by C. butyricum
and norfloxacin administration. p38 MAPK-mediated
signaling, a well-characterized integrator of environmental
stressors (60), regulates numerous cellular events associated
with the inflammatory response, cell proliferation and
cell survival and induction of Th17 cell differentiation
(60, 61). Additionally, the coupling of both the p38 and
JNK-MAPK pathways to T cell receptor signaling might
allow for lineage-specific signals in T cell differentiation
(62). Collectively, these researches suggest that alterations
in MAPK signaling may be associated with changes in
the microbiota.

In conclusion, interventions with C. butyricum and
norfloxacin influenced the composition of gut microbiota
and, consequently, modulated the immune response in EAE
mice. These findings support the idea that gut microbiota
modulation has the potential to the future treatment of MS.
The results also remind us that factors such as timing, duration
and dosage must be carefully considered in probiotics and
antibiotic-associated manipulation of the gut microbiota. The
“good bacteria” are not always beneficial and “bad bacteria”
are not always bad for hosts at any conditions. Recovery from
dysbiosis by gut microbiota intervention on MS patients should
consider the cross-talk between gut bacteria and immune status
of the host. This study contributes to the pool of knowledge

regarding the complex relationship between gut microbiota and
CNS autoimmunity.
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