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bacteria
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Rui Liu*
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China

Nitrification inhibitor (NI) is often claimed to be efficient in mitigating nitrogen

(N) losses from agricultural production systems by slowing down nitrification.

Increasing evidence suggests that ammonia-oxidizing archaea (AOA) and

ammonia-oxidizing bacteria (AOB) have the genetic potential to produce

nitrous oxide (N2O) and perform the first step of nitrification, but their

contribution to N2O and nitrification remains unclear. Furthermore, both AOA

and AOB are probably targets for NIs, but a quantitative synthesis is lacking

to identify the “indicator microbe” as the best predictor of NI efficiency under

different environmental conditions. In this present study, a meta-analysis to

assess the response characteristics of AOB and AOA to NI application was

conducted and the relationship between NI efficiency and the AOA and AOB

amoA genes response under different conditions was evaluated. The dataset

consisted of 48 papers (214 observations). This study showed that NIs on

average reduced 58.1% of N2O emissions and increased 71.4% of soil NH+4
concentrations, respectively. When 3, 4-dimethylpyrazole phosphate (DMPP)

was applied with both organic and inorganic fertilizers in alkaline medium

soils, it had higher efficacy of decreasing N2O emissions than in acidic soils.

The abundance of AOB amoA genes was dramatically reduced by about 50%

with NI application in most soil types. Decrease in N2O emissions with NI

addition was significantly correlated with AOB changes (R2 = 0.135, n = 110,

P < 0.01) rather than changes in AOA, and there was an obvious correlation

between the changes in NH+4 concentration and AOB amoA gene abundance

after NI application (R2 = 0.037, n = 136, P = 0.014). The results indicated

the principal role of AOB in nitrification, furthermore, AOB would be the best

predictor of NI efficiency.
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Introduction

Nitrification is a crucial process in the nitrogen (N) cycle,
involving the oxidization of ammonium (NH+4 ) to nitrate
(NO−3 ) through nitrite (NO−2 ). The process supplies significant
amounts of N to be taken up by growing crops. However,
unabsorbed N is lost to the atmosphere or the soil below
the root zone. These unwanted losses of N have significant
implications for the environment, for example NO−3 leaching
and greenhouse gas emissions (GHG), particularly nitrous oxide
(N2O). N2O is a potent GHG which greatly contributes to
global climate change, it has a 265-fold higher global warming
potential than CO2 (IPCC, 2014) and it is involved in the
destruction of the protective ozone layer (Ravishankara et al.,
2009), which has become one of society’s most important
challenges (Desloover et al., 2012).

The application of nitrification inhibitor (NI) is a promising
technology to reduce N losses in different kinds of soil
systems. In agriculture, several chemical compounds were
designed to delay the steps of microbial oxidation of NH+4
to NO−3 in the soil to decrease N2O emissions, such as 3, 4-
dimethylpyrazole phosphate (DMPP), dicyandiamide (DCD),
and 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin). Of
these, DMPP is the most efficient commercial compound, which
is applied as dihydrogen phosphate salt to reduce its loss
through evaporation. NIs target the first step, i.e., the enzyme
ammonia monooxygenase (AMO) in the case of DMPP (and
other N-containing inhibitors) presumably through reversible
complexation of the enzyme’s Cu center (McCarty, 1999;
Beeckman et al., 2018). Ammonia-oxidizing archaea (AOA) and
bacteria (AOB) both perform the first step of nitrification and
are probably targets for NIs. The impact of NIs in delaying
nitrification and reducing N2O emissions has been widely
reported (Huang et al., 2014; Cai and Akiyama, 2017; Xu et al.,
2019). However, the effectiveness of NIs varies greatly within
different soils (Shi et al., 2017; Zhu et al., 2019), fertilizers
(Pereira et al., 2010), and moisture content (Chen et al., 2010;
Hu et al., 2015a; Fan et al., 2019). Soil temperature is another
key factor controlling NI efficiency, which can subside after 1
week at 35◦C (Barth et al., 2008; Chen et al., 2015). Furthermore,
many studies focused on the impact and contribution of soil
microorganisms on N2O emissions (Chen et al., 2019; Lazcano
et al., 2021; Yang et al., 2021; You et al., 2022). However,
there is still a lack of direct evidence on whether soil microbial
community, especially AOA and AOB, affects NI efficacy (Chen
et al., 2010; Guardia et al., 2018; Lam et al., 2018).

Within the major N-cycling microbes, AOA and AOB are
important functional strains, and both carry the amoA gene
which encodes AMO (Xia et al., 2018). Due to its strong
conserved nature, the amoA gene is often used as a biomarker
for exploring ammonia-oxidizing microorganisms (Schleper
and Nicol, 2010). This has certain advantages in analyzing the
genetic diversity of ammonia-oxidizing microorganisms. The

differences in cellular biochemistry and physiology between
AOA and AOB lead to their different ecological niches in
different agroecosystems in terms of sensitivity to soil pH, soil
texture, N forms, moisture, temperature and other conditions
(Morimoto et al., 2011; Prosser and Nicol, 2012; Hu et al.,
2015b). Hu et al. (2013) showed that the increase of nitrification
activity in most acidic soils was positively correlated with the
increase of AOA quantity, but not with AOB. In general,
AOB dominates nitrification in neutral and alkaline soils,
while AOA is more suitable to the acidic environment (Lu
et al., 2012; Li et al., 2018). Increasing the NH+4 concentration
will enhance the nitrification activity of AOB (Okano et al.,
2014), while AOA prefers an environment with a lower NH+4
concentration. For example, a low pH environment is favorable
for the formation of NH+4 and changes the utilization of
NH+4 by AOB (Ying et al., 2017). Therefore, different edaphic
and environmental conditions would influence AOA and AOB
nitrification activity, and in turn affect the response of AOA and
AOB to NI application.

To date, most studies on the inhibitory effect of NIs on AOA
and AOB have focused either on the change of the amoA gene
population (Prosser and Nicol, 2008; Kleineidam et al., 2011) or
on the change of the AOA and AOB community (Zhang et al.,
2012a; Liu et al., 2015). There is very little research available
with respect to the “indicator microbe,” AOA or AOB, as the
best predictor of NI efficiency under different environmental
conditions. In acidic soils, AOA played a dominant role in
nitrification and N2O production (Liu et al., 2016; Gu et al.,
2019; Zhou et al., 2020), but NIs especially DMPP showed a
lower inhibitory effect in acidic soils. Furthermore, many studies
showed that NIs effectively decreased the AOB population, but
not AOA (Gong et al., 2013; Liu et al., 2015, 2017; Dong et al.,
2018; Yin et al., 2021). Hence, it was hypothesized that AOB are
more sensitive to NIs than AOA and NIs would work through
selectively inhibiting AOB.

Using a meta-analytical approach, results of 48 individual
studies were combined to estimate the variations of NI efficiency
in different edaphic and experimental conditions. Moreover, the
general trends in the response of AOA and AOB abundance
to NI addition were explored. Lastly, the efficiency of NIs
was investigated by looking at the relationship among AOA
or AOB amoA gene abundance and N2O emissions. This
approach will help to identify the “indicator microbe,” AOA
or AOB, as the best predictor of NI efficiency under different
environmental conditions.

Materials and methods

Data compilation

The databases used for the data collection included
Web of Science, WanFang digital database and China
knowledge Resource Integrated to search for relevant studies
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FIGURE 1

Selection of studies for inclusion in the meta-analysis.

published between 2010 and 2021. The key search terms were:
nitrification inhibitors, nitrification, N2O, amoA gene, AOA,
AOB, ammonia-oxidizing. The number of studies selected at
various stages is shown in the flow diagram in Figure 1. After
screening the literature, the database consisted of 214 selected
pairwise comparisons reported in 48 studies (Supplementary
Table 1), which met predetermined quality criteria (studies with
replication, with detailed information, and performed under
greenhouse, field and controlled laboratory conditions) (Abalos
et al., 2022). All the studies included pairwise comparisons
in which treated soil (with NI addition) was compared to
an untreated control (without NI addition). Furthermore, the
collated observations which were screened should measure
the abundance of the amoA functional gene for AOB and
AOA and the studied ecosystem type belonged to pastoral or
agricultural environments.

In these present analyses, to take full advantage of
published results, multiple experimental treatments from the
same study were included (e.g., treatments that varied by N
fertilizer type). However, only one measurement from each

experimental replicate was included to maximize independence
among measurements (Carey et al., 2016). For instance, the
highest NH+4 concentration was selected from the studies
where NH+4 concentration was measured multiple times from
the same treatment.

The mitigation of cumulative N2O emissions and the
changes in NH+4 concentrations were considered as the
evaluation variables of the NI inhibitory effect. The change
of amoA gene abundance was reflected as the influence of
NIs on microorganisms. Of all the 214 observations in the
present study, observations 155, 174, 166, 147 concerned N2O
yield, NH+4 concentration, AOB amoA and AOA amoA gene
abundance, respectively. Data on soil physical and chemical
properties and experimental conditions were also collected from
the original literature to analyze their influence on NI efficacy.
Soil pH, soil organic matter (SOM), soil texture, soil moisture
content (water filled pore space, WFPS and water holding
capacity, WHC), soil temperature (TEMP), N fertilizer type, N
application rate (NR), and NIs type were chosen to assess how
edaphic conditions and management measures influenced NI
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efficacy. The following were the categorical variables classified
into different groups:

– Soil pH: (1) soil pH ≤ 6, (2) 6 < soil pH < 8, (3) soil
pH ≥ 8

– SOM (g kg−1): (1) SOM ≤ 20, (2) 20 < SOM ≤ 40, (3)
SOM > 40

– Soil texture: (1) coarse (sand, loamy sand, sandy loam,
loam, silt loam, and silt), (2) medium (sandy clay loam,
clay loam, and silty clay loam), (3) fine (sandy clay, silty
clay, and clay)

– WFPS and WHC: (1) WFPS and WHC ≤ 40%, (2)
40% < WFPS and WHC ≤ 60%, (3) 60% < WFPS and
WHC ≤ 80%, (4) WFPS and WHC > 80%

– TEMP (◦C): (1) TEMP ≤ 20, (2) 20 < TEMP ≤ 25, (3)
TEMP > 25

– N fertilizer type: (1) NH+4 based fertilizer (including
ammonium chloride (NH4Cl), ammonium nitrate
(NH4NO3) and ammonium sulfate [(NH4)2SO4)], (2)
organic fertilizer (including livestock manure and
urine), (3) urea, (4) both (combination of organic and
inorganic fertilizer)

– NR (kg N ha−1): (1) NR≤ 100, (2) 100 < NR≤ 150, (3)
NR > 150

– NIs type: (1) DMPP, (2) DCD, (3) nitrapyrin and others

Data analysis

The natural logarithmic response ratio (lnRR) as an effect
size for each observation was calculated as Equation (1) (Luo
et al., 2006):

lnRR = ln
Xt
Xc
= lnXt − lnXc (1)

where Xt is the average value of index X from NIs treatments
and Xc is the average from the control treatments.

The results were expressed by using the conversion equation
according to Equation (2) as percentage change:

% change = (elnRR
− 1)× 100 (2)

A positive percentage change indicated increases in N2O yield,
NH+4 concentration, and amoA gene abundance after NI
addition, while a negative percentage change indicated decreases
in these variables (Sha et al., 2020). Replication-based weighting
was used to avoid the effect of extreme weightings, using the
following Equation (3) (Groenigen et al., 2011):

W =
nt × nc
nt + nc

, V =
1
W
=

nt + nc
nt × nc

(3)

where nt and nc were the number of replications in the treatment
group and control group, respectively.

The mean effect size of environmental and management
variables on NI efficacy was calculated by a random-effect model

TABLE 1 Between-group heterogeneity (Qb) illustrating the effects of
NIs additions on N2O emission and NH+

4 concentration across
categorical modifiers.

Explanatory variables N2O NH+

4

Qb Qb/Qt Qb Qb/Qt

Soil pH 16.06** 0.09 3.11 0.02

Soil texture 24.82** 0.16 0.64 0.006

Soil organic matter 3.45 0.03 15.02** 0.11

Moisture 2.60 0.02 9.15* 0.06

Temperature 3.81 0.02 18.99** 0.10

N application rate 3.47 0.02 13.30** 0.08

Fertilizer type 9.71* 0.06 7.24 0.04

NIs type 2.63 0.02 6.28* 0.04

Qb/Qt describes the proportion of total variation explained by each modifier. The P-value
is the probability value for randomization tests (999 permutations) with sample size as
the weighting function, calculated only for the Qb values; *P < 0.05; **P < 0.01.

and 95% of confidence intervals (CIs) were produced by a
bootstrapping procedure with 4,999 iterations (Sha et al., 2020).
In the present meta-analysis, Metawin 2.1 software (Rosenberg
et al., 2000) was applied to perform all the calculations. If the
95% CIs did not overlap zero, the effects of NIs on the evaluation
variables were considered significant. When the 95% CIs of
each categorical group did not overlap, there were significantly
different from each other. For each categorical variable, total
heterogeneity (Qt) was segmented into within-group (Qw)
and between-group (Qb). Qb/Qt describes the proportion of
total variation explained by each modifier. The P-value is the
probability value for randomization tests (999 permutations)
with sample size as the weighting function, calculated only for
the Qb values. A particular categorical variable was considered
to have a significant impact on the response ratio when Qb
was significant (P < 0.05) and was larger than the critical value
(Carey et al., 2016). The heterogeneity in different categorical
groups for each explanatory variable was also reported in
Tables 1, 2. Of all observations (from the 48 studies) included
in this meta-analysis, 113 and 110 measured the effect of NIs
on N2O emissions, and AOA and AOB amoA gene abundance
simultaneously. Of those, 133 and 136 measured NI effects
on NH+4 concentration changes in addition to AOA and
AOB amoA gene abundances, respectively. Based on these
observations, a regression analysis was conducted in Origin 9.0
to explore the relationship between the effects of NIs on NH+4
concentration, N2O emission and amoA gene abundance.

Results

Inhibitory effect of nitrification
inhibitors on nitrous oxide emissions

NIs effectively decreased N2O emissions across all
experimental and edaphic conditions. For the efficacy of
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TABLE 2 Between-group heterogeneity (Qb) illustrating the effects of
NIs additions on ammonia oxidizer across categorical modifiers.

Explanatory variables AOB AOA

Qb Qb/Qt Qb Qb/Qt

Soil Ph 3.53 0.03 0.16 0.002

Soil texture 1.37 0.01 5.99* 0.10

Soil organic matter 2.04 0.02 2.63 0.06

Moisture 3.31 0.02 1.39 0.02

Temperature 3.06 0.02 0.50 0.007

N application rate 0.89 0.006 3.00 0.04

Fertilizer type 43.76** 0.22 1.86 0.02

NIs type 0.80 0.01 0.17 0.002

Qb/Qt describes the proportion of total variation explained by each modifier. The P-value
is the probability value for randomization tests (999 permutations) with sample size as
the weighting function, calculated only for the Qb values; *P < 0.05; **P < 0.01.

NIs, soil pH, soil texture and fertilizer type were the best
explanatory variables (Table 1 and Figures 2A, 3A). N2O
emissions were reduced by 54.9, 51.4, 77.4% by NIs in acidic,
neutral and alkaline soils, respectively (Figure 2A), indicating
that NIs performed better in alkaline soils than in neutral and
acidic soils. The efficacy of NIs on reducing N2O emissions
reached 75.2% in medium soil (Figure 2A, 95% CIs ranged
8.0–10.62%) while it only reached 46.9 and 47.7% in coarse
and fine soils, respectively. The combined application of
NIs with both organic and NH+4 fertilizer or urea (at a
relatively high N rate above 100 kg N ha−1) performed better
(71.7%) than the combined application of NIs with organic
or inorganic fertilizer alone (43.8 and 52.2%) (Figure 3A).
Of all observations, DMPP was the best NI to mitigate N2O
emissions (63.3%).

Effect of nitrification inhibitors on NH+

4
concentration

NH+4 concentration was increased by 71.4% on average with
NI application across all experimental and edaphic conditions.
NIs had a stronger ability to restrain the oxidization of NH+4 in
soil with low SOM (below 20 g kg−1) when the soil WHC/WFPS
was lower than 40% (Figures 2B, 3B). The effect of NIs in
slowing nitrification was better when the temperature was lower
than 20◦C (Figure 3B and Table 1, P < 0.01). Different NIs
showed different efficacies in inhibiting nitrification, and DMPP
was the most effective inhibitor compared with others (98.9%
average change, 95% CIs range 36.5–48.8%, Figure 3B and
Table 1, P < 0.05). The greater soil NH+4 retention by DMPP
was associated with a lower N application rate (below 100 kg
N ha−1) (Figure 3B and Table 1, P < 0.05). In addition, NH+4
concentration in alkaline and neutral soils was more responsive
to NI addition than in acid soils.

Effect of nitrification inhibitors on
ammonia-oxidizing bacteria and
archaea

AOB amoA gene abundance negatively responded to NI
addition (Figures 2C, 3C). The response ratio was always lower
than or equal to zero, the magnitude significantly depended
on fertilizer type (P < 0.01; Table 2). The efficacy of NIs on
reducing AOB amoA gene abundance reached up to 90.08%
when NIs were applied with organic fertilizer, which was higher
than in NI application combined with inorganic fertilizer alone
and with both organic and inorganic fertilizers (Figure 3C).
However, no significant differences were observed in the
response of AOB gene abundance to NIs across most of the
categorical variables (P > 0.05; Table 2), including soil pH, NI
type, SOM, moisture, TEMP, and NR.

The response ratio of AOA amoA gene abundance was
always slightly lower than or equal to zero. It was observed that
only soil texture had significant impact on the responses of AOA
to NIs (P < 0.05; Table 2). Under certain experimental and
edaphic conditions, NIs increased AOA amoA gene abundances
(Figures 2D, 3D). Notably, AOA amoA gene abundance
positively responded to NIs in medium and fine soils (P < 0.05;
Table 2). Furthermore, when soil moisture was between 60 and
80% WHC/WFPS or NR was below 100 kg N ha−1, NIs could
increase AOA amoA gene abundance (Figure 3D).

Relationship between nitrous oxide
emissions, the efficiency of nitrification
inhibitors and amoA gene response

The response ratio of AOB was significantly
and positively correlated with N2O emissions (N2O
emission[lnR] = 0.42 × AOB[lnR]−0.78, R2 = 0.14, P < 0.01;
Figure 4A). In contrast, there was no significant correlation
observed between the response ratio of AOA and N2O
emissions (N2O emission[lnR] = −0.06 × AOA[lnR]−1.05,
R2 < 0.00, P = 0.71; Figure 4A). There was an obvious
correlation between the changes in NH+4 concentration and
AOB amoA gene abundance after NI application (NH+4
concentration[lnR] = −0.17 × AOB[lnR] + 0.47, R2 = 0.04,
P = 0.014; Figure 4B).

Discussion

Effect of edaphic and experimental
conditions on nitrification inhibitor
efficacy

Soil pH was an important explanatory variable for NI
efficacy in reducing N2O emissions (Cui et al., 2021). The results
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FIGURE 2

Mean response ratios (% change) and bootstrapped 95% Confidence Intervals (CI) for the effects of soil properties on the N2O emissions (A),
NH+4 concentration (B), AOB gene abundance (C) and AOA gene abundance (D) after NIs application. Values in parentheses represent the
number of observations.

from the current meta-analysis showed that NIs had different
effects on decreasing N2O emissions under different soil pH
(Figure 2A and Table 1, P < 0.01), and NIs efficacy had a
positive response to soil pH. Firstly, it may be attributed to
NIs being retained for longer in alkaline soils (pH ≥ 8). Soil

pH has been considered as one of the most important factors
controlling NI efficacy, because pH has potential to impact the
degradation rate of the NIs in soils. Cui et al. (2021) showed
that DMPP performed better in alkaline soil compared to acid
soil conditions, which may be caused by the shorter half-life
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FIGURE 3

Mean response ratios (% change) and bootstrapped 95% Confidence Intervals (CI) for the effects of experiment conditions on the response of
N2O (A), NH+4 (B), AOB (C), AOA (D) after NIs treatment. Values in parentheses represent the number of observations.

time of DMPP in acidic soil compared to alkaline soil. DMPP
undergoes degradation in soil through chemical reaction steps,
potentially involving reactive oxygen species (ROS) generated
through abiotic and/or biotic processes (Sidhu et al., 2021),
which would possibly be affected by pH. Secondly, soil pH
played a vital role in controlling N2O emissions from soils
(Morkved et al., 2007). Wang Y. et al. (2018) demonstrated that
soil pH was negatively correlated with N2O emission, indicating
less N2O emission from alkaline soils. In the current research,

the inhibition efficacy of NIs on reducing N2O emissions
increased with soil pH, indicating that NIs were more effective in
alkaline soils. It may be also attributed to the less N2O emissions
from alkaline soils.

SOM and soil texture were also considered as main factors
affecting NI performance (Jarvis et al., 2007). Previous studies
have reported a negative correlation between NI efficacy and
SOM and clay content (Barth et al., 2008; Zhu et al., 2019).
High SOM and clay content could easily adsorb NIs, which
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FIGURE 4

Relationship between effect size (lnR) of N2O emissions (A) or NH+4 concentration (B) and effect size (lnR) of AOA and AOB amoA gene
abundance. Line is the best-fit regression, where AOB-NIs effectiveness is the red line and AOA-NIs effectiveness is the blue line. Each symbol
represents one observation; red point, AOB, blue point, AOA.

would influence their availability and effectiveness (Zhang
et al., 2020; Cui et al., 2021). Furthermore, SOM could be
used by soil microorganisms as energy, carbon (C), and
N source, which improve microbial bioactivity, leading to
accelerated biodegradation of NIs (Fisk et al., 2015). Clay had a
protective effect on nitrifying oxidizers (Neufeld and Knowles,
1999). Higher clay content might make microorganisms less
susceptible to being affected by inhibitors, thus weakening NIs
inhibitory effects. Therefore, the current study found that NIs
delayed ammonia oxidation and inhibited N2O emissions more
efficiently in medium soils with lower SOM.

Soil temperature had a significant effect on NIs inhibition
on nitrification (P < 0.01). Temperature influenced the rate of
nitrification, which might affect the inhibitory effect of NIs on
nitrification and NH+4 retention (Mathieu et al., 2006). Irigoyen
et al. (2003) reported that the nitrification rate accelerated
at 20◦C, but slowed down when the temperature reached up
to 30◦C. A lower temperature (≤ 20◦C) was favorable for
improving the efficacy of NIs on delaying the nitrification rate,
which may also be attributed to the rapid decomposition of NIs
by microorganisms in high temperature (Irigoyen et al., 2003;
Wang X. et al., 2018). Yu et al. (2015) found that the increased
NH+4 concentration by DMPP at 15◦C was 56 times higher than
that at 25◦C due to better persistence of the molecule of DMPP
at 15◦C. Hauser and Haselwandter (1990) also demonstrated
that the degradation rate of DCD reached its highest between
25◦C and 33◦C. The above studies were consistent with the
results in this study, in which the addition of NIs increased NH+4
concentration in temperatures below 20◦C.

Kirschke et al. (2019) found that the effect of NIs on
nitrification was negatively correlated with soil moisture, which
was consistent with this study. The probable reason was that

higher water content may increase the distance between NI
and NH+4 because of faster diffusion of NH+4 than that of
NIs (Azam et al., 2001). On the other hand, the soil was
supposed to be hypoxic at high water content (80% WFPS),
inducing denitrification occurrence and dominance (Menéndez
et al., 2008). Nitrification dominated at 40% WFPS, which was
conducive to the effect of NIs on NH+4 retention (Menéndez
et al., 2012). This would also explain the negative correlation
between the effect of NIs on NH+4 retention and soil moisture
in the current study.

The combined application of NIs with the appropriate N
fertilizers could improve their efficacy (Vinzent et al., 2018).
The present results showed that the combined application
of NIs with organic fertilizer could enhance NIs inhibitory
effect on N2O emissions. On the one hand, the application of
organic fertilizer significantly improved soil pH, which could
prolong the retention time of NIs and thus improve the efficacy
of NIs in inhibiting N2O emissions (Zhang et al., 2012b).
On the other hand, as observed in the current study, the
efficacy of NIs in reducing AOB amoA gene abundance was
highest when NIs were applied with organic fertilizer, thus
N2O emission mitigation by NIs reaching its maximum. NR
significantly influenced the effect size of NIs on NH+4 retention.
Better NI efficacy in increasing NH+4 concentration could be
observed at a lower N application rate (≤100 kg N ha−1).
This is in accordance with previous findings by Rowlings
et al. (2016), which revealed that N application which was less
than the conventional rate could increase DMPP performance.
Inappropriate N application rates may result in a large N
surplus, providing adequate substrate of NH+4 for ammonia
volatilization and thus reducing the efficacy of the NI in
increasing NH+4 concentration (Nauer et al., 2018).
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Response of ammonia oxidizers to
nitrification inhibitors

AOB amoA gene abundance negatively responded to NI
addition under different edaphic and experimental conditions.
However, in contrast to AOB, AOA amoA gene abundance
responded positively to NI addition in medium and fine soils.
Fan et al. (2019) found an increase in AOA abundance after
DMPP application in the tested soils, which was consistent
with our results. Our results were also in good agreement with
the study by Hink et al. (2018) and Fan et al. (2022), which
reported that AOA growth were accelerated while AOB were
inhibited with NIs. The growth of AOA might be promoted
by organic compounds (Tourna et al., 2011; Ai et al., 2013),
and it is possibly because that NIs such as acetylene and
DMPP could be available C substrates for AOA (Florio et al.,
2014; Hink et al., 2017). Compared to coarse soils, fine and
medium soils showed a generally higher accumulation potential
of SOM which provided sufficient C and N substrates for
AOA proliferation (Kögel-Knabner et al., 2008; Dieckow et al.,
2009). In line with results of this study, Shen et al. (2013)
illustrated that most of the NIs appeared to have no effect
on AOA in agricultural soils. Shi et al. (2016) also discovered
that DMPP could strongly influence the metabolic activity
of AOB by using DNA-stable isotope probing (SIP) but did
not influence AOA. The potential physiological or metabolic
differences between AOA and AOB (Prosser and Nicol, 2012)
may explain the different responses of AOB and AOA to NIs.
Furthermore, the most commonly used inhibitors suppressed
microbial activity by chelating Cu active sites in AMO, and
the periplasmic AmoB, a subunit of ammonia monooxygenase,
presumably contains a copper-catalyzed active site (Monaghan
et al., 2013; Beeckman et al., 2018). Lawton et al. (2014)
found that archaea AmoB is a non-active enzyme and NIs tend
to chelate on the active site of AOB to inhibit its activity,
which indicated that the structural difference of the AmoB
subunit and the ecophysiological differences also possibly lead
to the variation in sensitivity among AOA and AOB to NIs
(Tolar et al., 2017).

Fertilizer forms significantly affected the response of AOB
to NIs, rather than the response of AOA (Tao et al., 2017). The
results from the current study demonstrated that NIs showed
the best performance in slowing down AOB growth in the
case of organic fertilizer application, however, there was no
difference observed on AOA abundance with NI application
under different fertilizer forms. Wang et al. (2014) found an
obvious stimulating effect of manure fertilization on the efficacy
of NIs in reducing the population of AOB rather than AOA in a
paddy soil, which was confirmed by the results of the current
analysis. The application of organic fertilizer would provide
an ideal alkaline environment for NIs to reduce AOB amoA
gene abundance, which may be attributed to better activity and
sensitivity of AOB to NI addition under alkaline conditions.

But AOA adapted to low pH conditions (i.e., have a pH optima
below 7; Hatzenpichler, 2012).

The best-fit regression in this study showed that N2O
mitigation and NH+4 concentration increase by NIs was
positively correlated with the decrease of AOB-amoA gene
abundance by NI application but not AOA-amoA. This
supported the hypothesis that AOB are more sensitive to NIs
than AOA and NIs would work through selectively inhibiting
AOB. Previous studies illustrated that although the number of
AOA far exceeds that of AOB in most terrestrial ecosystems,
the N2O production capacity of AOB was 10–1,000 times
higher than that of AOA (Leininger et al., 2006; Jung et al.,
2011; Xia et al., 2011; Gu et al., 2019). The main reason for
that was that AOB-related N2O was produced via nitrifier-
denitrification and incomplete NH2OH oxidation (Shaw et al.,
2006; Wu et al., 2018), while the N2O produced by AOA could
not be attributed to nitrifier-denitrification, due to a lack of
NO reductase (Tourna et al., 2011; Jung et al., 2014; Stieglmeier
et al., 2014). Kozlowski et al. (2016) showed direct evidence that
N2O produced by AOA was attributed to abiotic reactions of
released NO under anoxic conditions, in which Nitrososphaera
viennensis EN76(T) (a Thaumarchaeon) was used as a test
AOA. There was an obvious correlation between NH+4 and
AOB (P < 0.05; Figure 4B), indicating the high inhibitory
effect of NIs on nitrification through inhibiting AOB, which
was consistent with the results reported by Zerulla et al. (2001)
and Di and Cameron (2011). The obvious correlation between
NH+4 concentration and AOB also revealed the dominate role of
AOB in nitrification. Although the relationship between AOA
amoA gene abundance and N2O emissions, NH+4 concentration
after NI application was found to be insignificant in this study,
AOA was also important for nitrification in soils. AOA had
been shown to play an integral role in soil nitrification of some
unmanaged soils (Huang et al., 2011; Isobe et al., 2015), with
the greatest contribution likely occurring in N-limited scenarios.
As observed in this study, AOB was more sensitive to NIs than
AOA, even in soils where AOA were more abundant.

Conclusion

Soil pH, soil texture, SOM, soil temperature, and N
application rate were identified to be the factors most affecting
the efficacy of NIs. There was a significant positive correlation
between NIs efficacy on decreasing N2O emissions, increasing
NH+4 concentration and AOB amoA gene abundance reduction
after NIs. Taken together, for both soil and experimental
conditions, AOB plays a key role in nitrification and NIs
specifically inhibit AOB rather than AOA, which indicates AOB
would be the best predictor of NI efficiency. These results would
provide a scientific basis for better modeling and N management
strategies to reduce N2O emissions and improve N use efficiency
in agricultural systems.
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