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Abstract

For a one- or two-dimensional lattice of finite length consisting of populations, each of which has 

the same population size, the classical stepping-stone model has been used to approximate the 

patterns of variation at neutral loci in geographic regions. In the pioneering papers by Maruyama 

(1970a, 1970b, 1971) the changes of gene frequency at a locus subject to neutral mutation between 

two alleles, migration, and random genetic drift were modeled by a vector autoregression model. 

Maruyama was able to use the spectrum of the migration matrix, but to do this he had to introduce 

approximations in which there was either extra mutation in the terminal populations, or extra 

migration from the subterminal population into the terminal population. In this paper a similar 

vector autoregression model is used, but it proves possible to obtain the eigenvalues and 

eigenvectors of the migration matrix without those approximations. Approximate formulas for the 

variances and covariances of gene frequencies in different populations are obtained, and checked 

by numerical iteration of the exact covariances of the vector autoregression model.
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Stepping stone models of migration on rectangular lattices of populations have become of 

increasing interest as samples of many SNP loci have been collected in contiguous 

geographic areas, particularly in human populations. Stepping-stone models were pioneered 

independently by Malécot (1951) and by Kimura (1953; Kimura and Weiss, 1964). They 

considered lattices of infinite numbers of populations connected by migration in one and two 

dimensions, and derived expressions for the genetic variability expected in the populations 

in a balance between mutation and genetic drift of neutral alleles.

1This paper is dedicated to the memory of the late Takeo Maruyama (1936-1987)
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Lattices of finite size are of greater practical interest as models of real populations. Malécot 

(1948, 1950) pioneered them, using a model of a torus or circle of a finite number of 

populations. Maruyama (1970a, 1970b, 1971) was the first to consider stepping stone 

models for ordinary one- and two-dimensional linear or rectangular lattices of finite numbers 

of populations. He gave expressions for the variances and covariances of gene frequencies 

for arbitrary pairs of populations when there was a two-allele neutral mutation model in 

which the population had reached its equilibrium distribution. To do so he used an 

approximate model which had some lack of realism in the treatment of migration into the 

terminal populations of the lattice. He considered different variations in the way these 

terminal populations were modeled.

In the present paper I will treat a more exact model with a more realistic pattern of migration 

into the terminal populations. The results are similar, but not identical, to Maruyama's 

results.

Patterson et al. (2006) have pointed out the importance of using the eigenvectors and 

eigenvalues of the variation in gene frequencies in principal components analysis of data 

from different populations, an approach which goes back to Menozzi et al. (1978) and is 

reviewed by Cavalli-Sforza and Feldman (2003). An important issue is the interpretation of 

any significant patterns of geographic differentiation that are found. They do not necessarily 

indicate historical events such as waves of migration.

Novembré and Stephens (2008) have pointed out that the eigenvectors of a lattice model of 

migration are startlingly similar to principal components found for gene frequency patterns 

in geographic studies of genetic variation. When one of these principal components is seen, 

this makes it less obvious that it must arise from an historical invasion event, as the stepping 

stone models do not include historical invasions. They pointed out that migration matrices 

such as the ones Maruyama used fall into the class of Toeplitz matrices (Gray, 2006) for 

which the eigenvectors and eigenvalues can readily be computed. The more exact model 

which we use here has migration matrices that are not precisely Toeplitz matrices. It turns 

out that their eigenvalues have similarities with those of Maruyama's matrices, and their 

eigenvectors are readily found.

The immediate purpose of obtaining expressions for the covariances will be to approximate 

the joint distribution of gene frequencies in the populations by a multivariate normal 

distribution, for which the expectations and covariances are all that we need to determine the 

distribution. The expectations are easy to obtain; the covariances do still require one 

approximation but, when checked against an exact numerical solution of the equations, seem 

closer to the correct values than Maruyama's approximations are. The joint distribution of 

gene frequencies will not actually be normal, but for cases with small departures of gene 

frequencies from their expectations it will come close to being multivariate normal. 

Elsewhere I hope to discuss the development of an approximate maximum likelihood 

inference of the parameters of the model using this approximation. The formulas developed 

here may also be useful to others working with finite stepping-stone models who wish to 

have a closer approximation of the covariances of gene frequencies than has hitherto been 

available.
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1. The model

The finite stepping-stone model is a linear lattice of n1 populations (if in one dimension) or a 

rectangular lattics of n1 × n2 populations (if in two dimensions). Analogous models can be 

erected in higher numbers of dimensions. Each population has the same size, N individuals. 

The model has discrete, nonoverlapping generations. In each generation an infinite number 

of offspring are produced in each population. From these a random N are chosen to survive 

to be the adults of the next generation. The population sizes thus remain constant.

Each individual among the offspring is diploid, and has two parents. Migration enters the 

picture in the locations of the parents. For most of the populations in a one-dimensional 

lattice, there is a probability 1 − m that a particular individual drawn to be a parent comes 

from the same population. In a one-dimensional lattice there is a probability 1
2m that this 

parent comes from the population to the left, and a probability 1
2m that it comes from the 

population to the right. The exception is when the offspring population is the first or the last 

in the lattice. Then there is a probability 1
2m that it comes from the adjacent population, and 

the rest of the time, 1 − 1
2m of the time, it comes from the same population.

If the lattice is a two-dimensional one, the same process is imagined to occur in both 

dimensions, completely independently. Thus for a population that is not on a boundary of 

the lattice, a parent for the (i, j) population may have come from that population, or from any 

of the 8 populations surrounding that one, as shown in Figure 1. It can have come from the 

four populations adjacent on diagonals with probability 1
4m2 each, and from the four 

populations adjacent in one direction with probability 1
2m(1 − m) each. With probability (1 − 

m)2 it comes from population (i, j).

If the population is on one of the boundaries of the two-dimensional lattice, but not at a 

corner, its parents come from the two adjacent side populations with probability 1
2m(1 − 1

2m)

each, from the adjacent interior population with probability 1
2m(1 − m), from the two nearest 

diagonal populations with probability 1
4m2 each, and hence from the same population the 

remaining (1 − 1
2m) (1 − m) of the time. When the population is in a corner of the lattice, a 

parent comes from the two nearby populations with probability 1
2m(1 − 1

2m) each, from the 

one population one step away on the diagonal with probability 1
4m2, and from that 

population itself with the remaining probability (1 − 1
2m)

2
.

These seemingly complicated patterns are really just the consequence of having 1
2m come 

from each neighboring population in one dimension, with the two-dimensional pattern being 

independent movement in the two dimensions.
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Figure 1 shows the migration rates in the present model in one- and two-dimensional 

lattices. This is slightly different from the migration pattern usually used in two-dimensional 

stepping-stone models. In most previous work, in two dimensions the migration can only 

come from one of the two populations immediately adjacent in one dimension, or 

immediately adjacent in the other dimension. Migrants could only come from populations (i 
− 1, j), (i + 1, j), (1, j − 1), or (i, j + 1). The present scheme, in which migration occurs or not 

in either dimension, independently, leads to greater mathematical tractability. It is worth 

noting that such a scheme is also implicit in Maruyama's papers.

The model follows the gene frequency of one allele at a locus, in the presence of migration, 

mutation, and genetic drift. The model of mutation has two alleles with mutation back and 

forth between them. If the mutation rate from A to a is μ, and the mutation rate from a to A 
is ν, the equilibrium gene frequency is p̄ = ν/(μ + ν). Mutation in such a one-locus model 

acts as if it were a form of migration. If we set an additional rate of migration into each 

population of m∞ = μ + ν, and have these immigrant copies of the gene be drawn from a 

pool in which the gene frequency of A is p̄, this will be indistinguishable from a model that 

has migration plus mutation between two alleles.

In the present model, parents are chosen according to the migration model, with the two 

parents of an individual independently drawn. Each parent contributes an allele to the 

offspring. Mutation occurs (or does not) for each copy of the gene. Each population thus has 

a pool of newborn offspring, whose genetic composition is characterized by the gene 

frequency of the A allele (which I will call p). Among these offspring, the model makes the 

presence or absence of the A allele at each copy from that pool independent of the other 

copies, so that we do not need to concern ourselves with the diploid genotype frequencies in 

the pool.

Genetic drift occurs by sampling N diploid individuals from the offspring pool, without 

replacement. As the presence of the A allele in each copy in the diploid individuals is 

independent, this has the same effect as drawing 2N times from a pool which has gene 

frequency p.

We can take the gene frequencies in the local populations and arrange them in a column 

vector, whose length is the number of populations. For the two-dimensional case this 

involves taking the gene frequencies in the rows of the array of populations, forming each 

into a column vector, and stacking them on top of each other, so that the first two entries in 

the vector are the gene frequencies for populations (1, 1) and (1, 2). Let the populations now 

be numbered in the order in which they appear in this vector.

For both one- and two-dimensional cases we will see below that we can use the migration 

pattern to create a migration matrix M whose elements mij are the probability that a copy of 

the gene found in the newborn offspring pool for population i came from a parent which was 

in population j, we can then write for population i the gene frequency in the next generation:
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pi′ = (1 − m∞) ∑
j = 1

n
mi jp j + m∞p + εi (1)

where εi is the change due to genetic drift. The random variable pi′ is a binomial proportion 

after 2N trials with a probability of success equal to the sum of the first two terms on the 

right-hand side of this equation. The expectation of εi is thus zero.

This set of equations can be put into matrix form as

p(t + 1) = (1 − m∞)Mp(t) + m∞p1 + ε(t), (2)

where the vector 1 is a column vector of 1's and p(t) is the vector of gene frequencies in the 

populations in the adult stage of generation t. This equation is true for any pattern of 

recurrent migration, not just for stepping-stone lattices.

Note that, except for the error not being multivariate normally distributed, these equations 

are essentially a vector autoregression (VAR) model, beloved of econometricians. In this 

case they are (nearly) a VAR(1) model, as each generation depends only on the preceding 

one. In VAR models, the objective is to infer the regression coefficients from a series of 

observations. Here most of the regression structure is known, it is also known that the errors 

εi do not covary, and the objective is to predict the variances and covariances of the model at 

equilibrium.

This model is close to the models used by Maruyama (1970a, 1970b, 1971) but is not 

exactly the same. For the terminal population he considered two different models. One (his 

“absorbing boundary”) had migration rate m/2 into the terminal population from the 

subterminal population, and also an extra inflow of m/2 into from a pool at the equilibrium 

frequency. This allowed a fraction 1 − m of the terminal population to be nonmigrants, 

which made all the diagonal elements of the migration matrix equal. The second (his 

“reflecting boundary”) (Maruyama 1970a, 1970b) had migration at rate m from the 

subterminal population into the terminal population, rather than m/2. Again the migration 

matrix had all its diagonal elements equal. We will not adopt either of these measures, 

hoping to be able to cope with a migration matrix that does not have all of its diagonal 

values equal. It is also worth noting that Maruyama's variable p is not our p, but is the 

deviation of the gene frequency from its equilibrium value.

2. Transformation to uncorrelated variables

In the cases we consider, the matrix M will be symmetric. For all cases of symmetric 

migration among populations (not just for stepping-stone lattices of populations) it will be 

possible to write it in terms of its eigenvalues and eigenvectors as
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M = UΛUT (3)

where the matrix U of eigenvectors is orthonormal, so that its transpose UT is also its 

inverse. The diagonal elements of the matrix of eigenvalues Λ will be real numbers. 

Substituting this form of M into equation (2) we get

p(t + 1) = (1 − m∞)UΛUTp(t) + m∞p1 + ε(t), (4)

where 1 is the column vector whose entries are all 1. This equation can be premultiplied by 

UT to get

UTp(t + 1) = (1 − m∞)ΛUTp(t) + m∞UT p1 + UTε(t), (5)

since UT is the inverse of U so that their product is the identity matrix and thus disappears 

from the matrix products.

We now consider a new vector of random variables

x(t) = UTp(t) (6)

and write the vector UT p̄1 as q, which is a constant vector and not a random variable. We 

notice that since the expectations of the random variables εi
(t) are zero, we can write the 

equation for x(t) as

x(t + 1) = (1 − m∞)Λx(t) + m∞q + η(t) (7)

The vectors of random variables η(t) will have expectation zero.

The first eigenvalue λ1 will be, for all the migration matrices we consider, 1, and its 

associated eigenvector will have all elements equal. The other eigenvectors will be 

orthogonal to this. It follows that q will have its first element nonzero, and all other elements 

zero.

3. Expectations

If we now take the expectations of the terms in equation (7), we can readily use equation (7), 

to show for each element of the vector x that in the long run that the process will approach a 
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stationary distribution. In that distribution, the expectations the elements of xi
(t) are each 

equal to the expectations of the corresponding elements of q. This is asymptotically true for 

t very large, when the effect of the initial frequencies of the pi
(0) have been lost. Going back 

to the elements of the vectors p(t) in this limiting distribution, these all have equal 

expectations, Going back to the elements of the vectors p(t) in this limiting distribution, 

these all have equal expectations, which are simply p̄, the mutational equilibrium gene 

frequency. The equation for the expectations of the x(t) in this limiting distribution, which 

will be called x̄(t), is then

x(t + 1) = (1 − m∞)Λx(t) + m∞q . (8)

We can subtract this equation termwise from equation (7) and obtain an equation for the 

deviation of the x(t) from their expectations. If we call these deviations y(t), this is then

y(t + 1) = (1 − m∞)Λy(t) + η(t) (9)

It is easy to see that the expectations of the y(t) are all zero. For this reason, the equation for 

the y(t) is simpler than the equation for the x(t), and we now use it to investigate the 

covariances.

4. Approximating the stochastic process

If we write, from equation (9), the expression for one of the elements of the vector y(t + 1), it 

is

yi
(t + 1) = (1 − m∞)λiyi

(t) + ηi
(t) (10)

If the elements of η(t) were all independent of each other, it would be easy to show that the 

yi
(t) would be independent random variables. Actually, the ηi

(t) are not, strictly speaking, 

independent. The vector η(t) is a linear transformation of a set of independent binomial 

variates (each element of ε(t) being the difference between a binomial frequency and its 

expectation). However the nonindependence is subtle and, for our purposes, unimportant. 

The objective of this paper is to derive the covariances of the gene frequencies, for use in a 

statistical inference when approximating the distribution of the gene frequencies as 

multivariate normal. It will be sufficient to be able to show that the ηi
(t) are approximately 

uncorrelated.

To do this another approximation will also be made. The εi
(t) have variances that arise in the 

binomial sampling of the gene frequencies in going from the infinite number of newborn 
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individuals in a population to the finite number N of surviving adults. In any generation in 

which that gene frequency among the newborns is pi, the binomial variance on sampling 2N 
copies of the gene is pi(1 − pi)/(2N). At stationarity, the values of pi across different 

generations have expectation p̄ and a variance, which we can call σi
2. The expectation of the 

binomial variance across generations can be written in terms of this as

𝔼 1
2N pi(1 − pi) = 1

2N (𝔼[pi] − 𝔼[pi
2]) = 1

2N (p − p2 − σi
2) (11)

At this point we do not know the values of the quantities σi
2. They depend on the very thing 

we want to compute, the variances and covariances of the gene frequencies pi. There are 

likely to be differences between the variances σi
2, with terminal populations having a 

somewhat higher variance of gene frequency than interior populations.

In the limiting case when migration rates are large, the gene frequencies in all populations 

will be very similar. In that limit the variances σi
2 will be equal. The approximation made 

here will be to assume that we are near this limit, and that for the purposes of further 

calculation we can assume that all of the σi
2 are equal to the With that approximation, we can 

show that the random variables ηi
(t) are not correlated. We have seen that they are the 

elements of the vector UTε (t). We know that the εi
(t) have zero covariances, as they are 

independent random variables. If we use the approximation that the εi
(t) have equal variances 

σ2, then we can write the covariance matrix of the ηi
(t) as

𝔼[ηηT] = 𝔼[UTεεTU] = UT𝔼[εεT]U = UT( 1
2N (p(1 − p) − σ2)I)U = 1

2N (p(1 − p) − σ2

)UTU = 1
2N (p(1 − p) − σ2)I

(12)

As this is diagonal, the covariances of different elements of η are thus, to close 

approximation, zero.

5. Covariances of gene frequencies

With the covariances of the ηi
(t) now determined to (approximately) be zero, the random 

variables for the different i in equation (9) are now uncorrelated. They all have expectation 

zero. Its variance is easily determined by noting that the sum on the right-hand side is of two 

uncorrelated variables, whose covariance is therefore zero, so that:
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Var yi
(t + 1) = (1 − m∞)2λi

2Var yi
(t) + Var ηi

(t) (13)

Once this random process has reached stationarity, the variance of yi in all generations is 

equal and, with our approximation of σi
2 by σ2, we can then solve for the variance of yi as

Var(yi) =
Var(ηi)

1 − (1 − m∞)2λi
2 = p(1 − p) − σ2

2N(1 − (1 − m∞)2λi
2)

. (14)

The remaining covariances are all zero.

The covariances of the xi are the same as those of the yi, since these vectors differ by a 

constant vector. To obtain the covariances of the gene frequencies pi, we use the fact that the 

gene frequencies are a linear transformation of the yi. From equation (6),

p = U(y + q), (15)

so that since q is UT p̄1,

p = Uy + p1 (16)

so that

p − p1 = Uy . (17)

The covariances of p will then be

𝔼 (p − p1)(p − p1)T = 𝔼[UyyTUT] = U𝔼[yyT]UT (18)

From equation (14) we can now write the covariances of the pi as

Cov[p] = Udiag p(1 − p) − σ2

2N(1 − (1 − m∞)2λi
2)

UT (19)
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Since the diagonal matrix in this expression can also be written in terms of the square of the 

diagonal matrix of eigenvalues, it turns out that this covariance matrix can also be written in 

terms of the inverse of a simple function of the migration matrix:

Cov[p] = (p(1 − p) − σ2) 2N I − (1 − m∞)2M2 −1
(20)

Of course, the diagonal elements of the covariance matrices are all assumed to be equal to 

σ2. Although the above expressions compute σ2 in terms of itself, we will find a way to 

untangle that.

We now know that the expectations of the pi are all p̄, and for the (approximated) process we 

have the covariances in terms of the eigenvalues and eigenvectors of M. Now all we need is 

to find those. The derivation since (1) has been general for any system of recurring migration 

whose migration rates among populations are symmetric, provided that the migration is 

strong enough to allow us to assume that the variances σi
2 are nearly equal. Now we need to 

use the particular pattern of migration on a finite lattice to obtain the eigenvalues and 

eigenvectors of the migration matrix.

6. The spectrum of the migration matrix

The matrix in one dimension is

M =

1 − 1
2m 1

2m 0 ⋯ 0 0 0

1
2m 1 − m 1

2m ⋯ 0 0 0

0 1
2m 1 − m ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 1 − m 1
2m 0

0 0 0 ⋯ 1
2m 1 − m 1

2m

0 0 0 ⋯ 0 1
2m 1 − 1

2m

(21)

For the one-dimensional case we will use n in place of n1 for the number of populations, to 

reduce typographical stress.

Feller (1957, section XVI.3, pp. 389-390) treats a random walk with two reflecting 

boundaries, whose transition matrix is the above matrix for the case when m = 1. He uses a 

partial fractions method; as he notes, this is equivalent to a spectral decomposition of the 
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matrix. His quantity sr is the reciprocal of the eigenvalue λr + 1. Thus the eigenvalues for m 
= 1 are

λi = cos (i − 1)π
n (22)

and if for m = 1 we call the matrix R, we have for general m

M = (1 − m)I + mR (23)

so that the eigenvalues of M are the corresponding linear combinations which turn out to be

λi = 1 − m 1 − cos (i − 1)π
n (24)

The eigenvectors of M will be the same as those of R. In the Appendix it is shown that if 

these are scaled so as to be orthonormal the right eigenvectors can be written as

(UT)i j =
Δi
n cos (i − 1)(2 j − 1)π

2n , i = 1, 2, …, n, j = 1, 2, …, n (25)

where the quantity Δi is 1 if i = 1 and 2 otherwise. Maruyama found a similar quantity 

necessary in the expressions for his eigenvectors.

By comparison, Maruyama's eigenvalues were

λi = 1 − m 1 − cos iπ
n + 1 . (26)

His eigenvectors could also be written in terms of cosines, but were different from the 

expressions for our matrix.

That there is a connection to Maruyama's matrix is made clearer if we consider a “shift 

matrix” S which has the diagonal above the main diagonal filled with 1s, and the rest of the 

elements zero:
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S =

0 1 0 ⋯ 0 0 0
0 0 1 ⋯ 0 0 0
0 0 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 1 0
0 0 0 ⋯ 0 0 1
0 0 0 ⋯ 0 0 0

(27)

One can write Maruyama's matrix as (1 − m)I + 1
2mS + 1

2mST. Our matrix M can also be 

written in terms of S, as

M = I + 1
2mS + 1

2mST − 1
2m(SST + STS) . (28)

7. Solving for the covariances

Using equation (19) together with equations (26) and (25) we can now write the covariance 

of populations in the one-dimensional case as

Cov[pi, p j] = 1
2N (p(1 − p) − σ2) ∑

k = 1

n Δk
n cos (k − 1)(2i − 1)π

2n cos (k − 1)(2 j − 1)π
2n

× 1
1 − (1 − m∞)2 1 − m 1 − cos (k − 1)π

n
2

(29)

For the two-dimensional case we note that the migration matrix M is the result of 

independent migration in the two dimensions; it turns out that

M = M(1) ⊗ M(2), (30)

where the superscripts indicate the two dimensions and ⊗ is the Kronecker product of 

matrices. It is well-known for Kronecker products that if Λ(1) and Λ(2) are the diagonal 

matrices of the eigenvalues of (respectively) M(1) and M(2), then the diagonal matrix of 

eigenvalues of M is the Kronecker product Λ(1) ⊗ Λ(2), which is the diagonal matrix whose 

diagonal elements are all n1 × n2 products of one of the eigenvalues of M(1) and one of the 

eigenvalues of M(2). Similarly, the n1 n2 × n1 n2 matrix U of eigenvectors of M is the 

Kronecker product of the n1 × n1 matrix U(1) of eigenvectors of M(1) and the n2 × n2 matrix 

U(2) of eigenvectors of M(2).
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If for the two-dimensional case we denote the gene frequency of the population at position 

(i, j) as pij, the result is that

Cov[pi j, pk𝓁] = 1
2N (p(1 − p) − σ2) ∑

g = 1

n
∑

h = 1

n Δg
n

Δh
n cos (g − 1)(2i − 1)π

2n cos

(h − 1)(2 j − 1)π
2n × cos (g − 1)(2k − 1)π

2n cos (h − 1)(2𝓁 − 1)π
2n

× 1
1 − (1 − m∞)2 1 − m 1 − cos (g − 1)π

n
2 1 − m 1 − cos (h − 1)π

n
2

(31)

Higher numbers of dimensions can be accommodated in an exactly analogous way. The 

generalization of the two-dimensional case to having different migration rates m1 and m2 in 

the two dimensions is straightforward.

8. Solving for σ2

There is still the vexing matter of the variance σ2. One method of inferring it is to start with 

σ2 = 0 and use equations (29) or (31) to compute all the Cov[i,i]. Then from these new 

estimates of the σi
2, make a new estimate of σ2 by averaging these. One might want to 

continue this until the value of σ2 converges. It actually does not converge if 4Nm < 1. 

However if in each iteration we instead make a weighted average of two quantities, one the 

mean of the new σi
2 and the other the previous value of σ2, with their weights 4Nm and 1, 

this seems always to converge rapidly. Let us call this the F1 approximation.

An alternative approach that seems reasonable is, for a given pair of populations, i and j, to

• Compute σ2 = Cov[pi, pi] and do this iteratively until it converges (as before 

using the weighted average with weights 4Nm and 1). Use this for the 

computation of Cov[pi, pi].

• Do the same with Cov[pj, pj]. Use this for the computation of Cov[pj, pj].

• For the computation of Cov[pi, pj] use the average of these two values of σ2.

This will be referred to as the F2 approximation.

We will see that with 4Nm moderately large, it will make little difference which of these two 

methods of inferring σ2 we use. The F2 method is more tedious computationally, requiring 

as it does multiple iterative estimations of σ2.

9. Alternative equations

The covariances between populations can be arranged in a square matrix
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C = 𝔼[(pi − p)(p j − p)] . (32)

Using equation (2) we can show that at equilibrium C will satisfy

C = (1 − m∞)2MCMT + Q, (33)

where Q is the covariance matrix of ε, which will be diagonal. This is a linear equation in 

the cij, though a big one: for example, for a 30 × 30 lattice the matrix C will be 900 × 900. 

This equation is general to any pattern of recurring migration.

It is worth noting that the linear equations in the cij can be rewritten in a more conventional 

form if we convert the covariance matrices C and Q into vectors by stacking their columns 

into stacks s(C) and s(Q) so that

s(C) = (c11, c21, c31, …, cn1, c12, c22, …, c2n, …, c1n, c2n, …, cnn)T (34)

and similary for s(Q). The equations then can be written using a Kronecker product:

s(C) = (1 − m∞)2(M ⊗ M)s(C) + s(Q) . (35)

Moving all the terms involving C to the left side

(I − (1 − m∞)2M ⊗ M)s(C) = s(Q) (36)

whereby

s(C) = (I − (1 − m∞)2M ⊗ M)−1s(Q) (37)

which is a slightly more general version of equation (20). The matrix inversion will always 

be possible if m∞ > 0.

This is a very large set of equations – for a 30 × 30 lattice of populations there will be 

810,000 equations in as many unknowns. It is unlikely to be a practical numerical way of 

solving for the cij, but use of a transformation analogous to equation (6),
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x = (UT ⊗ UT)p, (38)

allows us to solve for the covariances of p in a way exactly analogous to our derivation 

above. The approximation of the σi
2 is the same in this set of equations as in the previous 

forms.

10. Longer-range migration

The migration matrix allows only a single step of migration in each dimension. One 

straightforward way to model multiple-step migration would be to allow in each dimension a 

Poisson-distributed number of steps of migration, with expectation m. Thus, in a one-

dimensional lattice a fraction

e−mmk

k! (39)

of the individuals have undergone k steps of migration, where each step is according to the 

matrix

R =

1
2

1
2 0 ⋯ 0 0

1
2 0 1

2 ⋯ 0 0

0 1
2 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 1
2

0 0 0 ⋯ 1
2

1
2

. (40)

As noted above in the discussion of computing the eigenvalues and eigenvectors of M, the 

matrix R is the special case of the one-step migration matrix with m = 1. The resulting 

migration matrix when there is a Poisson-distributed number of migration steps is

M = ∑
k = 0

∞ 1
k!e−mmkRk (41)

This is true for any matrix R of one-step movements. The eigenvectors of a matrix 

polynomial like this are well-known to be the eigenvectors of R, which are the eigenvectors 
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of the one-step migration matrix, given in equation (25). The eigenvalues of M in the case of 

a lattice can be written in terms of the eigenvalues in equation (26) – the ith one is

∑
k = 0

∞ 1
k!e−mmkλi

k = e−m ∑
k = 0

∞ 1
k! (mλi)

k = e
m(λi − 1)

(42)

If we replace λi in this expression with the ith eigenvalue of the migration matrix that has m 
= 1, we get from equation (26) for the ith eigenvalue of the multistep migration matrix

λi = exp m cos (i − 1)π
n − 1 (43)

For the gene frequency covariances, this can be substituted into equations (29) or (31) in 

place of the eigenvalue expressions there. The eigenvalues in equation (26) and those in 

equation (43) become asymptotically the same as m becomes small, as one would hope they 

would.

For two dimensions, tractability requires that the movement in the two dimensions be an 

independent random walk in each dimension. The number of steps in the x direction is a 

random Poisson variable, and so is the number of steps in the y direction, and these are 

independent. This will also be true if the total number of steps is a Poisson variate, and each 

step is independently chosen to be in the x direction or in the y direction, by independent 

Bernoulli variables (coin tosses). The eigenvalues are then all possible products of two 

quantities, each computed by equation (43).

11. Diffusion limit

It is well-known that if we consider a series of cases with increasing population sizes N, and 

decreasing values of the strengths of the deterministic evolutionary forces (here m∞ and m), 

such that the products Nm∞ and Nm are constant, and if we also observe the gene 

frequencies on a time scale in which one unit of time is N generations, that the stochastic 

process of gene frequency change approaches a diffusion process. This is of considerable 

interest, as the approximation is usually very close.

Taking these limits, terms in m∞
2  and m2, and all of their higher powers drop out of the 

equations. The result for the covariances is that equation (29) approaches the limit
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Cov[pi, p j] = (p(1 − p) − σ2) ∑
k = 1

n Δk
n cos (k − 1)(2i − 1)π

2n cos (k − 1)(2 j − 1)π
2n

× 1
4Nm∞ + 4Nm 1 − cos (k − 1)π

n

(44)

In the case of multiple-step migration, as we take N larger, m becomes small, and the 

occurrence of more than one step of migration becomes vanishingly rare, so it is easy to 

show that the diffusion limit is this same expression. The analogous expressions for the two-

dimensional lattice are easily obtained and involve two terms in 4Nm.

12. Fleming and Su's approximation

Fleming and Su (1974) have derived another approximation to the finite stepping-stone 

models, by approximating the space as continuous. We will not give their formulas here, but 

below we will compare them to our approximations. I have showed elsewhere (Felsenstein, 

1975) that models of finite populations of organisms migrating in continuous geographical 

spaces encounter some difficulties in maintaining a Poisson random field distribution. 

Fleming and Su's equations cannot be seen as exact for a organisms randomly distributed in 

a continuous geographical space. We must instead regard them as an approximation to the 

stepping-stone model.

To do this I have taken their interval (−ℓ, ℓ) and divided it into n equal intervals, with the n 
populations of the stepping-stone model being regarded as located at the midpoints of those 

intervals. This is to some extent an arbitrary choice.

13. Numerical comparisons

The approximation involved in using a common σ2 for all of the variances is expected to be 

a good one if 4Nm ≫ 1, but it is worth doing numerical checks. Table 1 shows numerical 

comparisons. The exact covariances for the model are calculated using equation (33), with 

the variances in the diagonal matrix Q obtained from equation (11). This equation was 

iterated many times until it converged.

These values, exact under our model, were compared with the approximations in equation 

(29). They were also compared with Maruyama's approximations in his 1970a paper, Table 

4, and also with with the continuous approximation of Fleming and Su (1974). Table 1 

shows the results for n = 10, m∞ = 0.001, m = 0.1, N = 25, and p̄ = 0.2, the case that 

Maruyama considered. The exact value is denoted by E, our approximations by F1 and F2, 

Maruyama's approximation by M, and Fleming and Su's approximation by FS. Owing to the 

symmetry of the case, populations 6 through 10 have the same variances as populations 5 

through 1 so they are not shown.
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14. Numerical comparisons

The approximation involved in using a common σ2 for all of the variances is expected to be 

a good one if 4Nm ≫ 1, but it is worth doing numerical checks. Table 1 shows numerical 

comparisons. The exact covariances for the model are calculated using equation (33), with 

the variances in the diagonal matrix Q obtained from equation (11). This equation was 

iterated many times until it converged.

These values, exact under our model, were compared with the approximations in equation 

(29). They were also compared with Maruyama's approximations in his 1970a paper, Table 

4, and also with with the continuous approximation of Fleming and Su (1974). Table 1 

shows the results for n = 10, m∞ = 0.001, m = 0.1, N = 25, and p̄ = 0.2, the case that 

Maruyama considered. For Fleming and Su's approximation, which uses a continuous space 

on the interval (−1, 1), the locations corresponding to the n populations were taken to be 

1 − 1
n , 1 − 3

n , 1 − 5
n , …, − 1

n , 1
n , …, 1 − 1

n . These are n points equally spaced, each being the 

center of an interval which is 1
n  of the total interval, which is of length 2. The exact value is 

denoted by E, our approximations by F1 and F2, Maruyama's approximation by M, and 

Fleming and Su's approximation by FS. Owing to the symmetry of the case, populations 6 

through 10 have the same variances as populations 5 through 1 so they are not shown.

While generally similar, then two approximations differ noticeably, especially for the 

terminal population. In Maruyama's approximation, there is an extra injection of mutation 

into the terminal populations. This damps its departure from the mutational equilibrium 

which is caused by genetic drift. Both approximations are considerably lower than the true 

variance, the expected variance in the F1 approximation developed in this paper being 18% 

low in the terminal population and 26% low in the central population. The F2 approximation 

is slightly worse in the populations near the ends, and slightly better in the central region, 

but perhaps not enough to make it worthwhile in view of its higher computational burden. 

The Fleming-Su approximation is worse. It does agree with the other values by showing 

higher variance in the terminal populations.

Table 1 has 4Nm = 10 and 4Nm∞ = 0.1. When 4Nm = 100, as in Table 2, the F1 

approximation is much better, being 0.56% high in the terminal populations, and 0.3% low 

in the center populations. The F2 approximation is again lower than the F1 approximation in 

the end region and higher than it in the central region; in most populations it is farther from 

the exact value than is the F1 approximation.

In longer one-dimensional stepping stone models, as in Table 3, we can see that the exact 

variances in the terminal populations are higher than in the center, but that this rapidly 

declines and becomes relatively constant as we move toward the center of the lattice. The F1 

approximation tracks this quite closely, being about 3.6% too high in the terminal 

populations and 0.5% too low in the center. The F2 approximation is in general closer to the 

exact value, and through most of the central region is nearly exact. The Fleming-Su 

approximation does even less well than before.
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We can also compare the correlations between the gene frequencies of pairs of populations. 

Table 4 shows these for the same case as Table 1 above, where N = 25. For this case 

Maruyama also calculated the correlations from his reflecting boundary approximation, in 

Table 4 of his 1970b paper. Both of our approximations are very close, and his quite a bit 

farther away. The (1,9) element of this table has the greatest departure from the exact value 

for both our and Maruyama's approximation, and his is 8.24% high while ours is 0.67% low. 

(There is a typographical error in the Theoretical number in the (9,10) element of his table). 

The F2 approximation is slightly better than the F1 approximation for pairs of populations 

near the ends of the region, and slightly better for all other pairs.

Table 5 shows the correlations for the case when N = 250. It can be shown that the F1 

approximation will not depend on N, so our predictions are the same as in Table 4. In fact, 

the expressions for predicted correlations using our approximation also do not depend on p̄ 
or on m∞ either – they depend only on the geometry of the populations and on m. Compared 

to these predictions, the exact values are a bit more different in Table 5, being up to 5% low 

(in the case of the (10,1) element), but more typically being about 1% low. The F2 

approximations do depend on N, but for the correlations they are so close to the values of the 

F1 approximation that there seems little point going to the extra effort of computing them.

15. Usefulness

The present solution is approximate, but less so that previous efforts. It is intended for use in 

a likelihood-based (or Bayesian-based) inference of migration and/or mutation parameters, 

scaled as a fraction of the local effective population size. However the approximation is 

specific to rectangular lattices which have reached equilibrium between mutation, migration, 

and genetic drift. Both aspects, the rectangularity and the equilibrium, may be questioned for 

natural populations, the equilibrium being a particularly severe challenge for human 

populations. In continents such as Europe, we need assurance that there has been enough 

time since historical population movements such as those associated with the spread of 

agriculture. Given perhaps only 7000 years since the establishment of agriculture there, that 

is a stringent requirement.

The availability of approximations based on processes in a continuum of finite length, 

instead of the stepping stone lattice, presents another challenge. We have compared our 

formulas for the variances with Fleming and Su's (1974) approximation, and for these cases 

the continuous approximation was a worse approximation. Barton and Wilson (1995) have 

developed approximations for coalescent times for an approximate model of a continuum of 

finite length. The papers by Barton et al. (2002, 2010) make similar approximations that 

allow for extinction and recolonization, which have not been discussed here. These papers 

use, respectively, a model of a two-dimensional infinite continuum, and a model of a finite 

torus. Wilkins and Wakeley (2002) and Wilkins (2004) use a different approximate model to 

develop other approximations to coalescence times in a one- or two-dimensional finite 

continuum. Neither of these approximations has been developed into an approximation for 

variances and covariances of local gene frequencies, although it does not seem difficult to do 

so. Barton and Wilson (1995) approximate these covariances by using Malécot's (1951) 

formulae for the one- and two-dimensional infinite continuum approximation.
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If the stepping-stone model is regarded as the truth, and these continuum models are 

intended as approximations to it, the present formulas may help evaluate the accuracy of the 

continuum approximations. But to the extent that both the stepping-stone models and the 

continuum models are regarded as approximations to the more subtle structure of real 

populations, we would have to model those, perhaps in individual-based simulations, to 

evaluate whether either approach is viable.
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Appendix

Feller (1957, section XVI.3, p. 390) gives the elements of the ith right eigenvector of matrix 

M when m = 1 as

ui j = sin (i − 1) jπ
n − sin (i − 1)( j − 1)π

n , (45)

where they are determined up to an arbitrary multiplicative constant.

Note the trigonometric relationship

sin (θ + ϕ) + sin (θ − ϕ) = 2 cos (θ) sin (ϕ) (46)

which may readily be verified using the addition law for sines.

Taking

θ = 1
2

(i − 1) jπ
n + (i − 1)( j − 1)

n = (i − 1)(2 j − 1)π
2n (47)

and

ϕ = 1
2

(i − 1) jπ
n − (i − 1)( j − 1)π

n = (i − 1)π
2n (48)
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we find that the elements of the eigenvector can be written as

ui j = cos (i − 1)(2 j − 1)π
2n sin (i − 1)π

2n (49)

The sine factor does not depend on j, so it is a scaling of the ith eigenvector. These 

eigenvectors each need to be rescaled so that the eigenvectors are orthonormal. If they are 

written as

ui j =
Δi
n cos (i − 1)(2 j − 1)π

2n (50)

where Δi, is 1 for i = 1 and 2 otherwise, it can be shown that this is the appropriate scaling.
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Figure 1. 
Diagram of the migration pattern in a one- and two-dimensional stepping stone model. In 

each case the recipient population is shown together will all populations contributing 

migrants to it, with the fraction of the recipient population coming from each of these 

populations shown. This is shown for an interior population and a terminal population for 

the one-dimensial stepping stone model, and for an interior population, a side population, 

and a corner population for a two-dimensional stepping stone model.
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Table 2

Comparison of exact solution (E) for the variances of population gene frequencies in a 10-stone stepping-stone 

model for n = 10, m∞ = 0.001, m = 0.1, N = 250, and p̄ = 0.2 with the approximation of this paper (F). 

Approximation F1 uses the value of σ2 averaged over all populations. Approximation F2 uses a value of σ2 

calculated for that population. FS is the Fleming-Su approximation. As the migration pattern is symmetric, 

only the values for populations 1-5 are shown.

population E F1 F2 FS

1 0.02115 0.02127 0.02089 0.01396

2 0.01918 0.01924 0.01913 0.01207

3 0.01784 0.01784 0.01790 0.01087

4 0.01700 0.01697 0.01712 0.01016

5 0.01660 0.01655 0.01674 0.00984
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Table 3

Comparison of exact solution (E) for the variances of population gene frequencies in a 100-stone stepping-

stone model for n = 100, m∞ = 0.001, m = 0.1, N = 250, and p̄ = 0.2 with the approximations of this paper (F1 

and F2). Approximation F1 uses the value of σ2 averaged over all populations. Approximation F2 uses a value 

of σ2 calculated for that population. As the migration pattern is symmetric, only values for the first half of the 

lattice are shown.

population E F1 F2

1 0.01900 0.01968 0.01870

2 0.01691 0.01744 0.01679

3 0.01534 0.01575 0.01532

4 0.01416 0.01447 0.01419

5 0.01328 0.01351 0.01333

10 0.01126 0.01139 0.01129

20 0.01066 0.01061 0.01066

30 0.01062 0.01057 0.01062

40 0.01062 0.01057 0.01062

50 0.01062 0.01057 0.01062
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