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Abstract

Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis,
by targeting the mitochondria. Having evolved from ‘‘ancient hopanoids,’’ avicins bear a structural resemblance with
glucocorticoids (GCs), which are the endogenous regulators of metabolism and energy balance. These structural and
functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex), a prototypical GC.
Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR), leading to its
nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional
activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins
such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-
inflammatory transcription factor NF-kB. While avicin’s ability to inhibit NF-kB and its downstream targets appear to be GR-
dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we
demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D’s transrepressive
effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR.
These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from
transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative
interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the
identification of such a dissociated GR ligand could have great potential for therapeutic use.
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Introduction

Avicins represent a family of triterpenes isolated from the seed pods

of an Australian tree called Acacia victoriae [1]. Avicins were first

identified by their ability to selectively induce apoptosis in various

human tumor cells by direct perturbation of the mitochondria [2]. By

targeting the mitochondria, avicins induce profound effects on

cellular metabolism, which include lowering of oxygen consumption

and ATP production [3], closing the voltage dependent anion

channel (VDAC) [3], activation of AMPK [4], inhibition of mTOR

[4] and induction of autophagy [4]. These effects induced by avicins

result in a hypometabolic state. Other studies have also revealed

avicins’ ability to inhibit NF-kB [5] and activate NF-E2-related factor

2 (Nrf2) [6], accounting for their anti-inflammatory [5,7] and stress

responsive properties [6]. The stress regulatory properties of avicins

could also be accounted for by their ability to lower cellular

metabolism [2–4]. Avicins have evolved from ancient five ring

triterpene structures called ‘‘hopanoids’’, which are believed to be the

precursors of sterols and formed the main membrane-lipid support in

several prokaryotes, before oxygen was introduced into the

atmosphere. Fig. 1 shows that the pentacyclic backbone in the avicin

molecule resembles the four ringed core structure of the glucocor-

ticoids (GCs). Based on (a) the structural similarity to (GCs), (b) the

sensitivity of various GC responsive myeloma cells to avicin D [8],

and (c) the fact that avicins regulate energy metabolism like GCs [4],

we wanted to evaluate how avicins might interact with the GCs.

The results reported here demonstrate that avicins can bind to

the glucocorticoid receptor (GR), and induce its nuclear

translocation. However, avicin-induced nuclear translocation of

GR does not lead to induction of GR-dependent transcription, but

does cause inhibition of GR-driven NF-kB activity, suggesting that

avicin D could have elements of a dissociated GR ligand.

Modeling of avicin-GR interaction revealed that the avicin

molecule binds to the antagonist confirmation of GR, supporting

the hypothesis that avicin D could be a dissociated GR ligand.

Avicin D, a pentacyclic terpene could therefore be classified as

nonsteroidal selective GR modulator.
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Materials and Methods

Cells
A549 (human lung carcinoma), HEK293T (human embryonic

kidney) and HepG2 (human hepatocarcinoma) cells were all purchased

from ATCC. A549 and HEK 293 T cells were cultured in DMEM

supplemented with 10% FBS and 2 mM L-glutamine. Hep G2 cells

were grown in alpha-MEM supplemented with 10% FBS and 2 mM

L-glutamine.

Cytokines and Reagents
Recombinant human TNF was purchased from BD Biosciences

(San Jose, CA). Cold and radio labeled dexamethasone ([3H]-Dex)

were purchased from Sigma (St. Louis, MO) and Amersham

(Piscataway, NJ) respectively. Anti-phospho GR (Ser 211) and

anti-total GR antibodies were a kind gift from Dr. M. Garabedian

(New York School of Medicine, NY). Anti-PEPCK and anti-actin

antibodies were purchased from Santa Cruz Biotechnology (Santa

Cruz, CA). Anti-FASN antibodies were bought from Cell

Signaling (Beverly, MA). Dual luciferase assay kit was bought

from Promega (Madison, WI). Human interleukin-6 (IL-6) ELISA

kit was purchased from R&D Systems (Minneapolis, MN).

Plasmids
p(GRE)2-50huIL6P-luc+ and p(IL6kB)3-50huIL6P-luc+ plas-

mids were purchased from the BCCM/LMBP plasmid collection,

Department of Molecular Biology, Ghent University, Belgium.

Plasmids containing the wild type GR and GR deletion variants

were a generous gift from Dr. Ronald. M. Evan (The Salk Institute

for Biological Studies, La Jolla, CA).

Transfection and Assay of Luciferase activity
HEK 293T cells were transiently transfected with luciferase

reporter gene constructs, or plasmids carrying different forms of

GR, using the Fugene transfection reagent from Roche (India-

napolis, IN), according to the manufacturer’s protocol. TK renilla

was always co-transfected with the luciferase reporters, for use as

an internal control. 48 hrs post transfection, cells were treated with

avicin D, Dex or RU486, as specified for each experiment. At the

end of the treatment, cells were lysed in passive lysis buffer.

Luciferase activity was measured in whole cell lysates, using the

dual-luciferase assay kit (Promega) according to the manufacturer’s

protocol.

Whole cell-Binding Assay
Cold competition binding assays were done as per Bamberger’s

protocol [9]. A549 cells were incubated with [3H]-Dex (25 nM) in

the absence or presence of excess of unlabeled Dex or avicin D, for

1 hr at 37uC. At the end of the incubation, cells were washed three

times with cold PBS, scrapped and resuspended in 100 ml of PBS.

The cell suspension was added to 4 ml scintillation fluid, and

radioactivity counted in a b-scintillation counter.

Figure 1. Chemical structures of steroids and avicin D. (A) The basic ring structure of a steroid molecule. (B) Chemical structure of
dexamethasone, a prototypical steroid. (C) Chemical structure of avicin D. Part 1 of the molecule has the core 5-ring structure which resembles the
core structure of a steroid molecule, and part 2 has a side chain containing two units of acyclic monoterpenes, connected by a quinovose sugar.
doi:10.1371/journal.pone.0028037.g001
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Immunofluorescence Staining
549 cells were treated with avicin D (1 mM) for 0–60 min. Cells

treated with Dex (1 mM, 60 min) were used as a positive control.

At the end of the treatment, cells were washed twice with PBS, and

fixed with 4% paraformaldehyde. The cells were permeabilized

using 1% Triton X-100 and 0.5% NP40. After blocking the cells

with 1% BSA, they were incubated with anti-GR antibody,

followed by secondary (Rhodamine) antibody. Cells were then

stained with 49, 6-diamidino-2-phenylindole (DAPI) to permit

visualization of nuclear DNA. The immunofluorescence was

visualized by using a Leica DM LB fluorescence microscope.

Images were captured with an automatic imaging system.

Western blot analysis
Whole cell lysates were prepared from untreated and treated

cells. Cellular proteins (50 mg) were resolved on an SDS

polyacrylamide gel. Protein bands were detected by chemilumi-

nescence (ECL, Amersham Pharmacia).

Study of avicin D-GR docking
Avicin-D warhead was docked into two separate crystal

structures for glucocorticoid: 1M2Z and 1NHZ (http://www.

rcsb.org). The 1M2Z is the agonist version of the ligand binding

domain (co-crystallized with dexamethasone) while 1NHZ is the

antagonist form of the receptor (co-crystallized with RU-486). All

docking calculations were performed with the Glide 5.7.109

docking algorithm (Glide, version 5.7, Schrödinger, LLC, New

York, NY, 2011.). In all cases the protein preparation step was

used prior to building the grids using the standard user interface. A

docking box of 31 Å was defined around the co crystallized

ligands. Default parameters were used for all docking calculations

using the extra precision mode (Glide-XP).

Results

Avicin D interacts with GR, and induces its nuclear
translocation

To determine if avicin D could interact with GR, we performed

cold competition whole-cell binding assays in A549 cells, which

are known to be high expressors of GR. Cells were incubated with

25 nM of 3H-Dex in the presence or absence of 0–500 fold of

excess cold avicin D or cold Dex, for one hr. As shown in Fig. 2A,

fivefold excess of cold avicin D inhibits the binding of labeled Dex

by about 35%. When used at a 500 fold excess, avicin D inhibits

the binding of labeled Dex by about 85%. Cold Dex was used as a

positive control at concentrations similar to those of cold avicin D,

and the inhibition induced by Dex and avicin D were comparable.

Inactive GR is held in the cytoplasm, bound to a protein

complex which includes heat shock proteins. Ligand binding

induces conformational changes in the GR, leading to its release

from the protein complex, and translocation into the nucleus.

Based on the observation that avicin D binds to GR, we next asked

if this binding would lead to nuclear translocation of GR. A time

course of avicin D treatment revealed a gradual entry of GR from

the cytoplasm into the nucleus, using immunofluorescence

(Fig. 2B). These findings were confirmed by western blot analysis

of the nuclear extracts of avicin D treated cells (Fig. 2C). GR could

be seen in the nuclear compartment within 15 min of treatment

with avicin D, and at the end of 1 hr, the nuclear GR signal was

comparable in both the avicin D and Dex treated A549 cells

(Fig. 2B&C) Simultaneous changes in the cytoplasmic levels of GR

were hard to visualize and quantify due to the abundance of

inactivated GR in the cytoplasm (data not shown).

Avicin D does not activate GR-driven transcription
Activated GR upon entering the nucleus binds to specific

palindromic sequences, termed GREs, resulting in the transcrip-

tional regulation of various genes. To study the effect of avicin D

on the transactivation of GR, A549 cells transfected with

p(GRE)250hu.IL6P-luc+ construct were treated with avicin D or

Dex. As shown in Fig. 3A, while Dex (1 mM) strongly induced

luciferase activity in a time dependent manner, avicin D at the

same dose had no effect even after a 16 hrs treatment. Higher

concentrations (2 mM) of avicin D were also unable to induce

luciferase activity (data not shown).

Based on the earlier finding that avicin D binds to GR, we next

wanted to determine if avicin D can inhibit Dex induced

transactivation of GR, by competing for binding to GR. RU486,

a known GC antagonist was used as a control in this study. A549

cells transfected with p(GRE)250hu.IL6P-luc+ construct were

pre-treated with either Avicin D (1 mM) or RU486 (1 mM) for

2 hrs prior to being exposed to Dex (1 mM) for 16 hrs. By itself,

avicin D once again was unable to induce any GR-dependent

luciferase activity (Fig. 3B). However, pre-treatment with Avicin

D, inhibited Dex induced luciferase activity by about 60%.

RU486 at the same concentration decreased Dex induced

luciferase activity by about 80%. These results demonstrate that

avicin D though less potent than RU486, can block Dex-induced

transactivation of GR. RU 486 pre-treatment had no significant

effect on avicin D-induced luciferase activity, which was minimal

to begin with (Fig. 3B).

Phosphorylation of specific serine residues, mostly in the DNA

binding domain of GR have been shown to correlate with the

receptor’s transactivation activity. One such residue is Ser-211 in

the N-terminus of GR, which becomes hyperphosphorylated upon

stimulation of GR by an agonist [10]. A western blot analysis of

the nuclear extracts from avicin D treated A549 cells showed that

avicin D did not induce the phosphorylation of GR at Ser-211

(Fig. 3C). On the other hand, cells exposed to Dex under similar

conditions displayed an increase in GR phosphorylation at Ser-

211 (Fig. 3C). These findings taken together with the results shown

in Figs. 2B and 2C, suggest that phosphorylation of GR at Ser-211

might not be a pre-requisite for its nuclear transport, instead might

be crucial for mediating the transactivating effects of GR.

Based on the finding that avicin D does not turn on GR-driven

transcription, we evaluated the expression of phosphoenolpyruvate

carboxykinase (PEPCK) and fatty acid synthase (FASN), both GR-

regulated proteins, in avicin D-treated cells. Since liver cells

express high levels of PEPCK and FASN, we used HepG2, a

hepatocarcinoma cell line which is a high expressor of GR (data

not shown), for this analysis. While Dex treatment led to an

increase in levels of PEPCK (Fig. 4A, lane 2), treatment with avicin

D for 48 (Fig. 4A, lane 3) or 72 hrs (Fig. 4A, lane 4) resulted in a

dramatic decrease in the basal levels of PEPCK. Avicin D also

inhibited Dex-induced PEPCK, as seen in cells either co-treated

with avicin D and Dex for 48 hrs (Fig. 4A, lane 5), or pre-treated

with avicin D for 24 hrs followed by exposure to Dex for another

24 hrs (Fig. 4A, lane 6). Evaluation of FASN expression under

similar experimental conditions yielded comparable results.

Although Dex by itself was unable to induce additional FASN

protein in these cells (Fig. 4B, lane 2), avicin D induces a

significant decrease in levels of FASN when either given alone

(Fig. 4B, lanes 3 and 4) or in combination with Dex (Fig. 4B, lanes

5 and 6). Consistent with the results shown in Fig. 3B, these

findings suggest that avicin D can suppress GRE-mediated gene

expression both directly and by competing with Dex for GR

binding.

Avicin D Regulates GR Signaling
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Avicin D-induced apoptosis is not GR-dependent
One of the cellular effects regulated by GR-mediated gene

activation is the induction of apoptosis [11–15]. In T-lymphocytes,

the anti-inflammatory and immunomodulatory properties of GCs

have been attributed to their ability to induce apoptosis [11,12].

Based on the results presented so far, and given the fact that

avicins are known to induce apoptosis in tumor cells [2,16], we

wanted to determine the role of GR in avicin-mediated apoptosis.

To evaluate the involvement of GR signaling in avicin-induced cell

death, we used HEK 293T cells which are very low expressors of

GR (Fig. 5A). A GR over expressing version of these cells was

generated by transfecting them with wild type GRa (Fig. 5A). In a

cell viability assay, both the parental and GR over expressing

HEK 293T cells were found to be equally responsive to avicin D

Figure 2. Avicin D binds to GR and translocates it into the nucleus. (A) A549 cells were incubated with 25 nM [3H] Dex in the presence or
absence of 0–500 fold excess of cold Dex or cold avicin D. Following one hour incubation at 37uC, cells were lysed and radioactivity measured as
described in the methods. (B & C) A549 cells were treated with avicin D (1 mM) for 0–60 min, or with Dex (1 mM) for 60 min at 37uC. (B) At the end of
the incubation, cells were fixed and immunostained as described in the methods. (C) Western blot analysis of the nuclear extracts of treated cells was
performed using anti- GR antibody as described in the methods. Actin expression was used as a loading control.
doi:10.1371/journal.pone.0028037.g002

Avicin D Regulates GR Signaling
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Figure 3. Effect of avicin D on GRE-dependent gene expression. (A) A549 cells transfected with p (GRE)2-50huIL6P-luc+ were treated with
avicin D (1 mM) or Dex (1 mM) for 2–16 hrs. Luciferase activity was measured in cell lysates, and normalized for TK renilla luminescence as described in
the methods. (B) Effect of avicin D and RU486 on Dex-induced luciferase activity. A549 cells transfected with p (GRE)2-50huIL6P-luc+ were pre-treated
with avicin D (1 mM) or RU486 (1 mM) for 2 hrs, prior to being exposed to Dex (1 mM) or avicin D (1 mM) for 16 hrs. Luciferase activity was measured in
cell lysates, and normalized for TK renilla luminescence as described in the methods. Luciferase activity has been expressed as relative luciferase units
(RLU). (C) A549 cells were treated with Avicin D (1 mM) for 0–120 min or with Dex (1 mM) for 60 min. Western blot analysis of the nuclear extracts was
performed using anti-phospho GR (Ser211) antibodies. Actin levels have been shown as a loading control.
doi:10.1371/journal.pone.0028037.g003
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(Fig. 5B), indicating that the avicin D-mediated cell killing is not

dependent on the levels of GR expression. Jurkat, one of the most

sensitive cell lines to avicin D-mediated cell death [16], lack

endogenous GR [17], and are relatively resistant to Dex-induced

cell killing (Fig. 5C). These results clearly show that (a) expression

of GR is not a pre-requisite for cells to be sensitive to avicin-

induced cell death and (b) signaling through the GR is not a key

regulator of avicin-induced cell death.

Avicin D inhibits TNF-induced NF-kB activation in a
GR-dependent manner

The anti-inflammatory effects of GCs are mediated via the

transrepressive action of GR, which involves its interaction and

inhibition of other proteins, mostly transcription factors. One such

transcription factor is the NF-kB. To demonstrate the effect of

avicin D on NF-kB signaling, we first evaluated the levels of IL-6,

an NF-kB regulated, pro-inflammatory endogenous cytokine in

avicin treated cells. A549 cells were treated with TNF (1 nM) for

24 hrs to induce IL-6 production. Prior to being exposed to TNF,

cells were either left untreated or pre-treated with avicin D

(1 mM)/Dex (1 mM) for 24 hrs. Fig. 6A shows the levels of IL-6

measured in the supernatants of these cultures at the end of 48 hrs.

Treatment with both avicin D and Dex resulted in a significant

decrease in the levels of both basal as well as TNF-induced IL-6.

To further confirm the effects of avicin D on activation of NF-kB,

we studied TNF-induced NF-kB activity in A549 cells, transfected

with p(IL6kB)350hu.IL6Pluc+, an NF-kB-dependent human IL-6

promoter construct. As shown in Fig. 6B, TNF induces a dramatic

increase in NF-kB activity, which is measured by the increase in

IL-6(kB)3- luciferase activity. Treatment of cells with avicin D or

Dex alone does not have any significant effect on the basal levels of

NF-kB activity. However, pretreatment of these cells with avicin D

(1 mM)/Dex (1 mM) abrogates the TNF-induced NF-kB activity

significantly. These results are consistent with our earlier findings

that show the avicins inhibit activation of NF-kB [5].

Next, to determine the involvement of GR in avicin-induced

inhibition of NF-kB, we used HEK 293 T cells, which express

negligible levels of endogenous GR (Fig. 5A). We evaluated the

effect of avicin D and Dex on activation of NF-kB-driven

luciferase activity in wild type and GR over expressing HEK

293 T cells. As shown in Fig. 6C, avicin D or Dex had no effect on

the TNF-induced luciferase activity in wild type HEK 293T (-GR)

cells. However, TNF-induced activation of p(IL6-kB)350hu.IL6P-

Luc was inhibited by avicin D/Dex in HEK 293T cells transfected

with GR (+GR) (Fig. 6C), indicating that the presence of GR is

required for avicin D and Dex to downregulate the activation of

NF-kB.

Since both avicin D and Dex bind to GR, we next wanted to

determine the effect of avicin D in combination with Dex, on

inhibition of NF-kB. A549 cells transfected with p(IL6kB)350-

hu.IL6Pluc+, were pretreated with combinations of avicin D and

Dex, before being exposed to TNF. As shown in Fig. 6D, avicin D

(1 mM) or Dex (1 mM) alone reduced TNF-induced NF-kB activity

by about 50%. A combination of 1 mM each of avicin D and Dex

was more effective than either agent by themselves, suggesting an

additive effect. Combinations of lower concentrations upto

0.125 mM, were also effective in inhibiting TNF-induced NF-kB

activation (Fig. 6D). However, a gradual reversal in effectiveness

could be seen as the concentrations of Avicin D/Dex kept

decreasing, suggesting that the two agents might not have a

synergistic effect.

The ligand and DNA-binding domains of GR are critical of
avicin-mediated inhibition of NF-kB

The human GR has been shown to be composed of a series of

discrete functional domains [18,19]. In order to determine which

domain of the GR molecule is involved in avicin-induced

inhibition of NF-kB, we used different deletion mutants of the

GR. HEK 293T cells were transfected with mock DNA, or with

plasmids carrying either the wild type GR or GR with deletions in

its different domains. Effect of avicin D on TNF-induced

activation of p(IL6-kB)350hu.IL6P-Luc was then studied in these

transfected cells. The results shown in Fig. 7, demonstrate that

mutations in the DNA- and ligand-binding domains (GRd77-262/

d532-647 and GRd450-487 respectively) reverse the avicin-

induced inhibition of NF-kB activity, while mutations in the N-

terminal part of the GR (GRd77-262) appear to have no such

effect. These findings suggest that while the N-terminal appears to

be dispensable, both the intact DNA- and ligand binding domains

are critical for the avicin D to exert its transrepressive effects.

Modeling of avicin D-GR interaction
Based on all the findings described above, we next attempted to

model the interaction between avicin D and the GR (Fig. 8). The

warhead portion of Avicin-D (molecular fragment 2 shown in

Figure 1C) was docked into two separate crystal structures for GR:

1M2Z and 1NHZ. The 1M2Z structure is the agonist version of

the ligand binding domain (co-crystallized with dexamethasone)

while 1NHZ is the antagonist form of the receptor (co-crystallized

with RU-486). No energetically favorable poses were found for the

1M2Z structure because Avicin-D is too large to dock into the

compact agonist binding site of GR. In the antagonist 1NHZ

crystal structure, the warhead docks closest to Cys-643 and is

Figure 4. Effect of avicin D on PEPCK and FASN expression. Hep
G2 cells were either untreated (lane 1), treated with Dex for 24 hrs (lane
2), or treated with avicin D for 48 (lane 3) and 72 (lane 4) hrs. Cells were
also either co-treated with avicin D and Dex for 48 h (lane 5), or
pretreated with avicin D (24 hrs), followed by a 24 hr treatment with
Dex (lane 6). Avicin D and Dex were used at 1 mM each in all cases.
Western blot analysis of total cell lysates was performed using anti-
PEPCK (A) and anti-FASN (B) antibodies.
doi:10.1371/journal.pone.0028037.g004

Avicin D Regulates GR Signaling

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e28037



relatively close to the more solvent exposed Cys-736 and Cys-622

amino acids. Figure 8 shows the spatial orientation of all cysteine

residues from the 1NHZ crystal structure relative to the docked

warhead. Two olefin groups of the warhead are close to Cys-643

and therefore could undergo thioesterification, an avicin-induced

modification of cysteine residues which has been previously

reported in the bacterial system, with Oxy R protein [20].

Additionally, the cystein sulfhydryl groups could form covalent

complexes with the olefins. Further studies are required to evaluate

such a modification.

Discussion

In this study we report ‘‘glucocorticoid-like’’ properties of avicin

D, a triterpene isolated from the seed pods of an Australian tree

called Acacia Victoria. Like the GCs, the avicins have evolved from

the ancient ‘‘hopanoids’’, which could explain the resemblance

between the core structures of these two classes of agents. Avicins

which were first identified as inducers of apoptosis in tumor cells,

have been shown to be anti-inflammatory and regulate cellular

metabolism [3–5,7], both effects attributed to GCs as well. These

similar biological properties combined with the structural

resemblance prompted us to compare the signaling mechanisms

of avicins with those of the GCs. GCs are known to act by

activating the GR, which is otherwise held in an inert state bound

to intracellular chaperones [21]. Subsequent to ligand binding,

activation of GR involves, (a) its nuclear translocation, (b)

transactivation or binding to GC-responsive element (GRE) to

regulate gene expression, and (c) transrepression or interaction

with other transcription factors to facilitate or hinder their action

[22,23]. In this study we show that avicin D competes with Dex to

bind to GR, and translocates it into the nucleus. Avicin D-induced

nuclear translocation of GR does not lead to induction of GR-

driven genes as measured by luciferase activity. Consistent with

this observation was the finding that PEPCK and FASN, two

GRE-regulated proteins were down regulated in response to avicin

D treatment. Also, induction of cell death, which is believed to be

regulated by transactivation of GR [13–15], was found to be non-

dependent on GR activation in avicin treated cells. In an earlier

study avicins have been shown to be (a) more potent inducers of

cell death compared to Dex, using a panel of GC-responsive

myeloma cells, and (b) capable of sensitizing primary multiple

Figure 5. Avicin D induced cell killing is GR-independent. (A) Western blot comparing the GR expression in wild type HEK293T cells
transfected with the mock DNA and plasmid containing the wild type GRa. (B) HEK293T cells transfected with mock DNA or wild type GRa were
treated with different concentrations of avicin D for 72 hrs. Cell viability was measured using the MTT assay as described in the methods. (C) Jurkat
cells were treated with different concentrations of avicin D or Dex for 72 hrs. At the end of 72 hrs, cell viability was evaluated using the MTT assay, as
described in the methods.
doi:10.1371/journal.pone.0028037.g005

Avicin D Regulates GR Signaling
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Figure 6. Avicin D inhibits activation of NF-kB. (A) A549 cells were pre-treated with 1 mM each of either avicin D or Dex for 24 hrs. Following the
pre-treatment, cells were exposed to TNF (1 nM) for another 24 hrs. At the end of the TNF treatment, cell supernatants were collected. IL-6 levels
were measured using an ELISA kit. (B) A549 cells transfected with p (IL6kB)3-50huIL6P-luc+ were either untreated or pre-treated with Avicin D/Dex
(1 mM each) for 2 hrs, followed by a 4 hrs treatment with TNF (1 nM). Cell lysates were assayed for luciferase activity, and normalized for TK renilla
luminescence as described in the methods. Luciferase activity has been expressed as relative luciferase units (RLU). (C) Normal and GR over expressing
HEK 293T cells were transfected with 100 ng of p (IL6kB)3-50huIL6P-luc+ as described in the methods. Cells were next pre-treated treated with Avicin
D/Dex (1 mM each) and treated with TNF (1 nM) as described for Fig. 6B. Luciferase activity was measured in cell lysates, and normalized for TK renilla
luminescence as described in the methods. Luciferase activity has been expressed as % change over the untreated control, which in turn is taken as
100%. (D) A549 cells transfected with p(IL6kB)3-50huIL6P-luc+ were pre-treated with avicin D/Dex (1 mM each) either as single agents or in
combinations for 2 hrs, followed by a 4 hrs treatment with TNF (1 nM). Cell lysates were assayed for luciferase activity and normalized for TK renilla
luminescence as described in the methods. Luciferase activity has been expressed as relative luciferase units (RLU).
doi:10.1371/journal.pone.0028037.g006

Figure 7. Role of different GR domains in avicin D-mediated inhibition of NF-kB activity. HEK 293T cells were transiently transfected with
mock DNA, or plasmids carrying either wild type GRa or deletion variants of GR. After transfection, cells were pre-treated with Avicin D (1 mM) for
2 hrs, followed by a 4 hrs treatment with TNF (1 nM). Luciferase activity was measured in the cell lysates, and normalized for TK renilla luminescence
as described in the methods. Luciferase activity has been expressed as % change over the untreated control, which in turn is taken as 100%.
doi:10.1371/journal.pone.0028037.g007
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myeloma cells to Dex, even in the presence of bone marrow

stromal cells (BMSCs), which are known to attenuate the cytotoxic

effects of Dex [8]. These results can be explained by the possibility

that avicin-induced cell death is independent of GR. Activation of

GRE-regulated genes also involves positive combinatorial respons-

es between GR and a variety of transcription factors including

members of the signal transducer and activator of transcription

(STAT) family such as STAT1, STAT3, and STAT5 [24]. We

have previously demonstrated the dephosphorylation of Stat3 and

down regulation of its transcriptional activity in response to avicin

treatment in myeloma cells [25]. Whether the lack of GR-induced

transactivation following avicin treatment could be related to

avicins’ effects on Stat3, needs to be evaluated.

Although unable to induce transcription of GRE-regulated

genes, avicin-induced nuclear translocation of GR does result in

suppression of TNF-induced activation of NF-kB in A549 cells,

suggesting that the transrepressive function of GR is intact

following avicin treatment. Using HEK 293 cells, which lack

GR expression, we show that the suppression of NF-kB is GR-

dependent, with the ligand and DNA binding domains of GR

being crucial. However, our earlier studies showing decreased NF-

kB activity in avicin-treated Jurkat cells, do point to an additional

mechanism for avicin-mediated inhibition of NF-kB, in cells that

are poor expressors of GR. In Jurkat cells, avicin-mediated

inhibition of NF-kB was found to be redox dependent, by

modifying critical cysteines on in the p65 subunit of NF-kB and

thereby blocking its binding to DNA [5]. Though activation of

NF-kB is known to play a role in the regulation of cell survival and

apoptosis [26,27], avicin-induced apoptosis does not appear to be

under the control of NF-kB. Wild type and GR overexpressing

HEK 293 cells have been found to be equally responsive to avicin

D-induced cell kill, though avicin-induced inhibition of NF-kB is

seen only upon expression of GR in these cells. This is not

surprising based on our earlier studies which have demonstrated

that avicins primarily target the mitochondrial bioenergetics to

initiate apoptosis [2–4]. Kinetically, the effects on mitochondria,

and activation of the apoptotic cascade appear before we see an

avicin-mediated inhibition of NF-kB activity [2,5], suggesting that

inhibition of NF-kB is not the key regulator of avicin-induced

apoptosis. Like NF-kB, other signaling pathways such as the

PI3K/Akt, and Stat3 and their downstream targets like c-myc,

survivin, Bcl2, and Mcl 1, all known to be regulators of cell

survival and apoptosis have also been shown to be downregulated

in avicin treated cells, though at a later time point [16,25]. We

therefore believe that avicin-mediated cell death gets triggered by

perturbation of the mitochondria, and can subsequently be under

the regulation of these signaling pathways.

Most of the undesirable side effects of GCs such as central

adiposity, dyslipidaemia, skeletal muscle wasting, osteoporosis,

insulin resistance, glucose tolerance and diabetes have been

attributed to the transactivation arm of GR [28–30]. On the other

hand, interfering with transcription factors such as NF-kB, and

AP-1, with or without DNA binding, and repressing the

transcription of downstream inflammatory genes has been

considered to be the key mechanisms underlying the anti-

inflammatory properties of GCs [28–30]. However recent studies

have suggested that transactivation underlies some of the anti-

inflammatory effects of GCs [31,32]. Using microarray analysis of

fluticasone treated human monocytes, Ehrchen et al., have

demonstrated that more than 100 genes were induced compared

to about 40 genes that were down-regulated, suggesting that

transactivation prevails over transrepression [31]. Consistent with

these findings is the recent questioning of the concept of ‘‘a

dissociated ligand’’ [33–34], which was based on the assumption

that GR mediated transactivation and transrepression had clearly

distinguishable effects [35–37]. GR-induced genes (transactivation)

such as DUSP1, GILZ, IkBa, SOCS1, IL-4, IL-10, tristetraprolin,

decoy IL1 receptor type II, and TGFb have been reported to

Figure 8. A model of avicin D-GR interaction. The Avicin-D
warhead was docked into the crystal structure of RU-486 bound to the
antagonist form of glucocorticoid (pdb code: 1NHZ) as described in the
methods. (A) Distances between the Sg of three cystein residues and
the olefin groups of Avicin-D warhead (green carbon atoms). (B) Ribbon
structure of 1NHZ with RU-486 (brown carbon atoms) and the model of
the Avicin-D warhead (green carbon atoms). (C) Same as (B) except
focused on the binding pocket of RU-486.
doi:10.1371/journal.pone.0028037.g008

Avicin D Regulates GR Signaling

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e28037



contribute to GC’s anti-inflammatory effects [34,38]. MKP-1, a

dual specificity phosphatase 1, that dephosphorylates and

inactivates p38 MAPK, which in turn induces the expression of

inflammatory transcription factors such as ATF-1, ATF-2 and AP-

1 [39,40], is strongly induced by GCs. Induction of MKP-1 leads

to the transcriptional repression of inflammatory genes such as E-

selectin [41]. Likewise, GR-mediated transrepression has also been

known to underlie some of the GC-mediated side effects such as

the HPA-axis suppression [42,43]. These studies clearly indicate

an overlap between the mechanisms that regulate the beneficial

and deleterious effects of GCs.

Modeling of avicin D-GR interaction has shown that avicin-D is

too large to dock to the agonist form of the glucocorticoid ligand

binding domain. However, in the antagonist 1NHZ crystal

structure, the warhead docks close to Cys-643. The avicin

molecule contains Michael acceptor sites and reactive oxyesters

[6], which have been shown to be involved in the transesterifi-

cation of OxyR, a bacterial transcription factor OxyR, at a critical

cysteine residue, leading to the activation of OxyR [20]. The effect

of avicin D binding to Cys-643, on the GR activity remains to be

studied. It is also possible, that the binding hooks avicin D to the

GR, after which the side chain probably is clipped off, releasing

the core GC-like structure of avicin D. Further studies are required

to evaluate the exact nature of this interaction between GR and

avicin D.

In conclusion, avicins which appear to have evolved as a stress

regulatory molecule in an Acacia desert tree, clearly has profound

biological effects on human cells, much like many plant-derived

compounds that play important therapeutic role in clinical

medicine [44–46]. The results reported in this paper also support

a link between avicins’ ability to regulate cellular stress [6,20], as

well as organismal stress via the glucocorticoid axis. To get an idea

of avicin’s effects in a more physiological system we chose to study

its effect on the process of adipocyte differentiation. Differentiation

of pre-adipocytes into adipocytes was induced using Dex and we

evaluated the effect of avicin D on this process. Adipose

redistribution, one of the undesirable results of GC treatment is

a result of GR-induced transactivation of genes involved in

adipocyte differentiation [47]. These studies and their results have

been described in a manuscript, submitted for publication.

Avicin D has been approved by the United States Food and

Drug Administration for phase I studies in human cancer patients.

Based on the performance of some of the other dissociated GR

ligands [37] in vivo, the effects of avicins in vivo are hard to predict

and may depend on the dose and schedule of administration.
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