
biomedicines

Review

Multifunctional Polymeric Nanoplatforms for Brain
Diseases Diagnosis, Therapy and Theranostics

Shahryar Shakeri 1, Milad Ashrafizadeh 2 , Ali Zarrabi 3 , Rasoul Roghanian 4,
Elham Ghasemipour Afshar 5, Abbas Pardakhty 6 , Reza Mohammadinejad 6,*, Anuj Kumar 7,*
and Vijay Kumar Thakur 8,*

1 Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences,
Graduate University of Advanced Technology, Kerman 7631818356, Iran; sh.shakeri@kgut.ac.ir

2 Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
dvm.milad73@yahoo.com

3 Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul,
Turkey; alizarrabi@sabanciuniv.edu

4 Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746, Iran; r.roghanian@sci.ui.ac.ir
5 Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences,

Kerman 7619813159, Iran; elham_gh_afshar@yahoo.com
6 Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences,

Kerman 7616911319, Iran; drpardakhti@yahoo.com
7 School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
8 Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing,

Cranfield University, Bedfordshire MK43 0AL, UK
* Correspondence: r.mohammadinejad@kmu.ac.ir (R.M.); anuj.budhera@gmail.com (A.K.);

Vijay.Kumar@cranfield.ac.uk (V.K.T.)

Received: 10 November 2019; Accepted: 6 January 2020; Published: 13 January 2020
����������
�������

Abstract: The blood–brain barrier (BBB) acts as a barrier to prevent the central nervous system
(CNS) from damage by substances that originate from the blood circulation. The BBB limits drug
penetration into the brain and is one of the major clinical obstacles to the treatment of CNS diseases.
Nanotechnology-based delivery systems have been tested for overcoming this barrier and releasing
related drugs into the brain matrix. In this review, nanoparticles (NPs) from simple to developed
delivery systems are discussed for the delivery of a drug to the brain. This review particularly
focuses on polymeric nanomaterials that have been used for CNS treatment. Polymeric NPs such as
polylactide (PLA), poly (D, L-lactide-co-glycolide) (PLGA), poly (ε-caprolactone) (PCL), poly (alkyl
cyanoacrylate) (PACA), human serum albumin (HSA), gelatin, and chitosan are discussed in detail.

Keywords: blood–brain barrier (BBB); central nervous system (CNS); nanotechnology; drug delivery
systems; polymeric nanoparticles; theranostics

1. Introduction

Central nervous system (CNS) disorders are among the most common and complex diseases
known in humans [1,2]. The best known brain diseases include cancers, neurodegenerative disorders,
HIV encephalopathy, and inflammatory diseases [3,4]. Most cancer-related deaths in patients below the
age of 35 have been reported as arising from brain cancer [5–7]. The different kinds of brain tumors are
neuroepithelial, meningeal, primary CNS lymphomas, tumors of the sellar region, and metastatic [8–10].
Alzheimer’s (AD), Parkinson’s (PD), multiple sclerosis (MS), Huntington’s, and prion diseases are the
main neurodegenerative diseases (NDDs) that affect the neuron cells in a detrimental way [11–14].
NDDs lead to the loss or death of neural cell function and have symptoms related to movement,

Biomedicines 2020, 8, 13; doi:10.3390/biomedicines8010013 www.mdpi.com/journal/biomedicines

http://www.mdpi.com/journal/biomedicines
http://www.mdpi.com
https://orcid.org/0000-0001-6605-822X
https://orcid.org/0000-0003-0391-1769
https://orcid.org/0000-0002-1848-5961
https://orcid.org/0000-0002-0790-2264
http://www.mdpi.com/2227-9059/8/1/13?type=check_update&version=1
http://dx.doi.org/10.3390/biomedicines8010013
http://www.mdpi.com/journal/biomedicines


Biomedicines 2020, 8, 13 2 of 29

memory, and dementia. There are some unsolved problems in the clinic about the treatment of brain
diseases [15–17]. In the past decade, CNS disorders represented one of the largest markets for the
development of new treatments. This market reached US$75.3 billion in 2010 and $102.0 billion in
2015 [18–21]. Fortune Business Insights, in a recent report entitled “The Neurodegenerative Diseases
Drugs Market: Global Market Analysis, Insights and Forecast, 2019–2026,” gives valuable predictions
about the market. In 2018, the global market value was $35,497.3 million and is expected to grow to
$62,786.2 million by 2026 [22].

2. The Blood–Brain Barrier (BBB)

The blood–brain barrier (BBB) has a special structure that separates the extracellular fluid of
neurons from blood circulation [23–29]. Paul Ehrlich gave the first evidence for the presence of
BBB in his research in 1885 [30]. The BBB functions as a barrier for the complete separation of
blood circulation from the fluid inside of the CNS and protects nerve cells from damage by foreign
substances and infections that originate from the blood [31]. In addition, the BBB prevents water-soluble
molecules, proteins, peptides, genes, and antibiotics with a molecular weight of above 500Da from
reaching the brain, although NPs of such molecular weights could pass through it owing to their
aspect ratio and spatial geometry [32,33]. This special barrier is composed of different kinds of cells.
Endothelial cells, pericytes, astrocytes, and microglia are incorporated in the 3D structure of the BBB [34].
Endothelial cells in the structure of BBB have different characteristics from their counterparts in the
periphery, including a high content of mitochondrial cells and changed pinocytic activity. The tight
junctions between the neighboring endothelial cells are complex and formed by several transmembrane
proteins. Pericytes are located at the inner brain membrane and are covered by basal lamina and
proteins [35,36]. Astrocytes and their endfeet have been attached to the walls of capillaries and help
steady the capillary structure [37]. The BBB is the main problem in the treatment of CNS diseases.
Therefore, overcoming this barrier is the most critical area of research for CNS disease therapy [38,39].

There are two current strategies: paracellular and transcellular transport for passive or active
crossing of the BBB, respectively [40]. Temporary disruption of the BBB, transcytosis, and nanoplatforms
facilitate the delivery of molecules into the CNS [41]. Molecules use active efflux transporters,
carrier-mediated transporters, and receptor-mediated transporters to cross the BBB. Nanoconjugation
of ligands targeting endothelial cell surface receptors facilitates the endocytosis of nanocarriers.
Iron-transferrin, insulin, metabolic nutrient transporters, low-density lipoprotein (LDL) cholesterol,
nicotinic acetylcholine (nAchR), and integrin are the most explored receptors for transporting drugs
across the BBB [42].

3. Nano-Scale Drug Delivery to the Brain

In recent years, a wide variety of studies have been performed in the field of drug delivery into
the brain [43–46]. However, the BBB is a barrier to the successful delivery of drugs to the CNS since
only a small number of molecules can cross the BBB [47]. Almost all (>98%) small molecules can cross
the BBB, whereas high molecular weight drugs such as proteins, peptides, monoclonal antibodies,
and genes are not able to penetrate through the BBB and access the CNS [48–50]. Hence, novel
technologies and delivery systems are needed to overcome this barrier and release the drugs into the
brain matrix. Nanotechnology-based drug delivery systems are a powerful method for drug transport
into the brain [40,51,52]. A well-known candidate for CNS targeted delivery of drugs is colloidal-based
particulate systems [53–55]. NPs are used in the form of nanospheres as well as nanocapsules, and the
drug is entrapped inside the matrix or attached to the surface [56,57]. Nanomaterials penetrate small
capillaries because of their size; cells absorb them and the drug will be released into their compartment
or cytoplasm. Sustained drug release at the targeted site is one of the advantages of NPs that are
prepared with biodegradable materials [58–60]. NPs made of polymeric materials are solid particles
ranging in size from 1 to 100 nm in at least one dimension. They are nontoxic, nonimmunogenic,
and stable in the blood if they are appropriately surface engineered with proper ligands [61,62].
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The drugs stay inside or at the surface of biodegradable NPs and will be released in a tunable manner at
a specific site in the body. In this way, the targeted delivery of drugs will enhance therapeutic efficiency
and reduce drug toxicity and side effects [42,63]. Reduction of adverse side effects and improvements in
the bioavailability of drugs with a short half-life are other potential benefits of NPs-based drug-delivery
systems [64,65]. Nanotechnology can be applied for the delivery of drugs to the brain for the treatment
of brain-related diseases. For instance, several drugs such as growth factors and neuropeptides cannot
cross the BBB and so are ineffective when administered intravenously (IV) [66,67]. Therefore, numerous
efforts have been focused on the use of NPs for the delivery of drugs into the brain [18].

Development of the Nanoparticulate Systems: From Simple to Targeted Generations

Long-time circulation in the bloodstream is one of the most important characteristics of NPs after
IV administration [68,69]. The reticuloendothelial system (RES) is an active agent in the removal of
the first generation of NPs (without the capability of escape from RES) from the blood circulation.
Some characteristics of NPs such as size and surface charge help them to escape from clearance property
of RES and endure more time in circulation [70]. Moreover, the particles’ size and charge could affect
their cellular uptake and cytotoxicity, so that particles with a size of less than 500 nm and a positive
charge are more suitable for cell uptake. In other words, particles < 200 nm are preferred for systemic
applications. It is important to remark that particles smaller than 5 nm are also not suitable since
they may be removed from the circulation by renal excretion. Moreover, they are hazardous since
they can directly affect the important biological macromolecules of the nucleus (DNA and RNA).
On the other hand, positively charged particles also facilitate interactions with negatively charged cell
membranes, along with increasing the cytotoxicity. These positively charged particles can also improve
the interaction of NPs with other types of biological components, such as proteins, that restrict their
circulation time, while particles with a neutral or negative charge have longer circulation times [71–73].

The surface modification of NPs with different molecules such as polyethylene glycol (PEG) is a
promising strategy for increasing the half-life and persistence in the bloodstream (second generation
of NPs). An external surface layer of hydrophilic PEG chains around the hydrophobic polymeric
matrix camouflages particles from recognition by RES and provides a long plasma residence time [74].
In addition to the long-time circulation, the good affinity of NPs for the targeted tissue is another
important factor in drug delivery [75]. It has been shown that PEGylated NPs have a low affinity to
the brain [74]. The first attempt at the delivery of the drug to the brain was made by Kreuter et al. [76].
They used polysorbate 80-coated poly (butyl cyanoacrylate) (PBCA) NPs for the delivery of dalargin
into the CNS (third generation of NPs). This kind of NP has a good affinity to the brain in addition
to long-time circulation, and several drugs have been successfully delivered into the brain by this
system [77–79]. Various types of nanosystems have been evaluated for drug delivery to the brain [80–82].
Receptor-mediated transporter systems are modern examples of these NPs [83–85]. The effective
delivery of drugs to the specific target site (e.g., the brain) is achieved by the ligand–receptor
mechanism. The presence of ligands on the surface of drug-loaded NPs can deliver the carrier system
to the target sites with specific receptors [41,86–89]. For instance, some ligands such as transferrin (Tf),
Apolipoprotein (Apo) E, B, A, and antibodies (Tf receptor or OX26) on the surface of NPs have been
shown to pass through the BBB and allow targeted delivery of carriers into the brain parenchyma via
receptor-mediated endocytosis [90–96]. For example, PEGylated albumin or chitosan (CS) NPs coupled
with OX-26 were proposed as a potential candidate for targeted brain delivery [97,98]. The main
mechanism for the delivery of these NPs through the BBB is receptor-mediated transport endocytosis.

4. Polymeric Nanoparticles for Brain Disease Theranostics

The therapeutic benefits of various water-soluble/insoluble drugs and bioactive agents, such as
solubility, bioavailability, and retention time, are promoted by the frequent use of biodegradable
polymer-based NPs [99,100]. A wide range of polymeric biomaterials are used as a matrix for
drug delivery nanosystems [101]. Polymeric biomaterials include synthetic and natural ones,
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and their hybrid polymers. For the successful application of these polymeric systems in medicine
and pharmaceuticals, one must consider the biocompatibility, biodegradability, and nontoxic,
nonimmunogenic, and noncarcinogenic characteristics of these materials [102]. Herein, we have
discussed synthetic and natural polymers for application in the field of nanotechnology-based delivery
systems to the brain (Figure 1) (Table 1).

Table 1. Some selected polymeric NPs for the delivery of drugs to the brain.

Polymers Model Drug/Other
Molecules Remarks References

PLA Neurotoxin-I NT-I
Intranasal (IN) administration of

NT-I-PLA is more effective than IV
administration

[103]

Polylactic acid-co-
hyperbranched polyglycerol

modified with adenosine
(PLA–HPG–Ad)

Camptothecin (CPT) Increased BBB uptake after
IV injection [104]

PLA Thyrotropin-releasing
hormone (TRH) Effective IN administration [105]

PLA–TPGS Tf More effective compared to NPs
without Tf [106]

PLA–PEG–CPPs NT-I High concentration of drug in the
brain through IN administration [107]

PLA Neuropeptide High drug delivery in IN
administration [108]

PLG–PEG–H102 H102 peptide
(HKQLPFFEED)

High uptake and biocompatibility,
and high concentration of

coumarin-6 in the brain following
IV administration

[109]

PLA–mPEG–Lf Tf Reduced toxicity [110]

PLA–MPS–LDLR Resveratrol Increased the migration of NPs
through the BBB [111]

PLGA–CS, P80, and P188 - Prolonged circulation in the blood,
high cellular uptake [112]

PLGA–PVA or HSA/P80 or
P188

Doxorubicin (DOX) and
loperamide

Crossed the BBB and released the
drug at a specific site [113]

Tween 80–PLGA Estradiol High level of the drug in the brain
after oral administration [114]

Trimethylated chitosan
(TMC)–PLGA Coenzyme Q10 Low toxicity and good penetration

into the brain matrix [115]

PLGA–PEG Pep TGN High accumulation of NPs in the
brain after IV injection [116]

PEGylated-PLGA Memantine
Decreased amyloid-beta (Aβ)

plaques and related inflammation
characteristics

[117]

mPEG–PLGA Schisantherin A

Improved oral bioavailability,
increased brain uptake,

and enhanced the bioactivity of
this drug

[118]

Rabies virus glycoprotein
29-modified

deferoxamine-loaded PLGA
Deferoxamine Significantly decreased

dopaminergic neuron damage [26]

BBB-penetrating
peptide–PLGA

Aβ generation inhibitor
and curcumin

Increased activity of superoxide
dismutase (SOD) and synapse

numbers in the AD mouse brains
[119]
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Table 1. Cont.

Polymers Model Drug/Other
Molecules Remarks References

PLGA–anti-EPHA3 Temozolomide
(TMZ)

Significantly taken up by
glioblastoma cells, remarkably

increased apoptosis
[120]

Lf-PLGA–PEG Shikonin, lactoferrin Great uptake and distribution in
the brain [121]

PLGA Ropinirole (RP)
Reverted PD-like symptoms of

neurodegeneration in the
animal model

[122]

PLGA Curcumin
Decreased tumor size and

increased survival of
animal model

[123]

PLGA Paclitaxel Increased treatment of glioma [124]

PLGA L-carnitine Significantly crossed the BBB,
great antiglioma efficacy [125]

Poly(N-isopropyl
acrylamide)-b-poly(caprolactone)

(PN-co-PCL)
Clonazepam Prevented fast release of the drug [126]

PCL-PEG 5-iodo 2′ deoxyuridine
(IUdR)

High toxicity against
glioblastoma cells [127]

Poly (ε-caprolactone diol)-based
polyurethane (PCL-Diol-b-PU) CS and TMZ

Significantly decreased the cell
viability and survival of

glioblastoma cells
[128]

Lipid polymer nanoparticles
(LPN)

Pemetrexed- and miR-21
antisense oligonucleotide

Increased the cellular uptake and
gradually released of pemetrexed [129]

PCL Eugenol encapsulated CS Increased bioavailability for the
treatment of cerebral ischemia [130]

PCL-Diol-b-PU/gold TMZ Decreased viability and survival
of glioblastoma cells [131]

PEGylated PCL Docetaxel Effective cytotoxicity [132]

Polysorbate 80-coated PBCA Tarcrine Increased drug concentration in
the brain [133]

PBCA–P80 or P188 DOX Considerable antitumor effects [134]

PBCA–Apo E3 Curcumin Increased antiapoptotic activity of
Apo E3- curcumin-PBCA NPs [135]

PBCA–P80 Nerve growth factor
(NGF)

Moderation in symptoms of
oligokinesia [136]

PBCA–P20,40,60,80,184,188,388,407,
and 908 Dalargin

The surfactant polysorbate 80
enabled the highest induction of

analgesia at both dosages
of dalargin

[137]

PBCA-P80 Dalargin Efficient delivery of drugs into
the brain [138]

P(HDCA-co-RCA-co-MePEGCA)
and 14C-P(HDCA-co-MePEGCA) Anti-Aβ1-42

Completed correction of the
memory defect in an experimental

model of AD
[139]

PLGA functionalized with
OX26-type monoclonal antibody TMZ Cytotoxicity improvement of TMZ [140]

PLGA–b-PEG-ascorbic acid Galantamine (GLM) High biodistribution, therapeutic,
and sustained action of the drug [141]
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Table 1. Cont.

Polymers Model Drug/Other
Molecules Remarks References

1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-

[amino(polyethylene glycol)-2000
(DSPE-PEG2000)

Poly(benzodithiophene-alt-
benzobisthiadiazole)

Efficient near-infrared (NIR) II PA
imaging of orthotropic brain tumor [142]

Polyacrylamide (PAAM)-cardiolipin
(CL)- PLGA grafted with 83-14

monoclonal antibody (MAb)

Curcumin (CUR) and
Rosmarinic acid (RA)

Permeated the BBB and reduced the
fibrillar Aβ-induced neurotoxicity [143]

HSA–Tf or TfR mAbs Loperamide
Loperamide delivery across the BBB

induced antinociceptive
(analgesic) effects

[92]

HSA–insulin or anti-insulin receptor
monoclonal antibody Loperamide Induced significant antinociceptive

effects in the tail-flick test [144]

HSA Paclitaxel Great uptake by brain capillary
endothelial cells and U87 cells [145]

Serum albumin R-flurbiprofen
Higher brain to-plasma ratio profile,

amelioration of mitochondrial
dysfunction in AD

[146]

BSA Borneol, muscone,
and menthol

The biocompatible carriers
efficiently penetrate the BBB and are

captured by cells
[147]

Gelatin (GE)–mannan Anti-HIV drug (hydrophilic
didanosine)

Increased brain concentration of
the drug [148]

GE–siloxane–SynB rhodamine B isothiocyanate
The biocompatible nanocomplexes
were efficiently taken up by brain

capillary endothelial cells
[149]

GE–cardamom extract Cytotoxic effects on U87MG cells [150]

CS Estradiol
Efficient delivery of estradiol to the
cerebrospinal fluid (CSF) through

IN administration
[151]

CS–PEG–biotin–avidin/OX26 Anticaspase peptide
Z-DEVD-FMK

Z-DEVD-FMK delivery to the brain,
outside of the

intravascular compartment
[152]

CS–β-cyclodextrin Estradiol Significantly increased the amount
of estradiol in the CSF [153]

CS Dopamine Enhanced brain delivery
of dopamine [154]

CS Lactoferrin Cytoplasmic allocation of the NPs [155]

Antibody-modified CS siRNA
Showing their efficiency in
inhibiting HIV replication

in astrocytes
[156]

CS–iron oxide DOX
High uptake of NPs by C6 glioma
cells, showing their application in

the diagnosis of glioblastoma
[157]

CS hydrochloride/hyaluronic
acid/PEG Lactoferrin The NPs can penetrate the BBB [158]

CS-1, 3-glucan Paclitaxel Potential therapeutic options
are demonstrated [159,160]

CS Pramipexole
dihydrochloride (P)

Superior in vivo activity for brain
targeted delivery in
Parkinson’s disease

[161]

CS-based hydrogel Methotrexate
(MTX)

Facilitated MTX passage by
providing a higher concentration of

the drug in contact with the BBB
[162]
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4.1. Synthetic Polymers

4.1.1. Polyesters

Synthetic polymers have been widely used for the delivery of bioactive agents and
drugs [44,163–172]. Among them, polyesters have great potential because of their biocompatibility
and biodegradability. They are toxicologically safe and their monomers, as well as by-products, are
eliminated by the metabolic pathways of the human body [173]. Polylactic acid (PLA), polyglycolic
acid (PGA), and PLGA have been widely used in medicine and pharmaceuticals [174]. PLA and PLGA
have been approved by the FDA for clinical uses [112]. These polymers degrade in the human body
without any induction of inflammation or immune reactions [175]. They have been applied for the
fabrication of biodegradable medical devices such as scaffolds and drug-loaded NPs or implants [176].

4.1.2. PLA

PLA is a biocompatible polymer and biodegradable in the human body that degrades into its
monomeric units [177]. The monomer of lactic acid is a safe and natural intermediate in carbohydrate
metabolism. Cheng et al. [103] studied the delivery of neurotoxin-I (NT-I) using PLA NPs. The authors
used PLA instead of PBCA to prevent the toxicity of the by-products. The level of NT-I was found
to increase in the brain after IN or intravascular (IV) administration of NT-I–PLA NPs. Results have
demonstrated that IN administration of NT-I–PLA NPs was more effective than intravascular
administration. Kubek et al. [105] used thyrotropin-releasing hormone (TRH) for loading into the PLA
NPs for the IN administration of seizure. Although the results were not as expected, the authors believe
that IN administration of biodegradable NPs can be effective in the treatment of seizures. Hu et al. [178]
studied the use of lactoferrin (Lf)-conjugated PEG–PLA NPs to deliver a fluorescent dye (coumarin-6)
into the mouse brain. An IV injection of Lf-PEG–PLA NPs demonstrated that the NPs’ entrance
into the brain was increased 3-fold by coumarin-6 in the mouse brain compared to NPs without Lf.
The authors suggested that the Lf-PEG–PLA NPs system can provide a novel system for brain drug
delivery, especially targeting peptides, proteins, and genes. Tf was another ligand used by Gan and
Feng [106]. They fabricated Tf-conjugated NPs of PLA-d-α-Tocopheryl polyethylene glycol succinate
(PLA-TPGS) diblock copolymer for the delivery of imaging and therapeutic agents. The results showed
the higher effectiveness of Tf-decorated NPs for the delivery of agents across the BBB. Cell-penetrating
peptides (CPPs) with a low content of basic amino acids were reported as good candidates for the
functionalization of PEG–PLA NPs and drug delivery to the brain [107]. Increased accumulation of
functionalized NPs was observed in the brain. Song et al. prepared polylactic acid NPs to evaluate
their efficiency in brain delivery (Figure 2) [108]. They have shown that the surface properties of NPs
were associated with their cellular distribution, and used them in in vitro and in vivo studies to test the
idea. Overall, it was concluded that PLA NPs are potential candidates for the delivery of therapeutics
into the brain due to their low toxicity and high uptake by brain cells.
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Figure 2. (a) Schematic representation of PLA-based NPs having different coating materials.
(b) Population and morphology of NPs using TEM (scale bar = 100 nm). (c) Characterization of
NPs for hydrodynamic diameters using dynamic light scattering (d), zeta potential using laser doppler
anemometry (e), and analysis of particle size (in CSF at 37 ◦C) is observed as stable and no measurable
aggregation was observed up to 24 h. Reproduced with permission from Song, E.; Gaudin, A.; King,
A.R.; Seo, Y.E.; Suh, H.W.; Deng, Y.; Cui, J.; Tietjen, G.T.; Huttner, A.; Saltzman, W.M. Surface chemistry
governs cellular tropism of nanoparticles in the brain. Nat. Commun. 2017 [108].

Zheng et al. designed H102-loaded PEG-PLG NPs for efficient delivery into the brain in
the case of AD [109]. In this case, some NPs are able to cross the BBB and are taken up by
caveolae-mediated endocytosis. Interestingly, H102-loaded PEG-PLG NPs have shown excellent
biocompatibility and, simultaneously, good therapeutic efficiency in reducing Aβ plaques, enhancing
Aβ-degrading enzymes, decreasing tau protein phosphorylation, protecting synapses, and promoting
spatial learning and memory. Pan et al. investigated the delivery of α-asarone into the brain by
lactoferrin-modified mPEG–PLA NPs [110]. They prepared NPs using premix membrane emulsification
and used IN administration. These NPs efficiently delivered α-asarone into the brain and displayed
good permeability and bioavailability. Interestingly, it was found that lactoferrin moiety is involved in
increasing the efficacy of brain targeting, reducing liver accumulation, and reducing the level of toxicity
on nasal mucosal cilia and epithelial cells. Shen et al. prepared low-density lipoprotein receptor
(LDLR) peptide-conjugated polylactic acid (PLA)-coated mesoporous silica NPs for the delivery of
resveratrol into the brain [111]. PLA coating was used as an occlusion for resveratrol burst release and
they also used reactive oxygen species (ROS) to facilitate PLA degradation and induce drug release.
It was found that LDLR ligand peptides increase the migration of NPs through the BBB and remarkably
decrease the stimulation of microglial cells by phorbol myristate acetate or lipopolysaccharide, leading
to the efficiency of these NPs in treating oxidative stress in the CNS.
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Wang and co-workers synthesized cationic lipid assisted PEG–PLA NPs to prevent microglial
neurotoxicity [179]. They prepared NPs using a double-emulsion solvent evaporation technique and
then loaded complement component C3-siRNA on NPs to inhibit microglial neurotoxicity after cerebral
ischemia/reperfusion (I/R) injury. It was found that these NPs potentially penetrate the BBB and
remarkably reduce the expression of C3 in microglial cells as well as simultaneously decrease the number
of inflammatory cells and pro-inflammatory factors in the penumbra, resulting in efficient improvement
of the brain I/R injury. Zhu et al. designed tumor-specific protease-activated cell-penetrating peptide
(ACPP)-conjugated micelles for treating brain gliomas [180]. In vitro and in vivo studies demonstrated
good uptake and intracellular drug release of micelles. Also, these micelles were found to efficiently
penetrate the BBB and, using ACPP, promoted the survival of mice bearing gliomas. Furthermore,
these micelles had lower toxicity.

4.1.3. PLGA

Various studies have been performed to fabricate PLGA NPs and scaffolds [181].
The biodegradability, biocompatibility, and long-lasting and sustained release properties of PLGA
make it a suitable polymer for biomedical and pharmaceutical applications [178,182]. The polymer
degradation and drug-releasing profile can be affected by changes in molecular weight and the molar
ratio of lactic acid to glycolic acid [112]. Both monomers are consumed and eliminated during the
normal metabolism of the cells [183]. Biodegradable delivery systems based on the PLGA polymer
have been used in the imaging, diagnostics, and treatment of diseases [184–187]. Entrapment of various
types of drugs such as proteins, peptides, genes, and anticancer drugs has been performed in PLGA
NPs [188–191]. Protein and peptide drugs are susceptible to high temperature or acidic environments.
Long-term exposure of proteins and peptides to the acidic by-products of PLGA can decrease the
stability and bioavailability after polymer degradation [192]. So, it is important to determine the
physicochemical characteristics of proteins and peptides.

PLGA NPs have been investigated for the treatment of brain diseases. Tahara et al. [112] studied
different surface-modified PLGA NPs for delivery to the brain. The authors used CS, polysorbate
80 (P80), and poloxamer 188 (P188) as surface modifier agents in their studies. NPs were prepared by the
emulsion solvent diffusion method. After carotid artery injection, P80-PLGA NPs were found to exhibit
prolonged circulation in the blood compared to the other NPs, and their concentration in the brain was
increased. In addition, the cellular uptake of CS-PLGA NPs was higher due to electrostatic interaction
with the cell membrane. Budhian et al. [193] showed that hydroxyl-terminated PLGA NPs can release
haloperidol over a long period as compared to methyl-terminated PLGA NPs. Haloperidol is an
antipsychotic drug used for schizophrenia therapy. Gelperina et al. [113] have used surfactant-coated
PLGA NPs for the delivery of DOX and loperamide to the brain. In this study, polyvinyl alcohol
(PVA) and human serum albumin (HSA) were used as stabilizers, while P80 and P188 were used as
coating surfactants for the formulation of PLGA NPs. Results showed that DOX-PLGA/PVA+P188
NPs were most effective and had a high antitumor effect. DOX-PLGA/HSA+P188 NPs also exhibited
a high antitumor effect and produced long-term remission in the tested animals. The effect of
Lop-PLGA/PVA+P80 and Lop-PLGA/HSA+P188 NPs was also considerable. The effect of the
surfactants on the efficiency of the HSA-stabilized particles was less than that of particles stabilized
by PVA. The high antitumor effect against glioblastomas, as well as considerable analgesia, revealed
that these NP systems can cross the BBB and release the drug at a specific site. Similar results were
also observed by Chen et al. [118]. Block copolymers were also used for the preparation of NPs [194].
Loperamide-loaded PLGA-PEG-PLGA NPs with a surface modified by poloxamer 188 or polysorbate
80 were used for in vitro BBB penetration. Mittal et al. [114] studied Tween 80-coated PLGA NPs for the
delivery of estradiol to the brain upon oral administration in a rat model of AD. Results showed that a
high level of estradiol was detectable in the brain after oral administration. In addition, the suppression
of Aβ42 expression by estradiol showed that Tween 80–PLGA NPs could deliver estradiol to the brain
by the oral administration route. Surface modification of PLGA NPs with TMC was carried out by
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Wang et al. [115]. Coenzyme Q10-loaded TMC/PLGA NPs were found to improve memory impairment
after injection. In addition, the NPs were found to exhibit low toxicity and good penetration into the
brain matrix. Pep TGN, a novel 12 amino acid peptide, was used as a ligand that was attached to
the surfaces of PEG-PLGA NPs for targeting the brain. High accumulation of NPs was observed in
the brain after IV injection [123]. Work was done by other researchers to prepare and fabricate NPs
using PLGA polymers. These polymeric NPs can target brain cancer and other diseases [195,196].
Sanchez-Lopez et al. developed PLGA PEGylated NPs for the delivery of memantine in AD [117].
MTT tests showed that these NPs are safe for brain cell lines (bEnd.3 and astrocytes) and PLGA
PEGylated NPs could penetrate the BBB. It was found that these NPs containing memantine decrease
Aβ plaques and related inflammation characteristics of AD. Chen et al. designed small mPEG-PLGA
NPs for the delivery of schisantherin A in PD (Figure 3) [118]. It was demonstrated that these NPs
promote the delivery of schisantherin A into the brain, improve the oral bioavailability, increase the
brain uptake, and enhance the bioactivity of this drug.
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Small-sized mPEG–PLGA nanoparticles of Schisantherin A with sustained release for enhanced brain
uptake and anti-parkinsonian activity. ACS Appl. Mater. Interfaces 2017 [118].

Huang et al. synthesized PLGA NPs with a BBB-penetrating peptide for the co-delivery of
Aβ generation inhibitor and curcumin in AD mice [119]. Overall, they found that these NPs were
associated with a reduced level of Ab, ROS, TNF-a, and IL-6, and increased activity of superoxide
dismutase (SOD) and synapse numbers in AD mouse brains, leading to their potential therapeutic
use in AD. Chu et al. prepared TMZ-loaded PLGA NPs functionalized with anti-EPHA3 for targeting
glioblastomas [120]. It was demonstrated that these NPs are significantly taken up by glioblastoma cells
and also remarkably increase the apoptosis in tumor cells. Li et al. prepared lactoferrin-functionalized
PEG-PLGA NPs for the delivery of shikonin and the treatment of gliomas [121]. A coating of lactoferrin
was used to promote penetration through the BBB, and in vitro and in vivo experiments showed the
great uptake and distribution of NPs in the brain, resulting in their effectiveness in the treatment of
glioblastomas. Orunoglu et al. synthesized curcumin-loaded PLGA NPs for targeting gliomas [123].
They showed the decreased tumor size and increased survival of mice treated with these NPs. Zou et al.
investigated the effectiveness of paclitaxel-loaded PLGA NPs in targeting brain tumor-associated
macrophages [124]. Their results demonstrated the beneficial effects of these NPs in the treatment
of gliomas. Also, it has been shown that brain- and brain tumor-penetrating disulfiram NPs were
cytotoxic to glioma cells and intracranial xenografts [197]. Kou et al. prepared L-carnitine-conjugated
PLGA NPs for targeting glioma cells [125]. These NPs were found to significantly cross the BBB and
showed great antiglioma efficacy. Chai et al. synthesized efficient functionalized cell membrane-coated
NPs with neurotoxin-derived peptides for brain drug delivery [198].
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4.1.4. Poly (ε-caprolactone) (PCL)

Poly (ε-caprolactone) (PCL) is a biodegradable polyester that is widely applied to promote
toughness and enhance the flexibility of various materials such as PLA. Moreover, PCL, as a common
polymer for electrospinning, has been used extensively for cell culture scaffolds [199–201]. PCL degrades
slower than PLA and therefore is suitable to fabricate scaffolds and NPs for the long-term and
sustained release of pharmaceutical agents [202,203]. Changyong et al. [126] used Poly (N-isopropyl
acrylamide)-b-poly(3-caprolactone) (PNPCL) block copolymers as a thermosensitive nanosystem for
the delivery of clonazepam into the brain. Results showed that Poly (N-isopropyl acrylamide) as part
of a copolymer covers the surface of NPs in a layer and prevents the fast release of the drug. The role of
clonazepam in the brain is the enhancement of the effects of GABA; it thereby decreases or stops specific
signaling in the nerves. Rezaie et al. investigated the effect of hyperthermia and ionizing radiation on
the cytotoxicity induced by IUdR-loaded PCL-PEG-coated magnetic NPs on a U87MG glioblastoma
cell line [127]. It was found that these NPs have more toxicity against glioblastoma cells compared to
IUdR alone. Irani et al. investigated the efficacy of CS/TMZ NPs-loaded PCL-PU nanofibers against
U-87 MG human glioblastoma cells [128]. These nanofibers released TMZ for 30 days and significantly
decreased the cell viability and survival of glioblastoma cells. Küçüktürkmen et al. examined the
effects of pemetrexed- and miR-21 antisense oligonucleotide-loaded lipid–polymer hybrid NPs on
glioblastoma cells [129]. These NPs gradually released pemetrexed over 10 h and the encapsulation of
pemetrexed in lipid NPs increased the cellular uptake from 6% to 78%. Also, confocal microscopy
demonstrated that anti-miR-21 enhances the accumulation of lipid NPs in the nucleus of U87MG
cells. Finally, it was shown that higher cytotoxicity was achieved by the delivery of anti-miR-21 and
pemetrexed through a lipid–polymer hybrid NPs. Ahmad et al. investigated the beneficial effects of
eugenol-encapsulated–CS-coated-PCL NPs for the treatment of cerebral ischemia [130]. It was shown
that IN administration of these NPs increases their bioavailability in the rat brain and these NPs may
lead to the treatment of cerebral ischemia. Irani et al. investigated the prolonged delivery of TMZ
from electrospun PCL-Diol-b-PU/gold nanocomposite nanofibers for the treatment of glioblastoma
tumors [131]. Their results demonstrated the decreased viability and survival of glioblastoma cells
treated with these NPs. Varan and Bilensoy synthesized cationic PEGylated polycaprolactone NPs
containing post-operation docetaxel for glioma treatment [132]. Their results revealed the higher
cytotoxicity of these NPs compared to docetaxel alone.

4.1.5. PACA

Couvreur and co-workers were among the first to study PACA NPs in the treatment of brain
diseases [204]. PACA NPs have improved some properties of drugs from the clinical point of
view. Its NPs decrease the drug dosage and reduce the side effects of the drug. Also, PACA
NPs improve drug bioavailability and half-life, and have a noninvasive route of administration.
The most promising advantage of PACA NPs is the ability to overcome multidrug resistance
(MDR) [205,206]. Cancerous cells possessing MDR are able to evade chemotherapeutic agents.
Overexpressed p-glycoprotein is the main reason for MDR resistance in tumor cells [207–209].
Many drugs have been used for the treatment of brain diseases based on polysorbate 80-coated
PACA NPs such as DOX, methotrexate, loperamide, tubocurarine, dalargin, kyotorphin, and the
NMDA receptor antagonist MRZ 2/576 [210–215]. Wilson et al. [133] used PBCA NPs to deliver the
anti-Alzheimer’s drug tacrine. The results showed an increase in drug concentration in the liver
and the spleen. The authors modified the surface of NPs with P80 and observed the penetration
of drug-loaded NPs through the BBB. In the same study, the authors used rivastigmine, a reverse
cholinesterase inhibitor. They encapsulated the drug in P80-coated PBCA NPs. They observed a 4-fold
increase in drug concentration in the brain, in comparison with the control [79]. Ambruosi et al. [216]
studied the effect of DOX-loaded PBCA NPs coated with different kinds of surfactants (P80, P188,
and poloxamine 908) on glioblastoma in a rat model. The results showed a decrease in RES uptake and
an increase in the antitumoral effect of DOX-loaded PBCA NPs coated with PS80 after IV injection [217].
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Petri et al. [134] investigated the possible mechanisms for the delivery of DOX-loaded PBCA NPs
that were coated with different surfactants (P188 and P80). DOX-PBCA NPs coated with P188, like
DOX-PBCA NPs coated with P80, considerably increased the median survival rates and antitumor
effect of DOX against an intracranial glioblastoma in rats. The authors found that ApoA-I adsorb
considerably on the surface of NPs. The results showed that DOX-loaded PBCA NPs stabilized by
P188 also produced considerable antitumor effects. Endocytosis through the endothelial cells of the
brain capillary is the main strategy NPs use to cross the BBB [138]. Some of the plasma proteins adsorb,
especially on the surface of P80-coated PBCA NPs, and trigger the receptor-mediated endocytosis of
NPs and finally their penetration into the brain [218]. Yamamoto et al. [219] used PBCA NPs for the
entrapment of TMZ. TMZ is a DNA-methylating agent applied for the treatment of melanoma and
brain tumors. PBCA NPs showed controlled release of TMZ. The authors suggested that TMZ-PBCA
NPs can be used for TMZ delivery to the brain without any effect on drug hydrolysis. Wang et al. [220]
prepared P80-coated gemcitabine–PBCA NPs (GCTB–PBCA-NPs). GCTB is a pyrimidine nucleoside
analog anticancer agent that has shown promising antitumor activity. C6 glioma cells treated with these
NPs demonstrated the most dramatic changes in growth status and cell morphology. GCTB-PBCA
NPs inhibited cell growth by arresting G0/G1 to S phase transition, and cell proliferation slowed down
significantly. Also, dramatic changes in cell morphology were observed, including nuclear vacuoles,
ruptured cells, and dead cells and cell debris in the medium. Mulik et al. [135] used Apo E3–PBCA
NPs as a curcumin delivery system to inhibit Aβ and related oxidative stress in AD. Apo E3–PBCA
NPs increased curcumin stability and sustained release. The results showed that the anti-apoptotic
activity of Apo E3- curcumin-PBCA was increased 2–3-fold in comparison with curcumin–PBCA NPs.
The authors suggested that ApoE3–curcumin–PBCA NPs can significantly increase the uptake of a
drug across the BBB. Kurakhmaeva et al. [136] studied the antiparkinsonian effect of NGF–PBCA
NPs coated with P80 in a mouse model for PD. The results showed improvement of the symptoms of
oligokinesia after the administration of P80-(NGF)–PBCA NPs. Kreuter et al. [137] investigated the
effect of different surfactants (poloxamer 184, 188, 388, 407 and poloxamine 908; polysorbate 20, 40,
60, 80) on dalargin delivery across the BBB by PBCA NPs. The results showed that after IV injection of
surfactant-dalargin-PBCA NPs to mice, only the surfactants polysorbate 20, 40, 60, and 80 were able
to induce the passage of dalargin across the BBB. The authors showed that P80 enabled the highest
induction of analgesia at both dosages of dalargin, 7.5 mg/kg as well as 10 mg/kg. Kreuter et al. [138]
confirmed that P80–PBCA NPs can deliver significant amounts of dalargin to the CNS. PEGylation of
PACA NPs is another technology that can be used in drug delivery to the brain [15,77,178,221–225].
These PEGylated NPs are able to cross the BBB and penetrate the brain. It has been shown, however,
that PACA NPs have limitations in clinical applications. The by-products that result from PBCA
degradation can stimulate or damage the CNS [226]. In addition, it has been demonstrated that this
kind of nanocarrier is not a good candidate for the treatment of chronic diseases because of the short
duration of the pharmacological effect [80,227].

4.2. Natural Polymers

4.2.1. HSA

HSA is a water-soluble and low-molecular-weight (~66 kDa) protein. Some of the major roles
of this abundant protein in the body include: enhancing the solubility of long-chain fatty acids,
the transportation of different ions and compounds such as drugs and hormones, and the regulation of
osmotic pressure in the blood circulation system [228]. These desirable characteristics, in addition to
the long half-life of approximately 20 days in the circulation system, make it a potential candidate
for drug delivery. NPs made of HSA have been investigated and fabricated for drug delivery to the
brain and their applications in diagnostics and therapeutics [229,230]. Ulbrich et al. [92] investigated a
stable nanoparticulate system to transport loperamide across the BBB. The authors used HSA NPs with
covalently bound Tf or TfR mAbs (OX26 or R 17217). The results of the tail-flick test demonstrated
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that targeted HSA NPs were able to deliver loperamide across the BBB and induce antinociceptive
(analgesic) effects in the brain. In another study, the same authors used HSA NPs with covalently
attached insulin or an anti-insulin receptor monoclonal antibody to deliver loperamide across the
BBB. The results showed that NPs induced significant antinociceptive effects in the tail-flick test [144].
Dadparvar et al. [231] investigated the binding of HI 6 dimethanesulfonate and HI 6 dichloride
monohydrate to HSA NPs for the treatment of poisoning by organophosphorus compounds. In vitro
assessment of the drug activity showed that HSA NPs transport drugs through the blood–brain
barrier. Zensi et al. [229] prepared HSA NPs targeted with covalently bound Apo E by a desolvation
technique. The authors intravenously injected Apo E-HSA NPs into the SV 129 mice. Apo E-HSA
NPs were detected in the brain and neurons of SV 129 mice after 15 and 30 min. They suggested that
drug-loaded NPs’ entrance into the brain requires an interaction between Apo E and the LDL receptor
family and receptor-mediated endocytosis. Similar results were observed in other studies [232,233].
Ruan et al. synthesized substance P-modified HSA NPs containing paclitaxel for targeting gliomas [145].
These NPs had great properties in terms of drug-loading content (7.89%), entrapment efficiency (85.7%),
spherical structure with a size of 150 nm, and zeta potential of –12.0 mV. These NPs showed great
uptake by brain capillary endothelial cells and U87 cells; in addition, it was found that they were
toxic for glioma cells, so they can be considered as novel agents for targeting gliomas. Wong and
Ho investigated the efficiency of serum albumin as a nanoparticulate carrier for the delivery of
R-flurbiprofen and the treatment of AD [146]. Their results showed that the IN route to administration
of these NPs is preferred to oral and IN administration of a simple R-flurbiprofen solution so that a
higher brain to-plasma ratio profile was achieved by this administration and it was demonstrated that
these NPs are potential therapeutic agents for the amelioration of mitochondrial dysfunction in AD.
Liang et al. prepared carriers by conjugation of borneol, muscone, and menthol to BSA for targeting
gliomas (Figure 4) [147]. BSA was found to improve the drug accumulation in the glioma region after
penetration of the blood–brain barrier (BBB) (Figure 5).Biomedicines 2020, 8, x FOR PEER REVIEW 13 of 28 
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These carriers had great biocompatibility; it was found that they efficiently penetrate the BBB and
are captured by cells, showing their efficiency for drug delivery in gliomas.

4.2.2. Gelatin (GE)

Gelatin (GE) is a by-product of denatured and partially hydrolyzed collagen, which is extensively
used in tissue engineering and therapeutic delivery [234,235]. Also, GE has bioactive materials such as
arginine–glycine–aspartic acid, which gives GE a cell attachment property and makes GE valuable as a
biomaterial [28,236–241]. At present, GE and its blends are used in the food industry and in medical
products [242,243]. The nontoxic, biodegradable, and bioactive properties of GE make it a suitable
carrier for drug delivery [244]. Kaur et al. [148] encapsulated an anti-HIV drug (hydrophilic didanosine)
in GE NPs coated with mannan. Free didanosine drug is not able to penetrate the BBB. However,
the brain concentration of the drug increased after the administration of GE NPs. GE–siloxane NPs
improved the delivery of a model drug (rhodamine B isothiocyanate) to the brain. A cell-penetrating
peptide (SynB) was conjugated to the NPs. The nanocomplexes were efficiently taken up by brain
capillary endothelial cells and showed proper biocompatibility and nontoxicity [149]. Nejat et al.
synthesized cardamom extract-loaded GE NPs for the treatment of glioblastomas [150]. These NPs had
a diameter in the range of 40–200 nm, a zeta potential of −40.1 mV, and entrapment efficiency of 70%,
and it was found that these NPs have cytotoxic effects on human glioblastoma cancer U87MG cells.

4.2.3. Chitosan (CS)

CS is a water-soluble cationic polysaccharide with a positive charge and biocompatible and
biodegradable characteristics [245,246]. The nonallergenic and nontoxic characteristics of CS make it
an appropriate choice for delivery systems in pharmaceutical applications [247–249]. CS has the ability
to make epithelial cells permeable by means of its interaction with the tight junction and then opening
them to cross the epithelial barrier [250]. The absorption and penetration of different kinds of drugs
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(e.g., proteins, peptides, hormones, etc.) have been studied through the nasal epithelium [251–253].
IN administration of interferonβ-1b (IFNβ-1b) was investigated by Ross et al. [254] in multiple sclerosis.
The aim was the targeted delivery of IFNβ-1b to the rat CNS. Autoradiography studies showed the
active and efficient delivery of IFNβ-1b to the CNS by IN administration. Delivery of IFNβ-1b to
the monkey CNS has been studied by Thorne et al. [255]. This work was the first investigation to
determine CNS drug distribution in nonhuman primates. Studies showed that IN administration of
IFNβ-1b resulted in inefficient targeting of the CNS. The authors concluded that IN administration
of drugs is a noninvasive method to access the brain and direct drugs to the CNS. Moreover, new
technology-based delivery systems have been used for drug delivery to the brain through the nose
to brain pathway or IN administration. Wang et al. [151] fabricated estradiol-loaded CS NPs by the
ionic gelation method. The authors compared the uptake of the drug into the cerebrospinal fluid (CSF)
between the two methods of administration (IN and IV). The results confirmed the efficient delivery of
estradiol to the CSF by CS NPs through the IN route of administration. Aktas et al. [152] investigated
the brain delivery of anticaspase peptide Z-DEVD-FMK by CS-poly(ethylene glycol) (PEG). They used
the avidin–biotin system to attach the OX26 monoclonal antibody to the surface of NPs. The results
showed that, after the intravascular administration of CS–PEG–biotin–avidin/OX26, NPs can lead to the
delivery of anticaspase peptide Z-DEVD-FMK to the brain, outside of the intravascular compartment.
Trapani et al. [154] prepared and characterized dopamine-loaded CS NPs. In vivo results showed
enhanced brain delivery of dopamine by these nanocarriers. Moreover, CS NPs have shown their
potential in the development of a delivery system to overcome the BBB problem [256]. Tammam et al.
synthesized CS NPs for nuclear and cytoplasmic delivery of lactoferrin in gliomas [155]. Interestingly,
it was found that the cytotoxicity of NPs containing lactoferrin on gliomas is due to their cytoplasmic
allocation. Gu et al. prepared antibody-modified CS NPs to deliver siRNA for targeting HIV replication
in astrocytes [156]. It was demonstrated that the antibody moiety increases the knockdown effect of
siRNA-loaded NPs, showing their efficiency in inhibiting HIV replication in astrocytes. Gholami et al.
investigated the proficiency of super-paramagnetic iron oxide/DOX-loaded CS NPs for glioblastoma
theranostics [157]. Magnetic resonance imaging (MRI) demonstrated the high uptake of NPs by C6
glioma cells, showing their application in the diagnosis of glioblastoma. Xu et al. investigated the
effect of lactoferrin-coated polysaccharide NPs based on CS hydrochloride/hyaluronic acid/PEG on
brain gliomas [158]. These NPs were remarkably captured by brain capillary endothelial cells and can
penetrate the BBB. Also, 1, 3β-glucan-anchored paclitaxel-loaded CS cross-linked targeted NPs have
been proposed as potential therapeutic options for the treatment of brain tumors [159,160].

5. Conclusions

Although the BBB acts as vital protection for the brain against foreign substances, its structure is a
major obstacle to the delivery of drugs into the brain for the treatment of CNS diseases. Most of the
drugs that are presently being used for brain diseases use the IV route of administration and thereby
face the reticuloendothelial system (RES), which removes them from the bloodstream. Also, it has
been shown that this route of drug administration is related to systemic distribution and side effects
and reduces the drug efficacy and bioavailability. Progress in nanotechnology-based drug delivery
systems has overcome some but not all of these problems. Conditional and targeted polymeric NPs
that are sensitive to the specific situation or environment for controlled and sustainable drug release,
in combination with the IN route of administration, are the newest technology for drug delivery into
the brain. This targeted delivery via IN administration solves the major problems involving the BBB,
increases drug efficacy, and decreases drug side effects.
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129. Küçüktürkmen, B.; Devrim, B.; Saka, O.M.; Yilmaz, Ş.; Arsoy, T.; Bozkir, A. Co-delivery of pemetrexed and
miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.
Drug Dev. Ind. Pharm. 2017, 43, 12–21. [CrossRef]

http://dx.doi.org/10.1016/j.ejpb.2010.11.002
http://www.ncbi.nlm.nih.gov/pubmed/21074612
http://dx.doi.org/10.1016/j.ejpb.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19755158
http://dx.doi.org/10.1016/j.jconrel.2010.11.013
http://dx.doi.org/10.1016/j.biomaterials.2009.09.104
http://dx.doi.org/10.1016/j.biomaterials.2011.03.031
http://dx.doi.org/10.1186/s12951-018-0356-z
http://dx.doi.org/10.1021/acsami.7b01171
http://dx.doi.org/10.1080/10717544.2018.1494226
http://www.ncbi.nlm.nih.gov/pubmed/30176744
http://dx.doi.org/10.1016/j.ijbiomac.2017.08.155
http://www.ncbi.nlm.nih.gov/pubmed/28863897
http://dx.doi.org/10.1080/10717544.2017.1359862
http://www.ncbi.nlm.nih.gov/pubmed/28782388
http://dx.doi.org/10.1016/j.msec.2017.03.292
http://www.ncbi.nlm.nih.gov/pubmed/28575990
http://dx.doi.org/10.18632/oncotarget.14169
http://dx.doi.org/10.1080/21691401.2017.1384385
http://dx.doi.org/10.1080/09553002.2018.1495855
http://dx.doi.org/10.1016/j.ijbiomac.2017.01.073
http://dx.doi.org/10.1080/03639045.2016.1200069


Biomedicines 2020, 8, 13 23 of 29

130. Ahmad, N.; Ahmad, R.; Alam, M.A.; Ahmad, F.J. Quantification and brain targeting of eugenol-loaded
surface modified nanoparticles through intranasal route in the treatment of cerebral ischemia. Drug Res.
2018, 68, 584–595. [CrossRef] [PubMed]

131. Irani, M.; Sadeghi, G.M.M.; Haririan, I. The sustained delivery of temozolomide from electrospun
PCL-Diol-b-PU/gold nanocompsite nanofibers to treat glioblastoma tumors. Mater. Sci. Eng. C 2017,
75, 165–174. [CrossRef] [PubMed]

132. Varan, C.; Bilensoy, E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel
for glioma treatment. Beilstein J. Nanotechnol. 2017, 8, 1446–1456. [CrossRef] [PubMed]

133. Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.; Paramakrishnan, N.; Suresh, B. Targeted delivery of tacrine
into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm.
2008, 70, 75–84. [CrossRef]

134. Petri, B.; Bootz, A.; Khalansky, A.; Hekmatara, T.; Muller, R.; Uhl, R.; Kreuter, J.; Gelperina, S. Chemotherapy
of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles:
Revisiting the role of surfactants. J. Control. Release 2007, 117, 51–58. [CrossRef]

135. Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. ApoE3 mediated poly (butyl)
cyanoacrylate nanoparticles containing curcumin: Study of enhanced activity of curcumin against beta
amyloid induced cytotoxicity using in vitro cell culture model. Mol. Pharm. 2010, 7, 815–825. [CrossRef]

136. Kurakhmaeva, K.B.; Voronina, T.A.; Kapica, I.G.; Kreuter, J.; Nerobkova, L.N.; Seredenin, S.B.; Balabanian, V.Y.;
Alyautdin, R.N. Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate
nanoparticles coated with polysorbate-80. Bull. Exp. Biol. Med. 2008, 145, 259–262. [CrossRef]

137. Kreuter, J.; Petrov, V.E.; Kharkevich, D.A.; Alyautdin, R.N. Infuence of the type of surfactant on the analgesic
effects induced by the peptide dalargin after its delivery across the blood brain barrier using surfactant-coated
nanoparticles. J. Control. Release 1997, 49, 81–87. [CrossRef]

138. Kreuter, J.; Ramge, P.; Petrov, V.; Hamm, S.; Gelperina, S.E.; Engelhardt, B.; Alyautdin, R.; Von Briesen, H.;
Begley, D.J. Direct evidence that polysorbate-80-coated poly (butylcyanoacrylate) nanoparticles deliver drugs
to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res. 2003,
20, 409–416. [CrossRef]

139. Carradori, D.; Balducci, C.; Re, F.; Brambilla, D.; Le Droumaguet, B.; Flores, O.; Gaudin, A.; Mura, S.;
Forloni, G.; Ordoñez-Gutierrez, L. Antibody-functionalized polymer nanoparticle leading to memory
recovery in Alzheimer’s disease-like transgenic mouse model. Nanomed. Nanotechnol. Biol. Med. 2018, 14,
609–618. [CrossRef]

140. Ramalho, M.; Sevin, E.; Gosselet, F.; Lima, J.; Coelho, M.; Loureiro, J.; Pereira, M. Receptor-mediated PLGA
nanoparticles for glioblastoma multiforme treatment. Int. J. Pharm. 2018, 545, 84–92. [CrossRef] [PubMed]

141. Gajbhiye, K.R.; Gajbhiye, V.; Siddiqui, I.A.; Pilla, S.; Soni, V. Ascorbic acid tethered polymeric nanoparticles
enable efficient brain delivery of galantamine: An in vitro-in vivo study. Sci. Rep. 2017, 7, 11086. [CrossRef]
[PubMed]

142. Guo, B.; Sheng, Z.; Hu, D.; Lin, X.; Xu, S.; Liu, C.; Zheng, H.; Liu, B. Biocompatible conjugated polymer
nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared
window. Mater. Horiz. 2017, 4, 1151–1156. [CrossRef]

143. Kuo, Y.C.; Tsai, H.C. Rosmarinic acid-and curcumin-loaded polyacrylamide-cardiolipin-poly
(lactide-co-glycolide) nanoparticles with conjugated 83–14 monoclonal antibody to protectβ-amyloid-insulted
neurons. Mater. Sci. Eng. C 2018, 91, 445–457. [CrossRef] [PubMed]

144. Ulbrich, K.; Knobloch, T.; Kreuter, J. Targeting the insulin receptor: Nanoparticles for drug delivery across
the blood-brain barrier (BBB). J. Drug Target. 2011, 19, 125–132. [CrossRef] [PubMed]

145. Ruan, C.; Liu, L.; Lu, Y.; Zhang, Y.; He, X.; Chen, X.; Zhang, Y.; Chen, Q.; Guo, Q.; Sun, T. Substance
P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma.
Acta Pharm. Sin. B 2018, 8, 85–96. [CrossRef]

146. Wong, L.R.; Ho, P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of
R-flurbiprofen: Implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2018, 70, 59–69.
[CrossRef]

147. Liang, J.; Gao, C.; Zhu, Y.; Ling, C.; Wang, Q.; Huang, Y.; Qin, J.; Wang, J.; Lu, W.; Wang, J. Natural
Brain Penetration Enhancer-Modified Albumin Nanoparticles for Glioma Targeting Delivery. ACS Appl.
Mater. Interfaces 2018, 10, 30201–30213. [CrossRef]

http://dx.doi.org/10.1055/a-0596-7288
http://www.ncbi.nlm.nih.gov/pubmed/29669380
http://dx.doi.org/10.1016/j.msec.2017.02.029
http://www.ncbi.nlm.nih.gov/pubmed/28415451
http://dx.doi.org/10.3762/bjnano.8.144
http://www.ncbi.nlm.nih.gov/pubmed/28900598
http://dx.doi.org/10.1016/j.ejpb.2008.03.009
http://dx.doi.org/10.1016/j.jconrel.2006.10.015
http://dx.doi.org/10.1021/mp900306x
http://dx.doi.org/10.1007/s10517-008-0065-y
http://dx.doi.org/10.1016/S0168-3659(97)00061-8
http://dx.doi.org/10.1023/A:1022604120952
http://dx.doi.org/10.1016/j.nano.2017.12.006
http://dx.doi.org/10.1016/j.ijpharm.2018.04.062
http://www.ncbi.nlm.nih.gov/pubmed/29715532
http://dx.doi.org/10.1038/s41598-017-11611-4
http://www.ncbi.nlm.nih.gov/pubmed/28894228
http://dx.doi.org/10.1039/C7MH00672A
http://dx.doi.org/10.1016/j.msec.2018.05.062
http://www.ncbi.nlm.nih.gov/pubmed/30033276
http://dx.doi.org/10.3109/10611861003734001
http://www.ncbi.nlm.nih.gov/pubmed/20387992
http://dx.doi.org/10.1016/j.apsb.2017.09.008
http://dx.doi.org/10.1111/jphp.12836
http://dx.doi.org/10.1021/acsami.8b11782


Biomedicines 2020, 8, 13 24 of 29

148. Kaur, A.; Jain, S.; Tiwary, A.K. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of
didanosine: In vitro and in vivo evaluation. Acta Pharm. 2008, 58, 61–74. [CrossRef]

149. Tian, X.H.; Wei, F.; Wang, T.X.; Wang, P.; Lin, X.N.; Wang, J.; Wang, D.; Ren, L. In vitro and in vivo studies
on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain.
Int. J. Nanomed. 2012, 7, 1031.

150. Nejat, H.; Rabiee, M.; Varshochian, R.; Tahriri, M.; Jazayeri, H.; Rajadas, J.; Ye, H.; Cui, Z.; Tayebi, L.
Preparation and characterization of cardamom extract-loaded gelatin nanoparticles as effective targeted
drug delivery system to treat glioblastoma. React. Funct. Polym. 2017, 120, 46–56. [CrossRef]

151. Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption
and brain targeting. Eur. J. Pharm. Biopharm. 2008, 70, 735–740. [CrossRef] [PubMed]
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