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Abstract: Morganella morganii is one of the main etiological agents of hospital-acquired infections and
no licensed vaccine is available against the pathogen. Herein, we designed a multi-epitope-based
vaccine against M. morganii. Predicted proteins from fully sequenced genomes of the pathogen
were subjected to a core sequences analysis, followed by the prioritization of non-redundant, host
non-homologous and extracellular, outer membrane and periplasmic membrane virulent proteins
as vaccine targets. Five proteins (TonB-dependent siderophore receptor, serralysin family metallo-
protease, type 1 fimbrial protein, flagellar hook protein (FlgE), and pilus periplasmic chaperone)
were shortlisted for the epitope prediction. The predicted epitopes were checked for antigenicity,
toxicity, solubility, and binding affinity with the DRB*0101 allele. The selected epitopes were linked
with each other through GPGPG linkers and were joined with the cholera toxin B subunit (CTBS) to
boost immune responses. The tertiary structure of the vaccine was modeled and blindly docked with
MHC-I, MHC-II, and Toll-like receptors 4 (TLR4). Molecular dynamic simulations of 250 nanosec-
onds affirmed that the designed vaccine showed stable conformation with the receptors. Further,
intermolecular binding free energies demonstrated the domination of both the van der Waals and
electrostatic energies. Overall, the results of the current study might help experimentalists to develop
a novel vaccine against M. morganii.

Keywords: Morganella morganii; multi-epitopes vaccine; pan-genomics; reverse vaccinology; molecu-
lar dynamics simulations; binding free energies

1. Introduction

Antibiotic resistance (AR) is a global health crisis. AR is a subset of antimicrobial
resistance (AMR) and happens when bacteria evolve mechanisms to withstand attacks
by antibiotics. AR can evolve by natural courses forced by the continued misuse of
antibiotics [1]. The resistance is mounting to seriously high levels across all countries of the
world. Novel resistance mechanisms are evolving and spreading worldwide, making our
efforts to treat common infectious diseases less effective [2]. As a consequence, infections
caused by bacterial pathogens are becoming tough to treat, even sometimes impossible to
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treat. According to the recent updates by the Center for Disease Control and Prevention
(CDC), each year AR pathogens cause 2.8 million infections resulting in more than 35,000
deaths. In other words, it is one death every 15 min and one infection every 11 s [2–4].
In summary, we are losing the fight against bacterial pathogens. We are heading for a
post-antibiotic era; therefore, urgent actions are needed to manage the AR crises. There are
well established ways to lower the global burden of AR, such as the development of novel
classes of antibiotics, the improvement of sanitation and hygiene, antibiotic stewardship,
avoiding the routine use of antibiotics in agriculture and veterinary practice, and stopping
its inappropriate use in treating viral infections [5].

Vaccination is an excellent alternative to combat AR bacterial pathogens. Historically,
the use of vaccines as a tool to manage AR bacterial pathogens has been under-estimated,
but its positive effect in reducing AMR is very well established [6]. As an example, Strepto-
coccus pneumoniae (pneumococcal) conjugate and Haemophilus influenzae type B (Hib) vaccines
have remarkable track records in reducing antibiotic use and AR as well as preventing
life threatening diseases caused by these bacteria [7]. Therefore, new technologies for
vaccine development will provide a potential solution to tackle AR. The growing amount
of genomic data and advancements in bioinformatics tools have brought a revolution in
the vaccine development process [8,9]. Reverse vaccinology (RV), a genome-based vaccine
development pipeline, has contributed considerably to the identification of new vaccine
candidates [8]. RV is pioneered by Dr. Rino Rappuoli and has revolutionized the vaccine
development pipeline, particularly against pathogens for which Pasteur’s principles of vac-
cinology have failed [10]. RV has been effectively used in meningococci serogroup B vaccine
(4CMenB) development [11]. In the recent past, a recombinant chimeric peptide vaccine
was designed in silico and evaluated experimentally to show 50% protection in hamsters
against the infection [12]. Moreover, due to genomic diversity in bacterial pathogens,
classical RV has been modified to pan-genomic based RV (PGRV) [13] to identify core
proteome antigens. In the recent past, PGRV successfully mapped four protective antigens
in Streptococcus agalactiae genomes [14].

This work involves core genomics, subtractive proteomics, and RV in combination
with biophysical approaches to construct a multi-epitope vaccine and to decipher its
binding potential with host immune system components as well as evaluate its potential
in providing immune protection against M. morganii. M. morganii belongs to the fam-
ily of Enterobacteriaceae and causes nosocomial infections, especially urinary tract and
wound infections [15]. Some strains of the pathogen are resistant to oxacillin, penicillin,
first-generation and second-generation cephalosporins, ampicillin/sulbactam, macrolides,
fosfomycin, colistin, lincosamides, and polymyxin B [15]. In addition to this AR spectrum
exhibited by M. morganii, there is no vaccine in development for the pathogen which may
make the situation worse while treating these infections. Hence, substantial efforts are
required to screen protective antigens from the pathogen genome that can be subjected
easily to experimental evaluations. This in turn will save time and reduce the costs that
usually go into the experimental vaccine candidate’s prioritization. As AR is increasing in
bacterial pathogens and there are hurdles in classical vaccinology, computer-aided vaccine
design could provide easy access to surface-exposed protective antigens that otherwise
use resources and are time consuming in experimental vaccine development. The study
also employed B and T-cell epitope predictions, the analysis and processing of potential
and safe antigens, population coverage and conservation analysis, toxicity prediction of
the antigens, allergenicity evaluation, molecular docking, molecular dynamics simulation
and binding energies estimations to evaluate the binding strength of the vaccine to host
immune receptors. To accomplish the task of successful in silico vaccine design, several
online web servers and bioinformatics tools were used.
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2. Materials and Methods

The stepwise methodology followed for the design of a novel multi-antigenic epitope
vaccine against M. morganii in this study is schematically shown in Figure 1.
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Figure 1. Schematic presentation of the designed study for the design and evaluation of a multi-
epitope vaccine against M. morganii.

2.1. M. Morganii Predicted Proteomes Retrieval

The predicted set of proteins of fully sequenced genomes (eight in number at time
of the study) of M. morganii were retrieved from the NCBI [16] genome database and
subjected to a bacterial pan-proteomic analysis [17–19] tool to extract the core proteins of
the pathogen. Fast clustering of the proteomes was accomplished by setting the sequence
identity cut-off at 50%, and the resulting file containing the core proteins was considered
for further analysis as the proteins were conserved among all the strains.

2.2. Subtraction of Core Proteins

The subtractive proteomic approach was used for the analysis of the core proteins in
order to identify potential vaccine candidates [20]. The subtractive proteomic approach is
an in silico approach for the identification of vaccine targets which works by excluding all
proteins which are not essential in the design of a vaccine candidate [21]. The first step in
the subtractive proteomic approach was the removal of all paralogous proteins that were
achieved through the Cd Hit analysis. To predict subcellular localization, non-homologues
proteins were used in the PSORTb v3.0 [22] analysis. All virulent proteins were identified
through BLASTp in the virulent factor database (VFDB) against a complete set of all the
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virulent proteins in the database [23]. The inclusion criteria were >30% sequence identity
and a bit score of >100. Additionally, an antigenicity analysis was performed using the
Vaxijen 2.0 online webserver [24]; the proteins defined as probably antigenic were those
proteins whose antigenic score was greater than 0.5. The allergenicity of the proteins was
predicted using Allertop 2.0 [25]. Next, all the non-redundant proteins were subjected
to homology analysis against human and three Lactobacillus species: L. rhamnosus (taxid:
47715), L. casei (taxid: 1582), and L. johnsonii (taxid: 33959) with the selection criteria of
a sequence identity of <30%, a bit score of > 100, and an E-value of 10−4 to avoid auto
immune reactions and the accidental inhibition of the good probiotic bacteria. This task
was achieved via BLASTp [26]. Transmembrane helices were predicted using TMHMM
2.0 [27] with a cut off value of >1. Proteins with more than one transmembrane helix were
discarded from further analysis [28]. Protein stability was examined using the Protparam
tool [29].

2.3. The Prioritization Phase of the Vaccine Targets
2.3.1. Epitope Prediction Phase

In vaccine design, the prediction of B-cell and T-cell epitopes is crucial in order to
elicit both cellular and humoral immune responses against the antigen [30,31]. B and T-cell
epitopes were predicted for the shortlisted proteins from the previous step [32]. First, we
predicted linear B-cell epitopes by using Bepipred linear epitopes 2.0 [33] and then B-cell
epitopes were further used for the T-cell epitopes via the IEDB T-cell prediction tool [34] to
determine the B-cell epitopes’ binding ability for MHC class I and II. The method used for
B-cell epitope prediction was IEDB recommended [35] while the peptides were selected on
the basis of low percentile rank and if they were considered as a good binder to immune cell
receptors [36]. Each selected epitope was analyzed for its binding affinity with DRB*0101
as this covers about 95% of the world population [37]. Antigenicity, allergenicity, toxicity,
and solubility were checked for each of the selected epitopes by using the Vaxijen 2.0 [24],
Allertop 2.0 [25], ToxinPred [38] and InvivoGen [39] tools, respectively. After all these
analyses, the shortlisted epitopes were next subjected to multi-epitope vaccine design and
processing.

2.3.2. Multi-Epitope Vaccine Design and Processing

One key issue in the single peptide base vaccine is that it cannot generate proper
immune responses [40]. To overcome this problem, a multi-epitope-based vaccine was
designed that comprised several different types of immunodominant epitopes rather than
a single epitope [41]. A multi-epitope peptide vaccine construct containing different
immunodominant epitopes is considered to be a good vaccine strategy to evoke substantial
immune responses [42]. In order to make a multi-epitope construct, all the selected epitopes
were linked with each other through a specific linker (GPGPG), and finally the designed
multi-epitope vaccine construct was joined to the N-terminal of the beta subunit of the
cholera toxin, which is considered a good and safe adjuvant [43].

2.3.3. Physiochemical Properties of the Final Vaccine Construct

The designed vaccine was further checked for physiochemical properties i.e., molec-
ular weight, instability index, aliphatic index through an online Protparam (ExPasy)
https://web.expasy.org/protparam/, (accessed on 10 May 2021) web server [29].

2.4. Structure Modelling of the Vaccine

The final multi-epitope vaccine construct was modeled ab initio for its 3D structure
with the help of 3DPro [44]. Moreover, we re-validated the antigenicity and solubility of
the vaccine using ANTIGENpro [44] and SOLpro solubility [44] using a Scratch protein
predictor. Several loops of the vaccine were modeled through an online Galaxy WEB server
http://galaxy.seoklab.org/, (accessed on 12 June 2021) [45]. After loop modelling, the
loop modeled structure was submitted for refinement in the GalaxyRefine tool, which is

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://galaxy.seoklab.org/
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available at http://galaxy.seoklab.org/, (accessed on 13 June 2021) [46]. The refinement
was performed for structure errors and to lower the global binding energy of the vaccine.

2.5. Disulfide Engineering and Codon Optimization

The structural stability of the vaccine candidate was improved via disulfide engineer-
ing using Design 2.0 [47]. In disulfide engineering, the mutant structure was created by
incorporating di-sulfide bonds in the vaccine structure. In order to obtain a high level of
expression of the cloned vaccine sequence in the Escherichia coli system, the codon opti-
mization approach was applied [48]. In this process, the sequence of the model vaccine
construct was reverse translated to the DNA sequence through the Java Codon Adaptation
Tool (JCat) [49].

2.6. Molecular Docking and Refinement

Molecular docking was performed using PATCHDOCK [50] and refined through
the FIREDOCK server [51]. Molecular docking of the vaccine was performed with TLR4
(PDB: 4G8A), MHC-I (PDB ID: 1L1Y) and MHC-II (1KG0) receptors. In total, 20 docked
solutions were predicted by PATCHDOCK that were ranked based on global binding
energy. The FIREDOCK server re-ranked the solutions after removing many steric clashes
and intermolecular conformational errors. The best conformation docked complex was
visualized using UCSF Chimera 1.15 [52].

2.7. Molecular Dynamics Simulations

Molecular dynamic simulations of the docked complexes were performed for 250 ns
to evaluate the structural stability of the systems. The simulations were carried out using
the AMBER20 simulation package [53]. The simulation protocol described by the authors
of [54] was followed to accomplish the assay. Briefly, the antechamber module [55] of
AMBER was used to pre-process the systems while the parameters were defined using
AMBER FF14SB force field [56]. The systems were solvated into TIP3P water box, where
they were neutralized by adding appropriate amounts of counter ions. Afterward, the sys-
tems were subjected to energy minimization that can be split into hydrogen atoms energy
minimization, water box energy minimization, and non-heavy atoms energy minimization.
Next, the systems were gradually heated to 300 K and the temperature was maintained
using Langevin dynamics [57]. Constraints on the hydrogen bonds were achieved using
the SHAKE algorithm [58]. Equilibration of the systems was achieved for 100 ps, followed
by pressure equilibration using NPT ensemble [59]. Last, the production run of simulations
was performed for 250 ns on a time scale of 2 fs. The simulation trajectories were examined
for different structural analysis using CPPTRAJ module [60] of AMBER. Visual inspection
of the trajectories was completed using the Visual Molecular Dynamics (VMD) tool ver-
sion 1.9.3 [61]. Each of the above steps was conducted with a different set of parameters as
described by the authors in [54].

2.8. Binding Free Energies Calculation

The binding free energies of the docked complexes were calculated using the MM/PBSA
and MM/GBSA approaches available in AMBER20 [62]. Both of these analyses were con-
ducted using the MMPBSA.py module of AMBER [63]. Only 100 frames were considered
while estimating the binding free energies.

2.9. C-immune Simulations

The immunogenic efficacy of the final vaccine construct was evaluated by performing
in silico immune simulations with the help of C-immSim server 10.1 [64]. The server uses
the position-specific score matrix (PSSM) and various other machine learning techniques
to predict and study epitope and immune interactions.

http://galaxy.seoklab.org/
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3. Results

In this research work, a total of eight completely sequenced genomes of M. morganii
were obtained from NCBI. Complete information about the strain’s proteome can be found
at the following link https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/10
874/, (accessed on 1 March 2021).

3.1. Bacterial Pan-genome Analysis (BPGA)

The bacteria strains had 16,880 core proteins collectively. The average number of core
proteins encoded by each genome was around 2110. The number of accessory proteins,
unique proteins, and exclusively absent proteins varied according to the strain, but the
average values were 1164, 146, and 106, respectively. The number of proteins of each M.
morganii strain is graphically presented in Figure 2A. The core-pan plot indicates that the
predicted proteome of the pathogen is open and there is a high chance of gaining new genes
over time due to genome plasticity. Moreover, COG distribution analysis reported that the
core proteins were mostly engaged in metabolic biogenesis and regulation. The unique
set of proteins (17,170 in number) were associated with the processing and storage of
information. The information can be categorized into RNA processing, replication process,
transcription and translation and recombination. Furthermore, the pan-phylogeny tree of
the eight complete genomes of M. morganii was constructed, which is shown in Figure 2B.
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3.2. CD-Hit Analysis

The core proteins are a conserved set of the protein sequence which are shared by all
the strains. The core proteins numbered 16,880 and were next analyzed for redundancy.
This unveiled 14,924 redundant proteins and 1956 non-redundant proteins, as shown in
Figure 3. The redundant sequences were duplicated and arose because of a duplication
event during the evolution process. As such, for the computational vaccine design process
these sequences were not required [65]. All the non-redundant proteins were subjected to
subcellular localization and virulence analysis.
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morganii.

3.3. Subcellular Localization and Virulence Analysis

The human immune system can easily recognize those proteins which are present at
the pathogen surface [66]. These surface proteins are also intrinsically more immunogenic
and are in regular contact with the host cells. In 1956 core non-redundant protein sequences,
11 proteins were extracellular and outer membrane, and 14 proteins were found on the
periplasmic membrane, as mentioned in Figure 3. Virulence refers to the relative degree of
harmfulness of a pathogen to cause disease in a host [37]. After virulence analysis, among
the core non-redundant proteins sequences, only 36 protein sequences were virulent
in nature.

3.4. Antigenicity, Allergenicity, Human and Normal Microbiota Homology, and Transmembrane
Helices and Stability Analysis

Antigenicity screening predicted 26 proteins as antigenic with a score of > 0.5 (Table S1).
To avoid allergic responses and auto immune reactions, all the virulent proteins were
analyzed for allergenicity. The server found nine protein sequences as allergic among
the total surface localized virulent proteins. Next, four proteins were human homologs
and six proteins were identical to probiotic bacteria. The non-homology ensured that no
unwanted auto-immune reactions will be generated if the proteins are used in vaccine
design [28]. Similarly, the non-homology of the selected proteins also helps in avoiding the
accidental inhibition of beneficial probiotic bacteria [67]. Transmembrane helices and the
physiochemical analysis were checked and indicated that four proteins were removed from
the study as they had transmembrane helices > 1. Further, eight proteins were predicted to
be unstable (instability index is >40) with a molecular weight of >100 kDa as mentioned
in the following Venn diagram in Figure 4. The shortlisted five proteins (TonB-dependent
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siderophore receptor) (serralysin family metalloprotease) (type 1 fimbrial protein) (flagellar
hook protein (FlgE)) and (pilus periplasmic chaperone) which were non-allergic, non-
homologous to the host proteome, non-homologous to the probiotic bacteria, had no or <1
transmembrane helices and were within a range of molecular weights. These proteins are
ideal candidates for subunit-based vaccine design. Further, the proteins were subjected to
an epitope prediction phase in order to design a multi-epitope vaccine.
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3.5. B-Cell and T-Cell Epitopes Prediction

The active acquired immune responses are highly specific and specialized in clearing
pathogens or inhibiting their growth [68]. Adaptive immunity basically generates memory
B-cells that recognize the organism on successive encounters after initial recognition [69].
Such an immunological memory of adaptive immunity forms the foundation of vaccination.
The B and T lymphocyte cells of the adaptive immunity are mainly involved in generating
dependent antibodies and cellular immunity against invader organisms. Thus, in this
study the final screened five protein sequences were used in B and T-cell epitope mapping.
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3.5.1. B-Cell Epitope Prediction

The humoral immune response is referred to as the antibody-dependent immune
response and it is activated when the B-cell matures and transforms into a plasma cell [70].
The B-cell epitopes were predicted for one outer membrane (TonB-dependent siderophore
receptor), three extracellular membrane proteins: serralysin family metalloprotease, type
1 fimbrial protein, flagellar hook protein (FlgE)), and one periplasmic membrane protein
(pilus periplasmic chaperone). In total, 15 linear B-cell epitopes were predicted for TonB-
dependent siderophore receptor, 8 epitopes for serralysin family metalloprotease, 4 epitopes
for type 1 fimbrial protein, 6 epitopes for flagellar hook protein (FlgE), and 2 epitopes were
predicted for pilus periplasmic chaperone as tabulated in Table S2.

3.5.2. B-Cell-Derived T-Cell Epitope Prediction

Cellular immune responses, also known as T-cell-dependent immune responses,
mainly function to kill infected cells [70]. T-cell lymphocytes in response to peptide anti-
gens allow consequent multiplication and differentiation to constitute the primary immune
responses [71]. To generate the cellular immune response, T-cell epitopes were predicted
using B-cell epitopes called B-cell derived T-cell epitopes. In T-cell epitopes both MHC-I
and MHC-II epitopes were predicted. For the epitope prediction the MHC I alleles used
were; HLA-A*01:01, HLA-A*01:01, HLA-A*02:01, HLA-A*02:01, HLA-A*02:03, LA-A*02:03,
HLA-A*02:06, HLA-A*02:06, HLA-A*03:01, HLA-A*03:01, HLA-A*11:01, HLA-A*11:01,
HLA-A*23:01, HLA-A*23:01, HLA-A*24:02, HLA-A*24:02, HLA-A*26:01, HLA-A*26:01,
HLA-A*30:01, HLA-A*30:01, HLA-A*30:02, HLA-A*30:02, HLA-A*31:01, HLA-A*31:01,
HLA-A*32:01, HLA-A*32:01, HLA-A*33:01, HLA-A*33:01, HLA-A*68:01, HLA-A*68:01,
HLA-A*68:02, HLA-A*68:02, HLA-B*07:02, HLA-B*07:02, HLA-B*08:01, HLA-B*08:01,
HLA-B*15:01, HLA-B*15:01, HLA-B*35:01, HLA-B*35:01, HLA-B*40:01, HLA-B*40:01, HLA-
B*44:02, HLA-B*44:02, HLA-B*44:03, HLA-B*44:03, HLA-B*51:01, HLA-B*51:01, HLA-
B*53:01, HLA-B*53:01, HLA-B*57:01, HLA-B*57:01, HLA-B*58:01, HLA-B*58:01) and MHC-
II alleles; HLA-DRB1*01:01, HLA-DRB1*03: *04:01, HLA-DRB101, HLA-DRB1*04:05,
HLA-DRB1*07:01, HLA-DQA1*03:01/DQB1*03:02, HLADQA1*03:01/DQB1*03:02, HLA,
DQA1*01:02/DQB1*06:02, HLA-DPA1*02:01/DPB1*01:01, HLA DPA1*01:03/DPB1*04:01,
HLADPA1*03:01/DPB1*04:02, HLA DPA1*02:01/DPB1*05:01, HLA-DPA1*02:01/DPB1*14:01.
The MHC-I presents epitopes to CD8+ T cells to kill cancerous infected cells, virally infected
cells, and bacterial cells. On the other hand, MHC-II is used to display antigen (s) to T
helper cells (Th cells), also called CD4+ cells. T helper cells perform the vital function of
activating other immune cells (B-lymphocytes and cytotoxic T cells) against the antigen [71].
Each epitope was prioritized on the basis of low percentile rank. The lower the percentile
score, the better the epitope is as a good binder, as tabulated in Table S3.

3.6. Epitope Prioritization Phase

In the epitope prioritization phase, all the predicted epitopes were next evaluated
for DRB*0101 binding analysis, allergenicity, solubility and toxicity analysis. The binding
affinity of the epitopes with the immune cell receptors is imperative; all the selected
epitopes were checked for their ability to bind with the HLA DRB*0101 allele. This gene
is prevalent in about 95% of the human population and any epitope binding to this allele
will result in a better immune responses [37]. Only epitopes of IC50 values < 100 nM for
DRB*0101 alleles were selected as they represent strong binding. The epitopes with IC50
values less than the threshold are shown in Table 1. Antigenicity was evaluated for each
selected epitope with a cutoff value of 0.5, followed by allergenicity analysis. All probable
antigenic and non-allergic epitopes were included in the study, while non-antigenic and
allergic epitopes were excluded from study. Lastly, solubility and toxicity analyses were
also performed in order to remove poor soluble and toxic epitopes to reduce solubility
hurdles in the experimental evaluation of the vaccine as well as to avoid toxic resections.
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Table 1. Final shortlisted epitopes and their antigenic and IC50 values.

Selected Epitopes DRB*0101 Binding Affinity,
(IC50 Score < 100 nM)

Antigenicity
(Threshold > 0.5)

RSDSRQLDS 5.09 1.8181

EGKATSADA 6.24 2.0036

GGETDYNNL 98.4 1.2907

TLRLQSQQS 12.3 1.1516

RPSYKDADY 70.47 0.7769

RTDDTVYGF 21.98 0.6496

SEKITGADH 63.24 1.0815

KQDQKISLR 5.5 1.8436

GLDSIDLQG 38.19 1.1785

TDVSVPQLR 67.61 1.1671

PLPPADIDL 18.16 1.5027

DARASAKGE 30.13 2.119

AGQDAAGNV 35.48 1.587

DGNGKLLQM 15.81 1.5201

KVTESSVSK 42.46 1.3916

PVSEKTSLK 18.2 0.7

3.7. Multi-Epitope Vaccine Construction

In a single peptide-based vaccine, one key issue is that it cannot generate proper
immune responses. To overcome this problem, a multi-epitope-based vaccine was de-
signed by linking different types of selected epitopes through specific GPGPG linkers [40].
Additionally, the epitope peptide was joined with the cholera toxin b subunit adjuvant with
the help of an EAAAK linker. Both the used linkers are rigid and allow efficient separation
of the epitopes so that they can be readily recognized by the host immune system. Similarly,
the adjuvant used is safe and generates robust and specific immune responses against
the antigen to which it is attached. The design of a multi-epitope vaccine is mentioned in
Figure 5.
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Figure 5. Schematic diagram of a 348 amino acid long vaccine construct sequence. The filtered
antigenic B-cell derived T-cell epitopes from each prioritized vaccine protein are depicted in different
colorless boxes while the GPGPG linkers used to link these epitopes are shown in yellow blocks. The
multi-epitope peptide was fused with an adjuvant (cholera toxin B subunit), shown in the red color,
at the amino terminal.

3.8. Structure Prediction, Loop Modelling, and Refinement

A 3D structure of the final vaccine construct was modeled using the sequence of the
final model vaccine construct as is depicted in Figure 6. The structure modelling was
completed ab initio rather than through homology or threading because no appropriate
template structure was available. The vaccine was further deciphered as soluble and
antigenic. Structural stability is one of the most important characteristics of a good vaccine
candidate. Loop modelling was completed for the following residues: Met1-Thr11. Cys30-
Ile38, Ser51-Gln70, Glu100-Lys112, Lys129-Thr148, Ser149-Gly169, Pro170-Gly185, Tyr189-
Phe208, Gly209-Lys228, Gln229-Pro238, Gly242-Pro261, Gln262-Gly281, Pro282-Pro294,



Int. J. Environ. Res. Public Health 2021, 18, 10961 12 of 26

Gly304-Leu317, Gly321-Pro340, and Val341-Lys348. The refinement of the vaccine structure
was completed to remove any high energy contact and to relax the structure. By doing so,
we obtained five models as tabulated in Table S4. Model 1 was selected as it had better
Rama-favored residue mapping (91.3%), an improved rotamer score (0.4), a clash score of
10.4, and a molProbity score of 2.04 compared to the initial structure.
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3.9. Disulfide Engineering and Codon Optimization

In the design of a vaccine, improving the structural stability is an important objective.
Disulfide bonds are covalent bonds that provide considerable structural stability to proteins
and support the exact geometry of a given protein molecule [72]. In a multi-epitope-based
vaccine, there is a chance that some of peptide residues will be enzyme degradable. To
overcome this problem, disulfide engineering of the final vaccine construct was completed.
In this step, enzyme degradable amino acid residues were replaced with cysteine residues,
as in the mutant structure B shown in Figure 7. No significant changes were noticed in the
structure of the vaccine after disulfide engineering. The VaxiJen antigenicity score of the
disulfide engineered vaccine sequence was 0.8100. Moreover, all the epitopes were fully
maintained in the disulfide engineering.

Codon optimization allows the improvement of gene expression and an enhancement
of the translation efficiency by correcting the codon usage of a given sequence according to
a host codon usage pattern [73]. The vaccine codon adaptation index (CAI) value was 0.92
and the GC content was 57.08%. Both these values are considered ideal for the expression
process. Further, other factors were also evaluated and set to the non-binding site of the
prokaryotic ribosome, the inactivation of rho-independent transcription termination, and
the non-restriction enzymes cleavage sites.
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3.10. Molecular Docking and Refinement

To generate a proper host immune response, the designed vaccine construct protein
should interact with different types of the host’s innate and adaptive immune cells and their
receptors competently. A molecular docking analysis approach was applied to forecast the
binding affinity of the designed vaccine construct with human immune cell receptors. A
blind docking of the vaccine construct with TLR4, MHC-I, and MHC-II was performed [58].
First, the 3D structures of MHC-I, MHC-II, and TLR4 were retrieved and subjected to
docking analysis. All of the interacting residues were assessed on the basis of the shape
complementarity principle. This blind docking analysis is an essential step to evaluate
the structure of a designed vaccine construct and to select all those epitopes with a high
capability of interaction toward the selected immune receptors molecules. The results of the
MHC-I, MHC-II, and TLR4 blind docking are shown in Table S5. In each case, 20 solutions
were produced.

The PATCHDOCK results of the top 10 docked complexes were subjected to a refine-
ment of the steric clashes. The complexes with the lowest global energy were ranked top,
and selected further for binding mode and interaction studies through UCSF Chimera
1.13.1. For each receptor, the top docked solution was selected. In the case of MHC-I,
solution nine was selected as it had the lowest global energy of −8.87 kJ·mol−1 with good
contribution from attractive van der Waals (−20.43 kJ·mol−1), repulsive van der Waals
(8.30 kJ·mol−1), atomic contact energy (ACE) (−3.02 kJ·mol−1) and hydrogen bond energy
(−4 kJ·mol−1). Similarly, for MHC-II and TLR4, solution nine was selected based on the
good global binding energy. The vaccine was observed to dock strongly to the receptors
and formed strong intermolecular interactions. The FireDock refinement results for MHC-I,
MHC-II, and TLR4 are provided in Table 2. The docked intermolecular conformation of the
vaccine with MHC-I, MHC-II, and TLR4 is shown in Figure 8.
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Table 2. Top 10 refined docked complexes of vaccine to MHC-1 generated by FireDock server. Energy
is represented in kJ·mol−1.

MHC-I

Rank Solution
Number

Global
Energy

Attractive
van der

Waals (VdW)

Repulsive
van der

Waals (VdW)

Atomic
Contact

Energy (ACE)

Hydrogen
bond (HB)

Energy

↓
1 9 −8.87 −20.43 8.30 −3.02 −4.00

2 10 −4.10 −6.98 4.98 1.53 −2.42

3 8 6.48 −24.98 30.22 8.47 −3.40

4 2 163.07 −48.68 240.39 18.67 −5.80

5 6 224.43 −17.03 277.99 10.17 −1.41

6 1 364.31 −11.47 411.75 9.48 −3.45

7 3 894.31 −37.86 1119.67 8.40 −8.31

8 5 1529.17 −66.06 2019.83 15.80 −14.94

9 4 2952.67 −39.19 3697.93 14.61 −6.84

10 7 8856.55 −105.59 11,240.42 15.43 −13.44

MHC-II

↓
1 9 6.51 −4.12 1.47 0.59 0.00

2 8 811.10 −46.86 1073.56 13.36 −7.62

3 3 1016.15 −32.82 1318.20 9.36 −1.85

4 2 1726.20 −27.51 2140.30 14.33 −3.32

5 4 2034.57 −29.52 2587.07 7.44 −6.16

6 6 4647.55 −89.28 5973.20 −2.24 −6.55

7 10 5123.90 −70.81 6542.45 0.54 −16.75

8 5 6044.06 −68.06 7616.67 19.36 −8.52

9 7 7053.34 −88.86 8952.50 7.28 −12.32

10 1 10,090.45 −65.97 12,720.01 1.81 −11.01

TLR−4

↓
1 9 7.32 −0.88 0.00 0.62 0.00

2 3 11.99 −2.25 0.74 1.10 −0.47

3 5 18.18 −3.61 0.00 5.64 −0.57

4 7 93.89 −37.58 152.19 10.19 −5.76

5 8 219.99 −50.52 358.55 19.21 −13.52

6 4 487.01 −48.02 604.75 17.53 −8.03

7 1 831.97 −31.40 1082.97 2.03 −5.53

8 2 849.36 −39.75 1052.49 25.45 −8.24

9 6 1628.72 −64.12 2074.26 21.83 −9.82

10 10 1635.90 −32.51 2069.25 17.61 −7.09



Int. J. Environ. Res. Public Health 2021, 18, 10961 15 of 26Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 8. Docked vaccine structure to the MHC-I molecule (A), MHC-II molecule (B), and TLR4 
molecule (C). 

  

Figure 8. Docked vaccine structure to the MHC-I molecule (A), MHC-II molecule (B), and TLR4
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3.11. Chemical Interactions of the Vaccine with MHC-I, MHC-II, and TLR-4

Interaction between the vaccine and host immune cell receptors is very crucial to
understand as it allows users to highlight the residues which are important in vaccine
recognition and binding. The chemical interactions between the vaccine construct and
TLR4, MHC-I, and MHC-II immune receptors were determined using the protein-peptide
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molecular docking approach, and the specific residues’ interaction with MHC-I, MHC-II,
and TLR 4 were checked in UCSF Chimera. The designed multi-epitope vaccine showed
interactions with several residues of MHC-I within 3 Å. These interactions were both
hydrophobic and hydrophilic. Similarly, the vaccine also produced a strong interaction
network with the MHC-II molecule. All the interactions were within close distance and
were of different types, including hydrogen bonding, salt-bridges, and van der Waals.
TLR4 is one of the members of the TLR family and is a class of transmembrane peptides
that basically belong to pattern recognition receptors (PRR) and are usually expressed on
dendritic and macrophages cells. The interacting residues between the vaccine and MHC-I,
MHC-II, and TLR4 are mentioned in Table 3.

Table 3. The interacting residues of the receptors with the vaccine molecule.

Vaccine Complex Interactive Residues

MHC-I Arg81, Asn83, Leu87, Ser88, Gln89, Pro90, Lys91, Ile92, Lys94, Asp220,
Gln255, Arg256

MHC-II

Asp43, Val44, Glu47, Arg48, Glu52, Arg55, Thr95, Tyr101, Asn103, Thr104,
Arg105, Glu106, Tyr111, Lys112, Lys120, Ala130, Tyr136, Lys138, Thr145,
Asp147, Ile148, Pro150, Pro156, Phe158, Glu177, Gly179, Gly180, Lys183,

Phe188, Ser199, Thr200, Val201, Arg220, Arg254, Thr18

TLR4

Asn26, Ser28, Val30, Glu31, Val32, Cys37, Asp38, Lys39, Asn49, Pro 50,
Cys51, Glu53, Asn58, Pro68, Asn77, Tyr79, Val82, Asn83, Thy84, Met85,
Asn86, Leu87, Lys89, Arg90, Lys128, Lys130, Glu136, Glu144, Cys148,

Gln156, Trp232, Glu434, Arg456, Ala462, Phe463, Asp490, Ser491, Phe492,
Thy493, Glu509, Ser512, Thr514, Asn575, Thr577, Gln578, Glu603,

Glu605, Arg606

3.12. Molecular Dynamics Simulation

Molecular dynamic simulation analysis basically checks the dynamic behavior of
macromolecules [61]. The simulations analysis includes root mean square deviation
(RMSD) [74], root mean square fluctuation (RMSF) [75], and radius of gyration (RoG) [76].
All these analyses were performed based on the carbon alpha atom of the complexes. These
analyses were carried out to investigate whether the vaccine binding to the receptors was
stable or not and whether the interactions remained intact throughout the simulation time.
Stable binding of the vaccine with the receptors will ensure its proper presentation to the
host immune cells that will further allow the activation of immune pathways to clear the
antigen. The RMSD plot of the systems was uniform with no major structural changes
observed. The TLR4-vaccine complex reported some deviations, but the systems achieved
equilibrium towards the simulation end. The RMSD of the systems fluctuated around 5–6 Å
(Figure 9A). Second, the RMSF was calculated to shed light on the residue flexibility of the
receptors in the presence of the vaccine molecule (Figure 9B). The majority of the systems’
residues were within a good stability (<3 Å). Some of the residues were found to show a
higher flexibility, which is the outcome of the loop pressure on the system. However, these
variations did not affect the vaccine binding to the receptors. Lastly, RoG analysis was
performed to examine the systems’ compactness verses time (Figure 9C). As depicted in
RMSD, all the systems were compact and did not experience any drastic variations.
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3.13. Hydrogen Bonds Analysis

The H-Bonds plugin in VMD was used to count the number of hydrogen bonds
formed throughout the simulation time as shown in Figure 10. All these bonds were within
the cut-off distance of 3 Ǻ. A rich hydrogen bond clustering pattern was revealed between
the vaccine construct and the TLR4, MHC-I, and MHC-II receptors. This depicts the strong
formation of complex and high affinity of the vaccine to the receptors.
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3.14. Determination of the Binding Free Energies

The binding free energies of the docked complexes were calculated using MM-GBSA
and MM-PBSA approaches and were used to validate the binding ability of the docked
complexes. The total binding free energies of the TLR4–vaccine complex, the MHC-I–
vaccine complex, and the MHC-II –vaccine complex were−78.4 kcal/mol,−81.44 kcal/mol,
and −55.01 kcal/mol, respectively. The major contributor to the net binding energy came
from the van der Waals energy as well as electrostatic energy while the non-favorable
contribution came from the solvation energy. The non-polar solvation binding energy also
favored the complex formation between the vaccine and receptors. Details of the binding
free energies for each complex are tabulated in Table 4.

Table 4. MMGBSA/PBSA binding free energy results of the vaccine construct with MHC- I, MHC-II,
and TLR4 complexes.

Energy Parameter TLR-4–Vaccine
Complex

MHC-I–Vaccine
Complex

MHC-II–Vaccine
Complex

MM-GBSA

VDWAALS −75.48 −66.85 −60.74

EEL −65.47 −55.17 −52.43

EGB 71.91 52.14 68.48

ESURF −9.36 −11.56 −10.32

Delta G gas −140.95 −122.02 −113.17

Delta G solv 62.55 40.58 58.16

Delta Total −78.4 −81.44 −55.01

MM-PBSA

VDWAALS −75.48 −66.85 −60.74

EEL −65.47 −55.17 −52.43

EPB 73.45 43.87 50.98



Int. J. Environ. Res. Public Health 2021, 18, 10961 19 of 26

Table 4. Cont.

Energy Parameter TLR-4–Vaccine
Complex

MHC-I–Vaccine
Complex

MHC-II–Vaccine
Complex

MM-PBSA

ENPOLAR −5.28 −6.54 −8.61

Delta G gas −140.95 −122.02 −113.17

Delta G solv 68.17 37.33 42.37

Delta Total −72.78 −84.69 −70.8
VDWAALS (van der Waals), EEL (electrostatic), EGB (polar solvation energy of MM-GBSA), ESURF (non-polar
solvation energy), Delta G gas (net gas phase energy), Delta G solv (net solvation energy), Delta Total (net energy
of system).

3.15. Computationally Immune Simulations

The immunogenic potency of the model vaccine construct was evaluated by perform-
ing a computational immune simulation with the help of the C-ImmSim server, which uses
a position-specific score matrix (PSSM) and various other machine learning techniques to
predict and study epitope and immune interactions. In the C-immune simulation analysis,
upon the maximum level of vaccine antigen exposure to the human immune system for
50 days, an increase in the production of adaptive immune responses in the form of IgG and
IgM antibodies was detected. The IgM antibody was also seen at a high level. Secondary
immune responses followed by tertiary immune responses led to the maximum production
level of B-cells and a high production of “IgM + IgG, IgM, IgG1 + IgG2, IgG1 and IgG2”,
as mentioned in Figure 11A. Likewise, the production of interferon gamma was greater
than a 400,000 count per ml for almost 35 days as shown in Figure 11B. The different B and
T-cell immune responses to the vaccine are presented in Figure S1. Similarly, the response
of different immune cells to the vaccine is illustrated in Figure S2.
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4. Discussion

The emergence of multi-drug resistant strains of bacterial pathogens offers a serious
threat to human health [1,77]. This is particularly endangering the efficacy of the current list
of antibiotics. This also impacts the development of new drugs, as the pharma industries
have shown little interest because of challenging regulatory requirements and reduced
economic incentives [78]. The AMR issue can be addressed by developing effective vaccines
to stop bacterial infections [79]. Not all vaccinations are effective and helpful in eradicating
targeted organisms, but they can at least reduce the infection burden that in turn will result
in lowering antibiotic use and hence the evolution of novel resistant strains [79]. Traditional
vaccinology approaches suffer from several shortcomings i.e., a lengthy processing time, the
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generation of inaccurate immune responses in the developed vaccine, high costs, reduced
safety, less specificity, hypersensitivity, and less stability [80]. A substantial amount of
genomic data is now available to help us in the identification of the antigenic proteins best
suited for the development of novel vaccines [81]. The combination of immunoinformatics
and subtractive proteomics is a more attractive strategy in recent times to design low-cost
and safe vaccines [82].

The current research study is based on an in silico approach for the design of a multi-
antigenic epitope vaccine against M. morganii. The study used an integrated approach
including bacterial pan genome analysis, subtractive proteomics, epitope prediction and
analysis, multi-epitope design and processing, receptor preparation, molecular docking,
molecular dynamics simulation, C- immune simulations, and binding free energies calcula-
tions. In the initial steps, completely sequenced genomes of M. morganii were analyzed for
core sequences and dispensable and unique sequences. Only core sequences were picked
and processed as they represent proteins present in all the strains. This warranted the use of
only high conserved sequences which would allow the development of a broad-spectrum
vaccine [65]. In the subcellular localization analysis, outer membrane, extracellular mem-
brane, and periplasmic membrane proteins were considered as vaccine targets [83]. Surface
localized proteins are more potent for generating an immune response compared to other
localized proteins. These proteins contain antigenic determinants and are in frequent
contact with the host [84]. Moreover, they function as virulent proteins by activating
immune signaling pathways [37]. Moreover, vaccine targets should be non-homologous
to human and human intestinal microbiota to avoid autoimmune reactions and damage
to the host beneficial bacteria [65]. In this study, only non-homologous, non-redundant,
non-toxic, probable antigenic and immunogenic proteins sequences were subjected to
epitope predictions. Antigenic and immunogenic proteins can provoke substantial and
specific cellular and humoral immune responses. Five virulent and antigenic proteins
(TonB-dependent siderophore receptor, serralysin family metalloprotease, type 1 fimbrial
protein, flagellar hook protein, FlgE, and pilus periplasmic chaperone) were shortlisted
as good vaccine candidates. Following that, an immunoinformatics pipeline was applied
on the five vaccine targets to design a potential multi-epitope-based vaccine construct.
After the epitope predictions, all the predicted epitopes were checked for further analysis
including antigenicity, toxicity, adhesion probability, water solubility, and binding affinity
with DRB*0101. In the multi-epitope vaccine construction phase, different types of epitopes
were linked through specific GPGPG linkers because a single peptide-based vaccine cannot
generate appropriate immune responses. Additionally, the designed epitope construct was
joined to cholera toxin b subunit adjuvant with the help of an EAAAK linker in order to
increase its antigenicity. A multi-epitope peptide plus an adjuvant allows robust B and
T-cell responses [41]. The physiochemical properties of the vaccine were then checked to
guide experimentalists in the experimental evaluation of the vaccine [85]. As the sequence
homology template of the vaccine was not available, ab initio structure modeling of the vac-
cine was completed and refined for steric clashes so a proper conformation structure was
used [86]. In the molecular docking phase, the designed vaccine construct was checked for
its binding affinity with immune cell receptors [87] and validated by dynamics study [88].
A hydrogen bond analysis was also conducted to determine the intermolecular strength of
the interactions between the vaccine and the receptors [89]. Hydrogen bonds are electro-
static forces formed when a hydrogen atom binds covalently to a more electronegative atom
and is shared with another strongly electronegative atom. It is formed when hydrogen
atoms are shared between electronegative hydrogen bond acceptors and donors. Mostly,
hydrogen bonded to fluorine, oxygen, and nitrogen can either donate or accept hydrogen.
For the binding free energies of the systems, the trajectories of the molecular dynamics sim-
ulations were subjected to MM/PBSA and MM/GBSA analysis [62]. All these predictions
recommended that the designed vaccine could bind to the immune receptors efficiently and
were capable of providing immune protection to the host. However, these findings must
be evaluated experimentally in in vitro and in vivo models for biological potency against
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M. morganii. A previous study conducted by the authors of [54] on the design of an in
silico multi-epitope vaccine evaluated the vaccine potency using different computer-aided
vaccine strategies and revealed that the vaccine could generate strong immune responses
against invader Enterobacteriaceae. Another similar approach designed by the authors
of [90] on the development of a chimeric vaccine against Proteus mirabilis found that
broad-spectrum multi-antigenic, non-redundant, conserved, and surface localized pep-
tides can provoke specific and accurate immune responses. While designing a vaccine,
they analyzed three different types of proteins, (AtfC, PMI2533, and PMI1466). All these
proteins fulfilled promising vaccine parameters and were able to serve good subunit vac-
cine candidates. Moreover, another study used a computer-aided vaccine design strategy
against Pseudomonas aeruginosa [91], Providencia rettgeri [92], Streptococcus pneumoniae [11],
and Klebsiella pneumoniae [93]. Computational vaccine designing strategies are rapidly
emerging mainly because of the exponential growth of genomic data. Such analyses are
highly specific, effective, and can guide the production of a safe vaccine against a number
of microbial pathogens [93–95]. The vaccine design herein fulfilled all the parameters of a
good vaccine. However, the study had limitations in relation to experimental testing which
needs to be performed in the future to confirm vaccine immune protection potency against
M. morganii.

5. Conclusions and Limitations

In this study, we used different applications of computer-aided vaccine design includ-
ing RV, subtractive proteomics, immunoinformatics, and different biophysical analysis to
propose a novel multi-epitope vaccine to train the human immune system to fight against
M. morganii, which is a nosocomial bacterial pathogen responsible for several infections.
The pathogen is evolving new resistant mechanisms, and no licensed vaccine is available to
curtail its infections. Our vaccine construct was comprised of multi-epitopes picked from
potential vaccine proteins that were prioritized based on several studies in the literature
that have reported vaccine properties. The designed vaccine consisted of antigenic and
non-toxic virulent epitopes predicted using core, non-redundant, host non-homologous,
antigenic, and experimentally favored proteins. The fusing of the epitopes and the adju-
vating was completed using specific GPGPG and EAAAK linkers. The designed vaccine
showed excellent binding to the immune receptors, revealing fittest binding conformation,
and generating robust binding energies. We believe that the findings and predictions
of the current study will speed up the vaccine development process against M. morganii
and will deliver data that might fast track vaccine development against said organism.
Furthermore, the outcomes of the study will also be able to save time and millions of
dollars, and the in silico designed vaccine construct would be helpful for experimental
vaccinologists in the formulation of a vaccine against M. morganii infections in both pro-
phylactic and therapeutically circumstances. Though we remained very strict regarding
the selection criteria at each step of the study, some limitations still need to be overcome in
future studies. First, the order of the epitopes in the vaccine construct is something that
needs thorough experimental evaluation to obtain the best combination for the maximum
level of immune response. Second, the MHC epitope prediction algorithms are under the
process of refinement and as such we were not sure about those predictions. Lastly, the real
immune protection of the vaccine required extensive in vivo and in vitro testing. Moreover,
the study has some recommendations that need to be considered in future computational
vaccine design strategies. Rapid developments have been observed in recent times across
the biological and computational sciences that need to be properly integrated to further
advance computational vaccine design. Although advancements have been reported in
genome sequencing and development of novel bioinformatics tools for vaccine design,
more efforts are still needed to improve the epitope prediction. The implementation of
artificial intelligence and machine learning in computational vaccine design is needed. As
bacterial diversity is very high across the globe, the availability of all prevalent strains of
bacterial species must be included in the vaccine design process to ensure the design of a
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broad-spectrum vaccine rather than strain-specific vaccine. Only very limited sequence
data on AR bacterial pathogens from Pakistan are available in international databases. This
must be highlighted to obtain complete sequence bacterial genomes from our country that
can be utilized in vaccine design.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph182010961/s1. Figure S1. Different B and T-cell responses against the vaccine. A. B
cell population (cells per mm3) versus days, B. lymphocytes B and deriving antibody-producing
plasma cells (cells per mm3) versus days, C. B-cell population per state (cells per mm3) versus
days, D. T-helper cell population (cells per mm3) versus days, E. T-helper cell population per state
(cells per mm3) versus days and F. Different T-cell types cells per mm3 and percentage) versus
time. Figure S2. Different immune cell responses generated in response to the chimeric vaccine
construct. A. Tc (cytotoxic killer T-cell) population (cells per mm3) versus days, B. Tc (cytotoxic
killer T-cell) population per state (cells per mm3) versus days, C. NK (natural killer cell) population
(cells per mm3) versus days, macrophages, D. MA (macrophages cell) population per state (cells
per mm3) versus days, E. DC (dendritic cell) population per state (cells per mm3) versus days, F. EP
(epithelial cell) population per state (cells per mm3) versus days. Table S1. Antigenic exo-proteome,
secretome, and periplasmic proteins. Only proteins with a cut-off value of ≥0.5 were selected as
antigenic and presented in the table. Table S2. B-cell epitopes predicted from antigenic proteins.
The epitopes were variable in length and have bepipred linear epitope prediction scores of ≥0.50.
Epitopes with a residue length of <9 were not selected for further analysis. Table S3. MHC-I and
MHC-II epitopes predicted from B-cell epitopes. A percentile rank is the result of comparing the
given peptide’s predicted binding affinity against a set of similarly sized peptides selected randomly
from the SWISS-PROT database. All the presented epitopes had the lowest percentile score for a
given B-cell epitope (cut-off < 100). Epitopes that are common in MHC-I and MHC-II were selected
for further processing. Table S4. Refinement models of the loop model vaccine structure. The
model selection was based on the overall lowest GDT–HA (global distance test—high accuracy) score,
lowest RMSD (root mean square deviation) score, lowest MolProbity score, lowest clash score, lowerst
number of poor rotamers, and highest number of residues in the Ramachandran-favored regions
of the Ramachandran plot. For each parameter, there was not specific threshold value. Table S5.
Docking score of the top 20 complexes of the designed vaccine construct to MHC-I/MHC-II/TLR-4
generated by PATCHDOCK server. The complexes were ranked on PATCHDOCK score. A higher
score implies the best docked complex and vice versa. Energy is presented in kJ·mol−1 (lower energy
solution is often regarded as the best docked complex). ACE stands for atomic energy contact.

Author Contributions: Conceptualization, S.A., M.K. and K.S.A.; methodology, A.U., S.A. and S.I.;
validation, Z.A., M.K., M.T.u.Q., N.A., M.H.A. and K.S.A.; formal analysis, A.U., S.A. and S.I.; data
curation, A.U., S.A. and S.I.; writing—original draft preparation, A.U., S.A., S.I., Z.A. and M.K.;
writing—review and editing, M.T.u.Q., N.A., M.H.A. and K.S.A.; supervision, S.A., M.K. and K.S.A.;
project administration, S.A., M.K. and K.S.A.; funding acquisition, N.A., M.H.A. and K.S.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available within the article.

Acknowledgments: The researchers would like to thank the Deanship of Scientific Research, Qassim
University for funding the publication of this project.

Conflicts of Interest: The authors have declared no competing interest.

References
1. Edwards, M.; Hamilton, R.; Oliver, N.; Fitzgibbon, S.; Samarasekera, R. Antibiotic Resistance: Modelling the Impact on Mortality

and Morbidity. Institute and Faculty of Actuaries: London, UK, 2019.
2. Sifri, Z.; Chokshi, A.; Cennimo, D.; Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019, 11, 36–42.

[CrossRef]
3. Ventola, C.L. The antibiotic resistance crisis: Part 2: Management strategies and new agents. Pharm. Ther. 2015, 40, 344.

https://www.mdpi.com/article/10.3390/ijerph182010961/s1
https://www.mdpi.com/article/10.3390/ijerph182010961/s1
http://doi.org/10.4103/jgid.jgid_110_18


Int. J. Environ. Res. Public Health 2021, 18, 10961 23 of 26

4. Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277.
5. Andreano, E.; D’Oro, U.; Rappuoli, R.; Finco, O. Vaccine Evolution and Its Application to Fight Modern Threats. Front. Immunol.

2019, 10, 1722. [CrossRef] [PubMed]
6. Moriel, D.G.; Scarselli, M.; Serino, L.; Mora, M.; Rappuoli, R.; Masignani, V. Genome-based vaccine development: A short cut for

the future. Hum. Vaccines 2008, 4, 184–188. [CrossRef] [PubMed]
7. Baseer, S.; Ahmad, S.; Ranaghan, K.E.; Azam, S.S. Towards a peptide-based vaccine against Shigella sonnei: A subtractive reverse

vaccinology based approach. Biology 2017, 50, 87–99. [CrossRef] [PubMed]
8. Mora, M.; Veggi, D.; Santini, L.; Pizza, M.; Rappuoli, R. Reverse vaccinology. Drug Discov. Today 2003, 8, 459–464. [CrossRef]
9. Qamar, M.T.U.; Ismail, S.; Ahmad, S.; Mirza, M.U.; Abbasi, S.W.; Ashfaq, U.A.; Chen, L.-L. Development of a Novel Multi-

Epitope Vaccine Against Crimean-Congo Hemorrhagic Fever Virus: An Integrated Reverse Vaccinology, Vaccine Informatics and
Biophysics Approach. Front. Immunol. 2021, 12, 12. [CrossRef]

10. Ali, A.; Naz, A.; Soares, S.C.; Bakhtiar, M.; Tiwari, S.; Hassan, S.S.; Hanan, F.; Ramos, R.; Pereira, U.; Barh, D.; et al. Pan-Genome
Analysis of Human Gastric Pathogen H. pylori: Comparative Genomics and Pathogenomics Approaches to Identify Regions
Associated with Pathogenicity and Prediction of Potential Core Therapeutic Targets. BioMed Res. Int. 2015, 2015, 1–17. [CrossRef]

11. Adu-Bobie, J.; Capecchi, B.; Serruto, D.; Rappuoli, R.; Pizza, M. Two years into reverse vaccinology. Vaccine 2003, 21, 605–610.
[CrossRef]

12. Fernandes, L.G.V.; Teixeira, A.F.; Filho, A.F.; Souza, G.O.; Vasconcellos, S.A.; Heinemann, M.B.; Romero, E.C.; Nascimento,
A.L.T.O. Immune response and protective profile elicited by a multi-epitope chimeric protein derived from Leptospira interrogans.
Int. J. Infect. Dis. 2017, 57, 61–69. [CrossRef] [PubMed]

13. Naz, K.; Naz, A.; Ashraf, S.T.; Rizwan, M.; Ahmad, J.; Baumbach, J.; Ali, A. PanRV: Pangenome-reverse vaccinology approach for
identifications of potential vaccine candidates in microbial pangenome. BMC Bioinform. 2019, 20, 123. [CrossRef] [PubMed]

14. Nuccitelli, A.; Rinaudo, C.D.; Maione, D. Group B Streptococcus vaccine: State of the art. Ther. Adv. Vaccines 2015, 3, 76–90.
[CrossRef]

15. Mbelle, N.; Sekyere, J.O.; Feldman, C.; Maningi, N.; Modipane, L.; Essack, S. Genomic analysis of two drug-resistant clinical
Morganella morganii strains isolated from UTI patients in Pretoria, South Africa. Lett. Appl. Microbiol. 2020, 70, 21–28. [CrossRef]
[PubMed]

16. Coordinators, N.R. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2017, 45,
D12–D17. [CrossRef]

17. Chaudhari, N.M.; Gupta, V.; Dutta, C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 2016, 6, 24373. [CrossRef]
18. Qamar, M.T.U.; Zhu, X.; Khan, M.S.; Xing, F.; Chen, L. Pan-genome: A promising resource for noncoding RNA discovery in

plants. Plant. Genome 2020, 13, e20046. [CrossRef]
19. Ismail, S.; Shahid, F.; Khan, A.; Bhatti, S.; Ahmad, S.; Naz, A.; Almatroudi, A.; Qamar, M.T.U. Pan-vaccinomics approach towards

a universal vaccine candidate against WHO priority pathogens to address growing global antibiotic resistance. Comput. Biol. Med.
2021, 136, 104705. [CrossRef]

20. Ahmad, S.; Raza, S.; Uddin, R.; Azam, S.S. Comparative subtractive proteomics based ranking for antibiotic targets against the
dirtiest superbug: Acinetobacter baumannii. J. Mol. Graph. Model. 2018, 82, 74–92. [CrossRef]

21. Qamar, M.T.U.; Ahmad, S.; Fatima, I.; Ahmad, F.; Shahid, F.; Naz, A.; Abbasi, S.W.; Khan, A.; Mirza, M.U.; Ashfaq, U.A.; et al.
Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and
immuno-informatics approaches. Comput. Biol. Med. 2021, 132, 104389. [CrossRef]

22. Yu, N.; Wagner, J.R.; Laird, M.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved
protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.
Bioinformatics 2010, 26, 1608–1615. [CrossRef] [PubMed]

23. Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface.
Nucleic Acids Res. 2019, 47, D687–D692. [CrossRef]

24. Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines.
BMC Bioinform. 2007, 8, 4. [CrossRef]

25. Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v. 2—A server for in silico prediction of allergens. J. Mol. Model.
2014, 20, 2278. [CrossRef]

26. Blast, N. Basic local alignment search tool. Natl. Libr. Med. Natl. Cent. Biotechnol. Inf. 2015, 43(D1), D6–D17.
27. Chen, Y.; Yu, P.; Luo, J.; Jiang, Y. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm.

Genome 2003, 14, 859–865. [CrossRef]
28. Ahmad, S.; Ranaghan, K.E.; Azam, S.S. Combating tigecycline resistant Acinetobacter baumannii: A leap forward towards

multi-epitope based vaccine discovery. Eur. J. Pharm. Sci. 2019, 132, 1–17. [CrossRef]
29. ProtParam, E. ExPASy-ProtParam Tool 2017.
30. Nezafat, N.; Karimi, Z.; Eslami, M.; Mohkam, M.; Zandian, S.; Ghasemi, Y. Designing an efficient multi-epitope peptide vaccine

against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput. Biol. Chem. 2016, 62,
82–95. [CrossRef]

http://doi.org/10.3389/fimmu.2019.01722
http://www.ncbi.nlm.nih.gov/pubmed/31404139
http://doi.org/10.4161/hv.4.3.6313
http://www.ncbi.nlm.nih.gov/pubmed/20686357
http://doi.org/10.1016/j.biologicals.2017.08.004
http://www.ncbi.nlm.nih.gov/pubmed/28826780
http://doi.org/10.1016/S1359-6446(03)02689-8
http://doi.org/10.3389/fimmu.2021.669812
http://doi.org/10.1155/2015/139580
http://doi.org/10.1016/S0264-410X(02)00566-2
http://doi.org/10.1016/j.ijid.2017.01.032
http://www.ncbi.nlm.nih.gov/pubmed/28161462
http://doi.org/10.1186/s12859-019-2713-9
http://www.ncbi.nlm.nih.gov/pubmed/30871454
http://doi.org/10.1177/2051013615579869
http://doi.org/10.1111/lam.13237
http://www.ncbi.nlm.nih.gov/pubmed/31630429
http://doi.org/10.1093/nar/gkw1071
http://doi.org/10.1038/srep24373
http://doi.org/10.1002/tpg2.20046
http://doi.org/10.1016/j.compbiomed.2021.104705
http://doi.org/10.1016/j.jmgm.2018.04.005
http://doi.org/10.1016/j.compbiomed.2021.104389
http://doi.org/10.1093/bioinformatics/btq249
http://www.ncbi.nlm.nih.gov/pubmed/20472543
http://doi.org/10.1093/nar/gky1080
http://doi.org/10.1186/1471-2105-8-4
http://doi.org/10.1007/s00894-014-2278-5
http://doi.org/10.1007/s00335-003-2296-6
http://doi.org/10.1016/j.ejps.2019.02.023
http://doi.org/10.1016/j.compbiolchem.2016.04.006


Int. J. Environ. Res. Public Health 2021, 18, 10961 24 of 26

31. Mahapatra, S.R.; Sahoo, S.; Dehury, B.; Raina, V.; Patro, S.; Misra, N.; Suar, M. Designing an efficient multi-epitope vaccine
displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19
infection. Expert Rev. Vaccines 2020, 19, 871–885. [CrossRef] [PubMed]

32. Sajjad, R.; Ahmad, S.; Azam, S.S. In silico screening of antigenic B-cell derived T-cell epitopes and designing of a multi-epitope
peptide vaccine for Acinetobacter nosocomialis. J. Mol. Graph. Model. 2020, 94, 107477. [CrossRef]

33. Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using
conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [CrossRef] [PubMed]

34. Vashi, Y.; Jagrit, V.; Kumar, S. Understanding the B and T cell epitopes of spike protein of severe acute respiratory syndrome
coronavirus-2: A computational way to predict the immunogens. Infect. Genet. Evol. 2020, 84, 104382. [CrossRef]

35. Vita, R.; Overton, J.A.; Greenbaum, J.A.; Ponomarenko, J.; Clark, J.D.; Cantrell, J.R.; Wheeler, D.K.; Gabbard, J.L.; Hix, D.; Sette, A.;
et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015, 43, D405–D412. [CrossRef] [PubMed]

36. Ismail, S.; Ahmad, S.; Azam, S.S. Immunoinformatics characterization of SARS-CoV-2 spike glycoprotein for prioritization of
epitope based multivalent peptide vaccine. J. Mol. Liq. 2020, 314, 113612. [CrossRef]

37. Naz, A.; Awan, F.M.; Obaid, A.; Muhammad, S.A.; Paracha, R.Z.; Ahmad, J.; Ali, A. Identification of putative vaccine candidates
against Helicobacter pylori exploiting exoproteome and secretome: A reverse vaccinology based approach. Infect. Genet. Evol. 2015,
32, 280–291. [CrossRef] [PubMed]

38. Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S.; Consortium, O.S.D.D. Others in silico approach for
predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [CrossRef]

39. Hon, J.; Marusiak, M.; Martinek, T.; Kunka, A.; Zendulka, J.; Bednar, D.; Damborsky, J. SoluProt: Prediction of soluble protein
expression in Escherichia coli. Bioinformatics 2021, 37, 23–28. [CrossRef]

40. Li, W.; Joshi, M.D.; Singhania, S.; Ramsey, K.H.; Murthy, A.K. Peptide Vaccine: Progress and Challenges. Vaccines 2014, 2, 515–536.
[CrossRef]

41. Zhang, L. Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cell. Mol. Immunol. 2018, 15, 182–184.
[CrossRef]

42. Jafari, E.; Mahmoodi, S. Design, expression, and purification of a multi-epitope vaccine against Helicobacter pylori based on
Melittin as an adjuvant. Microb. Pathog. 2021, 157, 104970. [CrossRef]

43. Stratmann, T. Cholera Toxin Subunit B as Adjuvant—An Accelerator in Protective Immunity and a Break in Autoimmunity.
Vaccines 2015, 3, 579–596. [CrossRef]

44. Cheng, J.; Randall, A.Z.; Sweredoski, M.J.; Baldi, P. SCRATCH: A protein structure and structural feature prediction server.
Nucleic Acids Res. 2005, 33, W72–W76. [CrossRef]

45. Giardine, B.; Riemer, C.; Hardison, R.; Burhans, R.; Elnitski, L.; Shah, P.; Zhang, Y.; Blankenberg, D.; Albert, I.; Taylor, J.; et al.
Galaxy: A platform for interactive large-scale genome analysis. Genome Res. 2005, 15, 1451–1455. [CrossRef]

46. Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013, 41,
W384–W388. [CrossRef]

47. Craig, D.B.; Dombkowski, A.A. Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinform.
2013, 14, 346. [CrossRef]

48. Angov, E. Codon usage: Nature’s roadmap to expression and folding of proteins. Biotechnol. J. 2011, 6, 650–659. [CrossRef]
49. Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a

target gene to its potential expression host. Nucleic Acids Res. 2005, 33, W526–W531. [CrossRef] [PubMed]
50. Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric

docking. Nucleic Acids Res. 2005, 33, W363–W367. [CrossRef] [PubMed]
51. Mashiach, E.; Schneidman-Duhovny, D.; Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: A web server for fast interaction

refinement in molecular docking. Nucleic Acids Res. 2008, 36, W229–W232. [CrossRef] [PubMed]
52. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualiza-

tion system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef] [PubMed]
53. Case, D.A.; Belfon, K.; Ben-Shalom, I.; Brozell, S.R.; Cerutti, D.; Cheatham, T.; Cruzeiro, V.W.D.; Darden, T.; Duke, R.E.; Giambasu,

G.; et al. Amber; University of California: San Francisco, CA, USA, 2020; Volume 2020.
54. Ismail, S.; Ahmad, S.; Azam, S.S. Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological

applications targeting nosocomial Enterobacteriaceae pathogens. Eur. J. Pharm. Sci. 2020, 146, 105258. [CrossRef] [PubMed]
55. Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Antechamber: An accessory software package for molecular mechanical calculations.

J. Am. Chem. Soc. 2001, 222, U403.
56. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein

Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [CrossRef] [PubMed]
57. Izaguirre, J.A.; Catarello, D.P.; Wozniak, J.M.; Skeel, R.D. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001, 114,

2090–2098. [CrossRef]
58. van Gunsteren, W.F.; Kräutler, V.; Hünenberger, P.H. A fast SHAKE algorithm to solve distance constraint equations for small

molecules in molecular dynamics simulations. J. Comput. Chem. 2001, 22, 501–508. [CrossRef]
59. Aslyamov, T.; Akhatov, I. Zeros of partition functions in the N P T ensemble. Phys. Rev. E 2019, 100, 52118. [CrossRef]

http://doi.org/10.1080/14760584.2020.1811091
http://www.ncbi.nlm.nih.gov/pubmed/32869699
http://doi.org/10.1016/j.jmgm.2019.107477
http://doi.org/10.1093/nar/gkx346
http://www.ncbi.nlm.nih.gov/pubmed/28472356
http://doi.org/10.1016/j.meegid.2020.104382
http://doi.org/10.1093/nar/gku938
http://www.ncbi.nlm.nih.gov/pubmed/25300482
http://doi.org/10.1016/j.molliq.2020.113612
http://doi.org/10.1016/j.meegid.2015.03.027
http://www.ncbi.nlm.nih.gov/pubmed/25818402
http://doi.org/10.1371/journal.pone.0073957
http://doi.org/10.1093/bioinformatics/btaa1102
http://doi.org/10.3390/vaccines2030515
http://doi.org/10.1038/cmi.2017.92
http://doi.org/10.1016/j.micpath.2021.104970
http://doi.org/10.3390/vaccines3030579
http://doi.org/10.1093/nar/gki396
http://doi.org/10.1101/gr.4086505
http://doi.org/10.1093/nar/gkt458
http://doi.org/10.1186/1471-2105-14-346
http://doi.org/10.1002/biot.201000332
http://doi.org/10.1093/nar/gki376
http://www.ncbi.nlm.nih.gov/pubmed/15980527
http://doi.org/10.1093/nar/gki481
http://www.ncbi.nlm.nih.gov/pubmed/15980490
http://doi.org/10.1093/nar/gkn186
http://www.ncbi.nlm.nih.gov/pubmed/18424796
http://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
http://doi.org/10.1016/j.ejps.2020.105258
http://www.ncbi.nlm.nih.gov/pubmed/32035109
http://doi.org/10.1021/acs.jctc.5b00255
http://www.ncbi.nlm.nih.gov/pubmed/26574453
http://doi.org/10.1063/1.1332996
http://doi.org/10.1002/1096-987x(20010415)22:53.0.co;2-v
http://doi.org/10.1103/PhysRevE.100.052118


Int. J. Environ. Res. Public Health 2021, 18, 10961 25 of 26

60. Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data.
J. Chem. Theory Comput. 2013, 9, 3084–3095. [CrossRef]

61. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
62. Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the Performance of the MM_PBSA and MM_GBSA Methods. 1. The Accuracy.pdf. J.

Chem. Inf. Model. 2011, 51, 69–82. [CrossRef] [PubMed]
63. Miller, I.B.R.; McGee, J.T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for

End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [CrossRef] [PubMed]
64. Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational Immunology Meets Bioinformatics: The Use of Prediction Tools

for Molecular Binding in the Simulation of the Immune System. PLoS ONE 2010, 5, e9862. [CrossRef]
65. Sanober, G.; Ahmad, S.; Azam, S.S. Identification of plausible drug targets by investigating the druggable genome of MDR

Staphylococcus epidermidis. Gene Rep. 2017, 7, 147–153. [CrossRef]
66. Barh, D.; Barve, N.; Gupta, K.; Chandra, S.; Jain, N.; Tiwari, S.; Leon-Sicairos, N.; Canizalez-Roman, A.; Santos, A.; Hassan, S.S.;

et al. Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by
Piper betel Derived Compounds. PLoS ONE 2013, 8, e52773. [CrossRef]

67. Wadood, A.; Jamal, A.; Riaz, M.; Khan, A.; Uddin, R.; Jelani, M.; Azam, S.S. Subtractive genome analysis for in silico identification
and characterization of novel drug targets in Streptococcus pneumonia strain JJA. Microb. Pathog. 2018, 115, 194–198. [CrossRef]

68. Ebihara, T. Dichotomous Regulation of Acquired Immunity by Innate Lymphoid Cells. Cells 2020, 9, 1193. [CrossRef]
69. Bonilla, F.A.; Oettgen, H.C. Adaptive immunity. J. Allergy Clin. Immunol. 2010, 125, S33–S40. [CrossRef]
70. Lee, S.; Choi, Y.-K.; Goo, Y.-K. Humoral and cellular immune response to Plasmodium vivax VIR recombinant and synthetic

antigens in individuals naturally exposed to P. vivax in the Republic of Korea. Malar. J. 2021, 20, 1–8. [CrossRef] [PubMed]
71. Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and Methods for T- and B-Cell Epitope Prediction. J.

Immunol. Res. 2017, 2017, 2680160. [CrossRef] [PubMed]
72. Dombkowski, A.A.; Sultana, K.Z.; Craig, D.B. Protein disulfide engineering. FEBS Lett. 2014, 588, 206–212. [CrossRef]
73. Nieuwkoop, T.; Claassens, N.J.; Van Der Oost, J. Improved protein production and codon optimization analyses in Escherichia coli

by bicistronic design. Microb. Biotechnol. 2018, 12, 173–179. [CrossRef]
74. Maiorov, V.N.; Crippen, G.M. Significance of Root-Mean-Square Deviation in Comparing Three-dimensional Structures of

Globular Proteins. J. Mol. Biol. 1994, 235, 625–634. [CrossRef]
75. Ahmad, S.; Raza, S.; Uddin, R.; Azam, S.S. Binding mode analysis, dynamic simulation and binding free energy calculations of

the MurF ligase from Acinetobacter baumannii. J. Mol. Graph. Model. 2017, 77, 72–85. [CrossRef] [PubMed]
76. Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O. V Radius of gyration as an indicator of protein structure compactness. Mol. Biol.

2008, 42, 623–628. [CrossRef]
77. Chen, L.; Yuan, J.; Xu, Y.; Zhang, F.; Chen, Z. Comparison of clinical manifestations and antibiotic resistances among three

genospecies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. PLoS ONE 2018, 13, e0191748. [CrossRef]
78. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.;

Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria
and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [CrossRef]

79. Micoli, F.; Bagnoli, F.; Rappuoli, R.; Serruto, D. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol.
Genet. 2021, 19, 287–302. [CrossRef] [PubMed]

80. Khan, S.; Khan, A.; Rehman, A.U.; Ahmad, I.; Ullah, S.; Khan, A.A.; Ali, S.S.; Afridi, S.G.; Wei, D.-Q. Immunoinformatics
and structural vaccinology driven prediction of multi-epitope vaccine against Mayaro virus and validation through in-silico
expression. Infect. Genet. Evol. 2019, 73, 390–400. [CrossRef]

81. Zeb, A.; Ali, S.S.; Azad, A.K.; Safdar, M.; Anwar, Z.; Suleman, M.; Nizam-Uddin, N.; Khan, A.; Wei, D.-Q. Genome-wide screening
of vaccine targets prioritization and reverse vaccinology aided design of peptides vaccine to enforce humoral immune response
against Campylobacter jejuni. Comput. Biol. Med. 2021, 133, 104412. [CrossRef]

82. Rappuoli, R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 2001, 19, 2688–2691. [CrossRef]
83. Dhar, R.; Slusky, J.S. Outer membrane protein evolution. Curr. Opin. Struct. Biol. 2021, 68, 122–128. [CrossRef]
84. Nottelet, P.; Bataille, L.; Gourgues, G.; Anger, R.; Lartigue, C.; Sirand-Pugnet, P.; Marza, E.; Fronzes, R.; Arfi, Y. The mycoplasma

surface proteins MIB and MIP promote the dissociation of the antibody-antigen interaction. Sci. Adv. 2021, 7, eabf2403. [CrossRef]
85. Torisu, T.; Shikama, S.; Nakamura, K.; Enomoto, K.; Maruno, T.; Mori, A.; Uchiyama, S.; Satou, T. Physicochemical Characteriza-

tion of Sabin Inactivated Poliovirus Vaccine for Process Development. J. Pharm. Sci. 2021, 110, 2121–2129. [CrossRef]
86. Silva, F.M.; Barbosa, M.D.S.; Tiwari, S.; Seyffert, N.; Azevedo, V.A.D.C.; Nascimento, R.J.M.; Castro, T.L.D.P.; Marchioro, S.B.

Immunoinformatic approach for the evaluation of sortase C and E proteins as vaccine targets against Caseous lymphadenitis. Inform.
Med. Unlocked 2021, 26, 100718. [CrossRef]

87. Morris, G.M.; Lim-Wilby, M. Molecular docking. In Molecular Modeling of Proteins; Springer: Heidelberg/Berlin, Germany, 2008;
pp. 365–382.

88. Hansson, T.; Oostenbrink, C.; van Gunsteren, W. Molecular dynamics simulations. Curr. Opin. Struct. Biol. 2002, 12, 190–196.
[CrossRef]

89. Hubbard, R.E.; Haider, M.K. Hydrogen Bonds in Proteins: Role and Strength. In eLS; Wiley: Hoboken, NJ, USA, 2010.

http://doi.org/10.1021/ct400341p
http://doi.org/10.1016/0263-7855(96)00018-5
http://doi.org/10.1021/ci100275a
http://www.ncbi.nlm.nih.gov/pubmed/21117705
http://doi.org/10.1021/ct300418h
http://www.ncbi.nlm.nih.gov/pubmed/26605738
http://doi.org/10.1371/journal.pone.0009862
http://doi.org/10.1016/j.genrep.2017.04.008
http://doi.org/10.1371/journal.pone.0052773
http://doi.org/10.1016/j.micpath.2017.12.063
http://doi.org/10.3390/cells9051193
http://doi.org/10.1016/j.jaci.2009.09.017
http://doi.org/10.1186/s12936-021-03810-2
http://www.ncbi.nlm.nih.gov/pubmed/34183015
http://doi.org/10.1155/2017/2680160
http://www.ncbi.nlm.nih.gov/pubmed/29445754
http://doi.org/10.1016/j.febslet.2013.11.024
http://doi.org/10.1111/1751-7915.13332
http://doi.org/10.1006/jmbi.1994.1017
http://doi.org/10.1016/j.jmgm.2017.07.024
http://www.ncbi.nlm.nih.gov/pubmed/28843462
http://doi.org/10.1134/S0026893308040195
http://doi.org/10.1371/journal.pone.0191748
http://doi.org/10.1016/S1473-3099(17)30753-3
http://doi.org/10.1038/s41579-020-00506-3
http://www.ncbi.nlm.nih.gov/pubmed/33542518
http://doi.org/10.1016/j.meegid.2019.06.006
http://doi.org/10.1016/j.compbiomed.2021.104412
http://doi.org/10.1016/S0264-410X(00)00554-5
http://doi.org/10.1016/j.sbi.2021.01.002
http://doi.org/10.1126/sciadv.abf2403
http://doi.org/10.1016/j.xphs.2020.12.012
http://doi.org/10.1016/j.imu.2021.100718
http://doi.org/10.1016/S0959-440X(02)00308-1


Int. J. Environ. Res. Public Health 2021, 18, 10961 26 of 26

90. Ehsan, N.; Ahmad, S.; Azam, S.S.; Rungrotmongkol, T.; Uddin, R. Proteome-wide identification of epitope-based vaccine
candidates against multi-drug resistant Proteus mirabilis. Biology 2018, 55, 27–37. [CrossRef]

91. Elhag, M.; Alaagib, R.M.; Ahmed, N.M.; Abubaker, M.; Haroun, E.M.; Albagi, S.O.A.; Hassan, M.A. Design of Epitope-Based
Peptide Vaccine against Pseudomonas aeruginosa Fructose Bisphosphate Aldolase Protein Using Immunoinformatics. J. Immunol.
Res. 2020, 2020, 1–11. [CrossRef] [PubMed]

92. Asad, Y.; Ahmad, S.; Rungrotmongkol, T.; Ranaghan, K.E.; Azam, S.S. Immuno-informatics driven proteome-wide investigation
revealed novel peptide-based vaccine targets against emerging multiple drug resistant Providencia stuartii. J. Mol. Graph. Model.
2018, 80, 238–250. [CrossRef] [PubMed]

93. Dar, H.A.; Zaheer, T.; Shehroz, M.; Ullah, N.; Naz, K.; Muhammad, S.A.; Zhang, T.; Ali, A. Immunoinformatics-Aided Design and
Evaluation of a Potential Multi-Epitope Vaccine against Klebsiella Pneumoniae. Vaccines 2019, 7, 88. [CrossRef] [PubMed]

94. Enayatkhani, M.; Hasaniazad, M.; Faezi, S.; Gouklani, H.; Davoodian, P.; Ahmadi, N.; Einakian, M.A.; Karmostaji, A.; Ahmadi, K.
Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. J. Biomol.
Struct. Dyn. 2021, 39, 2857–2872. [CrossRef] [PubMed]

95. Nain, Z.; Abdullah, F.; Rahman, M.M.; Karim, M.M.; Khan, S.A.; Bin Sayed, S.; Mahmud, S.; Rahman, S.M.R.; Sheam, M.; Haque,
Z.; et al. Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis
using immunoinformatic approaches. J. Biomol. Struct. Dyn. 2020, 38, 4850–4867. [CrossRef] [PubMed]

http://doi.org/10.1016/j.biologicals.2018.07.004
http://doi.org/10.1155/2020/9475058
http://www.ncbi.nlm.nih.gov/pubmed/33204735
http://doi.org/10.1016/j.jmgm.2018.01.010
http://www.ncbi.nlm.nih.gov/pubmed/29414043
http://doi.org/10.3390/vaccines7030088
http://www.ncbi.nlm.nih.gov/pubmed/31409021
http://doi.org/10.1080/07391102.2020.1756411
http://www.ncbi.nlm.nih.gov/pubmed/32295479
http://doi.org/10.1080/07391102.2019.1692072
http://www.ncbi.nlm.nih.gov/pubmed/31709929

	Introduction 
	Materials and Methods 
	M. Morganii Predicted Proteomes Retrieval 
	Subtraction of Core Proteins 
	The Prioritization Phase of the Vaccine Targets 
	Epitope Prediction Phase 
	Multi-Epitope Vaccine Design and Processing 
	Physiochemical Properties of the Final Vaccine Construct 

	Structure Modelling of the Vaccine 
	Disulfide Engineering and Codon Optimization 
	Molecular Docking and Refinement 
	Molecular Dynamics Simulations 
	Binding Free Energies Calculation 
	C-immune Simulations 

	Results 
	Bacterial Pan-genome Analysis (BPGA) 
	CD-Hit Analysis 
	Subcellular Localization and Virulence Analysis 
	Antigenicity, Allergenicity, Human and Normal Microbiota Homology, and Transmembrane Helices and Stability Analysis 
	B-Cell and T-Cell Epitopes Prediction 
	B-Cell Epitope Prediction 
	B-Cell-Derived T-Cell Epitope Prediction 

	Epitope Prioritization Phase 
	Multi-Epitope Vaccine Construction 
	Structure Prediction, Loop Modelling, and Refinement 
	Disulfide Engineering and Codon Optimization 
	Molecular Docking and Refinement 
	Chemical Interactions of the Vaccine with MHC-I, MHC-II, and TLR-4 
	Molecular Dynamics Simulation 
	Hydrogen Bonds Analysis 
	Determination of the Binding Free Energies 
	Computationally Immune Simulations 

	Discussion 
	Conclusions and Limitations 
	References

