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Abstract

Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent
to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann
area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar
disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR
to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP],
myelin-oligodendrocyte glycoprotein [MOG], b-actin [ACTB], thymosin b-10 [TB10], and superior cervical ganglion-10
[SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to
transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were
altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions
and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-
binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual
cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical
pathophysiology.
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Introduction

Most neuropathological findings in schizophrenia have been

reported in the hippocampus or the dorsolateral prefrontal cortex

[1–3]. This concentration both reflects, and has contributed to, the

focus upon these regions as being of central pathophysiological

importance [4–7]. The neuropathological evidence includes a

contribution from many individual (e.g. [8–10]) and transcrip-

tomic (reviewed in [11,12]) studies of gene expression which have

shown molecular alterations in these regions. However, it is hard

to know whether there is a true predilection of pathology for these

areas, since other cortical regions have been far less well examined.

Such information is germane to the broader question as to

whether the cortical pathophysiology of psychosis is regionally

localised or is widespread. This in turn bears upon the issue of its

likely neurodevelopmental origins.

A good example of an area which might have been considered

neuropathologically ‘unaffected’ in psychosis is the occipital

cortex, including the primary visual or striate cortex (Brodmann

area [BA] 17). Yet morphometric [13,14] and gene expression

[15–18] data indicate that some structural and molecular

differences may occur therein. Indeed, in a microarray study

surveying several cortical regions, more transcripts were altered in

schizophrenia in BA17 than in dorsolateral prefrontal cortex [19].

Here, to address this question further, we report a study of gene

expression in BA17 of the Stanley Neuropathology Consortium

brain series. We used a two-stage approach. First, we pooled

mRNA from two batches of five subjects in each diagnostic group

and ran them on nylon arrays. We then took the transcripts which

met our criteria for differential expression in schizophrenia, and

carried out RT-PCR analysis of each mRNA individually in the

whole sample. Since this series of brains also includes bipolar

disorder and major depression subjects, we also had the

opportunity to address the diagnostic specificity of any alterations.

Methods

Post-mortem tissues
A block of frozen primary visual cortex (BA17) tissue was

provided from the 60 subjects comprising the Stanley Neuropa-

thology Consortium brain series [20] (Table 1). All material was

coded by the Stanley Medical Research Institute, and experiments

and analyses conducted blind to diagnostic and other information.

The brains were collected at the Uniformed Services University of

the Health Sciences (USUHS) between 1998 and 2004. The IRB

determined that IRB approval was not needed, since the subjects

were deceased and work was done on anonymized, numbered

specimens. Verbal consent to brain donation was obtained from

next-of-kin, by telephone, and was witnessed by two people who

signed a form verifying the fact. Subsequently, the next-of-kin was

contacted and interviewed to obtain further information about the

deceased. The work described in this paper was carried out in

accordance with the Declaration of Helsinki and with ethical

approval from Oxfordshire National Health Service Research

Ethics Committee B (#O02.040).
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RNA extraction
RNA was obtained using the single-step method of acid

guanidinium thiocyanate-phenol-chloroform extraction [21] with

TRI reagent (Sigma, Poole, UK). The concentration of nucleic

acids was determined by absorbance spectrophotometry and RNA

quality was calculated from the ratio of the optical densities of 28s/

18s ribosomal bands on MOPS denaturing gel with ethidium

bromide. These values were confirmed with an Agilent Bioana-

lyzer (Agilent Technologies, South Queensferry, UK) for a subset

of 12 samples.

Approximately 10 mg of RNA was treated for 30 mins at 37uC
with 1U RQ1 RNase-Free DNase (Promega, Southampton, UK).

Because of the sensitivity of array studies to DNA contamination,

ribonuclease inhibitors were not used since initial tests suggested

that they inhibited the DNase activity. Optimal DNase concen-

tration to minimise RNA degradation but to eliminate DNA

contamination were determined in preliminary studies. The

solution was made up to 200 ml with nuclease free water and

mixed with 200 ml acid (pH 4.5) phenol-chloroform (9:1) and spun

for 5 mins. The top phase was mixed with 200 ml chloroform and

spun for 5 mins. The top phase was mixed with 20 ml 4M sodium-

acetate and 200 ml isopropanol and left to precipitate overnight at

4uC. The solution was spun for 15 mins at 4uC until an RNA

pellet formed. This pellet was washed twice in 75% ethanol, dried

for 10 mins, resuspended in nuclease free water, and stored at

270uC.

Gene Expression Arrays
We used the Atlas Human Neurobiology Array (BD Biosciences

Clontech), a double spotted nylon cDNA array with 593

neurobiological genes, several housekeeping genes, and plasmid

and bacteriophage DNAs as negative controls.

The arrays were run using RNA pooled from five subjects in

each diagnostic group, each subject contributing 2 mg. Pooling was

performed due to the cost of the arrays which precluded running

individual arrays. Pooling biological samples for arrays has been

shown to largely reflect the average of the individual samples, and

increases accuracy when few arrays are available to run in each

group [22]. We grouped the subjects together for pooling based

upon their RNA integrity [23,24]. We divided each diagnostic

group into three pools, reflecting the best, intermediate, and lowest

RNA quality (Table 2). Groups to be compared were hybridised to

arrays from the same lot.

The RNA was reverse transcribed and labelled with 32P as per

the manufacturer’s instructions with minor modifications: in a

total reaction volume of 20 ml there was a mixture of 2 ml 56
reaction buffer, 2 ml 106 deoxyribonucleotide triphosphate

(dNTP) mix, 3.5 ml of fresh [a-32P]dATP (10 mCi/ ml), 1 ml

100 mM DTT, 2 ml Powerscript Moloney murine leukaemia virus

enzyme (MMLV), 5.5 ml of 5 or 10 mg of RNA, 2 ml 106 CDS

primers. A master mix (buffer, dNTPs, 32P, DTT) was prepared at

room temperature. The RNA/106CDS primer mix was heated

at 70uC for 2 mins, then 50uC for 2 mins. This was added to the

master mix and MMLV and incubated at 50uC for 40 mins, with

the reaction ended with 2 ml termination mix.

Probes were diluted to 200 ml total volume with the included

buffer NT2 and added to the NucleoSpin Extraction Spin

Column, and centrifuged for 1 min. Three times 400 ml of buffer

NT3 was added to the column and it was spun for 1 min. 100 ml of

buffer NE was then added and the column soaked for 2 mins. The

probe was eluted by centrifuging for 1 min. The radioactivity was

Table 1. Demographics of Stanley Neuropathology Consortium subjects.

Control (con) Schizophrenia (scz)d Bipolar disorder (bip)e Major depression (dep)

Subjects 15 15 15 15

Age (years) 48.1 (10.6) 44.5 (13.1) 42.3 (11.7) 46.5 (9.3)

Sex (M, F) 9, 6 9, 6 9, 6 9, 6

Brain pH 6.27 (0.24) 6.18 (0.24) 6.19 (0.23) 6.18 (0.22)

PMI (hours)a 23.7 (9.9) 33.7 (14.6) 32.5 (16.1) 27.5 (10.7)

Freezer storage (months)b 92.7 (7.5) 101.8 (7.8) 101.9 (5.6) 105.8 (9.7)

Hemisphere (R, L) 7, 8 6, 9 8, 7 6, 9

Suicides 0 4 9 7

Onset of illness (years) - 23.2 (8.0) 21.5 (8.3) 33.9 (13.3)

Duration of illness (y) - 21.8 (11.4) 21.4 (9.2) 12.7 (11.1)

Lifetime antipsychoticsc 0 52267 (62062) 20827 (24016) 0

Antipsychotics ever 0 14 12 0

Antidepressants ever 0 5 8 10

Mood stabilisers ever 0 0 10 2

Fresh brain weight (g) 1501 (164) 1472 (108) 1441 (172) 1458 (147)

Substance abuse history (1–3 scale)d 1.13 (13,2,0) 1.67 (8,4,3) 2.00 (4,7,4) 1.53 (10,2,3)

Alcohol use history (1–3 scale)e 1.27 (11,4,0) 1.69 (7,3,3) 2.08 (4,3,5) 1.64 (9,1,4)

Mean (SD) where appropriate.
aDiffers between groups (ANOVA P = 0.147, planned contrasts scz.con P = 0.043).
bDiffers between groups (ANOVA P = 0.003, planned contrasts scz.con P = 0.002 and bip.con P = 0.002).
cFluphenazine equivalents (mg), d. 4 paranoid, 1 disorganised, 10 undifferentiated, e. 11 with psychotic features.
d1 = none; 2 = moderate; 3 = severe. Differs between groups (ANOVA P = 0.016, planned contrasts bip.con, P = 0.010). The number of subjects in each category is shown
in brackets.
e1 = low; 2 = moderate; 3 = high. Known for 54 subjects. The number of subjects in each category is shown in brackets.
doi:10.1371/journal.pone.0038211.t001
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counted on a liquid scintillation counter. Incorporation of 32P was

acceptable for the best and medium quality RNA samples but very

poor for the worst quality RNA samples, confirming their

degradation.

For hybridization, 1 mg of heat denatured sheared salmon

testes DNA was added to 10 ml of BD ExpressHyb at 68uC and

the array pre-hybridized for 30 mins with continuous agitation at

68uC. Cot-1 DNA was added to the probe pool at a concentration

of 5% and the mixture incubated for 2 mins at 95–100uC for

2 mins. 5–10 million counts of probe were then added to the pre-

hybridization solution and the arrays hybridized for 18 hrs. Arrays

were then washed 4630 mins at 68uC in Wash Solution 1

(26SSC, 1% SDS) and 1630 mins in Wash Solution 2 (0.16SSC,

0.5% SDS), before a final rinse at room temperature in 26 SSC

and then water.

Arrays were apposed to X-ray film (Biomax MS; Kodak, USA)

with an intensifying screen overnight, for 5 days and for 2 weeks,

at 270uC.

Array Analysis
The array films at different exposures were scanned (16bit

greyscale, 200 dpi) on a Microtek ScanMaker 5 with a transpar-

ency adapter and analysed using Atlas Image 2.7 (BD Biosciences

Clontech). All gene spots were inspected for signal bleed,

saturation, marks on the film or membrane, and for intensity

differences between the duplicate spots. The intensity threshold for

detection was set at twice background for the best quality RNA

arrays, and 1.5 times background for the medium quality RNA

arrays. The worst quality RNA arrays were not analysed due to

very low hybridization signals. Intensities were averaged across the

duplicate spots and corrected for background signal.

Two different normalisation strategies were used: normalisation

by the global sum of intensities on the array, and by the expression

of the three least variable housekeeping genes on the array.

Normalisation to the global sum assumes that the overall

expression between groups is the same, and is likely to be a fairly

conservative approach to detecting differentially expressed genes

when enough genes are detected. The least variable housekeeping

genes are determined by a stepwise process with the assumption

that they will represent a fairly constant proportion of transcripts

between samples. The log-ratio of each (non-saturated) house-

keeping gene to every other housekeeping gene is taken, and the

standard deviation of this value for each gene is taken between the

arrays. The mean of the log-ratios with every other gene is the

measure of variability for a gene. The gene with the highest value

is eliminated from the comparison and the log-ratios between the

remaining genes recalculated. This continues in a stepwise fashion

until three genes are left. The arithmetic mean of these three genes

was used to normalise the array. We implemented both

normalization methods using the associated software package

Atlas Image 2.7.

The criteria we used to identify transcripts differentially

expressed in schizophrenia and to select for subsequent RT-

PCR analysis were that the ratio of background corrected signal

intensity compared to controls was greater than 1.62 (up or down)

for both the best and medium quality pooled mRNA samples and

this was in the same direction in both pools. All genes thus

identified were re-checked to ensure that the differences were not

due to film saturation or other artefacts.

RT-PCR
Gene expression was measured by semi-quantitative reverse-

transcriptase polymerase chain reaction (RT-PCR) [25,26] with

target mRNA levels normalised to the geometric mean of three

housekeeping genes (porphobilinogen deaminase, PBGD; glycer-

aldehyde 3-phosphate dehydrogenase, GAPDH; ribosomal 18S,

Table 2. Demographic details of the three groups of the subjects pooled for the arrays.

Control Schizophrenia Bipolar Depression

A. Best Quality RNA Pools RNA Quality (28s/18s) 1.07 (.10) 1.00 (.12) .97 (.07) 1.08 (.11)

Age (years) 40.2 (8.8) 46.0 (14.0) 50.6 (9.2) 46.2 (13.1)

Sex (M, F) 2, 3 4, 1 3, 2 3, 2

Brain pH 6.32 (.24) 6.10 (.22) 6.30 (.19) 6.24 (.18)

PMI (hours) 25.8 (11.1) 31.0 (18.7) 21.0 (18.8) 19.2 (10.3)

Freezer storage (months) 94.8 (9.8) 104.6 (6.8) 100.8 (5.6) 95.6 (8.0)

B. Medium Quality RNA Pools RNA Quality (28s/18s)a .92 (.02) .82 (.03) .84 (.03) .86 (.05)

Age (years) 54.4 (9.5) 44.4 (14.9) 42.6 (9.3) 47.0 (9.7)

Sex (M, F) 4, 1 3, 2 2, 3 3, 2

Brain pH 6.32 (.24) 6.34 (.29) 6.16 (.22) 6.20 (.24)

PMI (hours)b 19.4 (18.6) 36.6 (9.0) 30.6 (7.9) 35.8 (10.7)

Freezer storage (months) 91.0 (6.0) 100.6 (5.1) 100.2 (17.3) 98.2 (12.3)

C. Worst Quality RNA Pools RNA Quality (28s/18s) .72 (.10) .63 (.11) .52 (.01) .59 (.11)

Age (years) 49.6 (10.0) 43.2 (13.3) 33.8 (11.5) 46.4 (6.2)

Sex (M, F) 3, 2 2, 3 4, 1 3, 2

Brain pH 6.16 (.26) 6.04 (.18) 6.10 (.28) 6.10 (.22)

PMI (hours) 26.0 (10.7) 33.4 (17.2) 39.0 (12.4) 27.4 (3.3)

Freezer storage (months) 92.2 (7.7) 100.2 (11.1) 104.8 (3.4) 93.6 (9.9)

Values are mean (S.D.).
aDiffers between groups (ANOVA p = .002; planned contrasts scz,con p,.0005, bip,con p = .002, dep,con p = .010).
bDiffers between groups (ANOVA p = .136; planned contrasts scz.con p = .040, dep.con p = .040).
doi:10.1371/journal.pone.0038211.t002
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r18s) amplified in separate reactions on the same reverse-

transcribed template [27,28].

5 mg of RNA per subject was treated with RQ1 RNase-Free

DNase (Promega, Southampton, UK) and reverse transcribed with

Moloney murine leukaemia virus (mmLV) enzyme (Promega).

All primers were obtained from Eurogentec (Southampton,

UK). Optimum conditions, including the linear region of

amplification, were determined for each primer. Most primers

used three-step PCR reactions consisting of an initial denaturing

step (5 mins at 94uC) then a number of cycles (determined for each

primer) of three phases: denaturing (94uC for 45 s), annealing

(temperature determined for each primer, 1 min unless otherwise

indicated) and extension (72uC for 1 min). These cycles were

followed by a final extension step (72uC for 3 mins). Reactions

using a quick two-step PCR protocol consisted of denaturing

(94uC for 1 min) followed by a number of cycles of denaturing

(94uC for 30 s) and combined annealing and extension phases

(1 min). Primer sequences and the details of amplification are

given in Table S1.

PCR reactions were carried out using puReTaq Ready-To-Go

PCR Beads (Amersham Biosciences, Little Chalfont, UK). All

primer products were confirmed by sequencing, and a subset were

also confirmed by restriction enzyme digest. PCR products were

fractionated with agarose gels and ethidium bromide and semi-

quantitatively measured from the UV optical density of bands

using an Alphaimager 3400 gel imager (Genetic Research

Instrumentation, Braintree, UK).

All statistical tests were two-tailed and carried out at an

uncorrected alpha of 5%. The default analysis was analysis of

variance (ANOVA) with planned comparisons of the control

subjects versus the three other diagnostic groups. Shapiro-Wilk

and Levene’s tests (for normality and homogeneity of variance

respectively) were carried out on the dependent variables at

a= 0.05. Šidák tests were performed for post-hoc contrasts. If

normality or homogeneity of variance were violated the variable

was log-transformed and re-tested. If the log-transform failed to

correct the distribution a Kruskal-Wallis (KW) non-parametric

ANOVA was used. For two-sample comparisons, the t-test or

Wilcoxon-Mann-Whitney (WMW) test was used as appropriate.

We also inspected for correlations between each normalised

mRNA and potential confounding variables (28s/18s ribosomal

ratio, age, pH, post mortem interval, and freezer storage time).

Any variable showing a significant Pearson (or Spearman where

appropriate) correlation at a= 0.05 (and checked visually) was

included in an ANCOVA. In secondary analyses, further

correlations and contrasts were assessed for other demographic

variables including medication history, alcohol and substance use,

brain hemisphere, gender, onset and duration of illness, family

history of psychiatric illness, and suicide.

Results

Results from the pooled arrays
We identified 157 transcripts as being above our threshold for

reliable detection on both the high and medium quality pooled

RNA arrays. As noted, the low quality arrays were not analysed

due to poor 32P incorporation and low hybridization signals.

Five genes met our criteria for being differentially expressed in

schizophrenia compared to the control subjects. All were

decreased in the disorder. Four of the transcripts were significant

both by global sum normalization and housekeeping gene

normalization (myelin-oligodendrocyte glycoprotein [MOG]);

thymosin b-10 [TB10, TMSB10]; b-actin [ACTB]); superior

cervical ganglion-10 [SCG10; STMN2]). The fifth, myelin basic

protein [MBP] was significantly altered on the high quality array

using global sum normalization, and on the medium quality array

by housekeeping gene normalization. We then examined these five

transcripts in the pooled RNA from subjects with bipolar disorder

and with major depression. Relative to the healthy controls, SCG-

10 and TB10 mRNAs were decreased in bipolar disorder, and

ACTB decreased in major depression. These five transcripts,

together with the three reference genes, were taken forward for

analysis by RT-PCR.

Primary analyses of RT-PCR data
All sixty subjects (Table 1) were included in the RT-PCRs. The

primary analyses for the normalised expression of each target

transcript are summarised in Table 3, and positive findings

illustrated in Figure 1. None of the reference transcripts, nor the

geometric mean thereof, differed between diagnostic groups.

MBP expression (Table 3; Figure 1A) was reduced in

schizophrenia (ANOVA P = 0.004; planned contrast schizophre-

nia,controls, P = 0.006). Post hoc testing showed that MBP

mRNA in schizophrenia was reduced compared to major

depression (Šidák P = 0.003) but not to bipolar disorder (Šidák

P = 0.195). Tkachev at al [29] found that reductions in MBP

expression in schizophrenia were specific for transcripts containing

exon 2, so we used a second set of MBP primers bridging exons 1

and 3 and found no significant differences in MBP mRNA (all

P.0.25). Therefore, the reduction in MBP expression in

schizophrenia was specific for transcripts containing exon 2.

ACTB expression (Table 3; Figure 1B) was reduced in

schizophrenia (ANOVA P = 0.016; planned contrast scz,con

P = 0.005) and bipolar disorder (planned contrast bip,con

P = 0.008) compared to controls. Post-hoc tests did not reveal

any significant differences between the diagnostic groups (Šidák all

P.0.1). Merging the bipolar disorder and major depression

subjects also shows a significant reduction in the combined mood

disorders group compared to controls (ANOVA P = 0.012;

planned contrast mood,con P = 0.017).

TB10 expression (Table 3; Figure 1C) was reduced in

schizophrenia (ANOVA P = 0.045; planned contrast scz,con

P = 0.018) and bipolar disorder (planned contrast bip,con

P = 0.014) compared to controls. Post-hoc tests did not reveal

any further differences (Šidák, all P.0.1). Combining the bipolar

disorder and major depression subjects also shows a reduction

compared to controls (ANOVA P = 0.042; planned contrast

mood,con P = 0.035).

MOG and SCG10 mRNAs showed no differences between

cases and controls by RT-PCR (Table 3; all P.0.1).

Correlations and secondary analyses
ACTB mRNA was affected by alcohol and substance use. One-

way ANOVA revealed a main effect of alcohol use using the three

point scale (Table 1; P = 0.038), with ACTB mRNA being

decreased in the medium (P = 0.051) and highest (P = 0.018) use

groups compared to the lowest use group. Inclusion of alcohol use

in the main ANOVA rendered the diagnosis effect a trend

(P = 0.07) with the planned contrasts remaining significant for

scz,con (P = 0.012) and as a trend for bip,con (P = 0.054). Thus,

alcohol use and a diagnosis of schizophrenia were both associated

with decreased ACTB mRNA. Classifying subjects by their history

of substance abuse revealed a significant reduction in ACTB

expression (P = 0.028), but including substance abuse in the main

ANOVA showed no significant effect due to substance abuse

(P.0.1) while the reduced ACTB mRNA in schizophrenia

remained significant (planned contrast schizophrenia,controls,

P = 0.031) with a trend for a reduction in bipolar subjects

Visual Cortex Gene Expression in Schizophrenia

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38211



(P = 0.095) suggesting that the effect of substance abuse on ACTB

mRNA is driven primarily by confounding with psychiatric

diagnosis. There were no other significant effects of alcohol use,

or of substance misuse, on the mRNAs.

Brain hemisphere, sex, and suicide showed no significant effects,

nor interactions with diagnosis, on expression of any of the

mRNAs. The normalised mRNAs showed very few correlations

with continuous demographic and other variables. The main

exceptions were that the ribosomal ratio (a measure of RNA

integrity) correlated with normalised SCG10 mRNA (Spearman

rs = 0.319, P = 0.013), and MOG mRNA (rs = 0.325, P = 0.011),

and age correlated inversely with MOG mRNA (Spearman

rs = 20.312, P = 0.015). Inclusion of the respective variable as a

covariate did not significantly affect the result of the primary

analyses.

With regard to disease-associated variables, in the schizophrenia

group, TB10 mRNA correlated negatively with age of onset of

illness (r = 20.555, P = 0.032) and positively with lifetime antipsy-

chotic intake (Figure 1D; r = 20.624, P = 0.013); the latter also

correlated with TB10 mRNA when the bipolar disorder subjects

who had taken antipsychotics were included (r = 20.429,

Figure 1. Relative abundance of selected mRNAs in the visual cortex in control subjects and subjects with schizophrenia, bipolar
disorder, or major depression. A. Myelin basic protein (MBP) mRNA. B: b-actin (ACTB) mRNA. C: Thymosin b-10 (TB10) mRNA. D: Correlation
between TB10 mRNA and antipsychotic drug exposure in patients with schizophrenia (squares) and bipolar disorder (triangles). Values are normalised
to the geometric mean of the three housekeeping genes. ** P,0.01, * P,0.05. See also Table 3.
doi:10.1371/journal.pone.0038211.g001

Table 3. Relative abundance of mRNAs by RT-PCR, normalised to the geometric mean of the three housekeeping genes.

Con (n = 15) Scz (n = 15) Bip (n = 15) Dep (n = 15)

Gene ANOVA P-Value Mean (SD) Mean (SD) P-Value Mean (SD) P-Value Mean (SD) P-Value

MBP 0.004** 0.597 (0.187) 0.444 (0.231) 0.006** 0.553 (0.197) 0.502 0.657 (0.160) 0.368

MBP (DE 2) 0.2581 0.676 (0.221) 0.619 (0.305) 0.1742 0.556 (0.128) 0.0793 0.611 (0.148) 0.3463

ACTB 0.016* 0.443 (0.125) 0.332 (0.151) 0.005** 0.320 (0.081) 0.008** 0.373 (0.101) 0.137

TB10 0.045* 0.836 (0.352) 0.628 (0.167) 0.018* 0.621 (0.178) 0.014* 0.703 (0.148) 0.230

SCG10 0.7031 1.05 (0.212) 1.12 (0.200) 0.4612 1.07 (0.248) 0.5672 1.09 (0.288) 0.3052

MOG 0.8811 1.58 (0.162) 1.48 (0.263) 0.2493 1.57 (0.296) 0.9022 1.53 (0.208) 0.7752

P-values for individual psychiatric groups are comparisons with the control group.
1Kruskal-Wallis ANOVA.
2Wilcoxon-Mann-Whitney test.
3t-test.
**P,0.01,
*P,0.05.
doi:10.1371/journal.pone.0038211.t003
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P = 0.029, n = 26). No other correlations involving these variables,

nor with duration of illness, were observed.

Discussion

To investigate gene expression in primary visual cortex in

schizophrenia, we used an initial array screen of pooled RNA,

followed by RT-PCR of transcripts thereby identified as differen-

tially expressed. RT-PCR confirmed reductions of MBP, ACTB

and TB10, but not MOG or SCG10, in schizophrenia. ACTB and

TB10 were also decreased in bipolar disorder.

MBP is an abundant component of the oligodendrocyte myelin

membrane, alternatively spliced from the Golli-MBP gene [30,31].

MBP is critical for myelin membrane biogenesis and for regulating

entry of other proteins into the membrane sheets [32]. Microarray

studies of schizophrenia and bipolar disorder have frequently

implicated myelin-related genes including MBP, and MOG

[11,12,29,33,34]. Together with evidence for reductions in

oligodendrocyte number, these data have been major contributors

to the hypothesis that oligodendrocyte dysfunction is important in

pathogenesis [35,36]. However, most prior studies were in frontal

cortex, and to our knowledge the present data are the first to

suggest that a similar process might occur in occipital cortex. Our

study confirmed the specificity of MBP mRNA changes to

transcripts containing exon 2 [29]. The basis for this isoform

selectivity, and the functionality of exon 2-containing MBP

variants are unknown, although it is of interest that this variant

is selectively regulated by the Src-protein tyrosine kinase member

Fyn [37], a key player in oligodendrocyte maturation and

myelination [38].

ACTB (b-actin) serves a structural and motile role in all cell

lineages, with actin polymerisation affecting many processes

including axonal growth [39,40], oligodendrocyte myelination

[41] and membrane transport [42]. Actin polymerisation is

intimately involved in synaptic plasticity and development of

dendritic spines [43–47] and it is preferentially found there

[47,48], as well as serving a structural role in other parts of the

synaptic complex [49] particularly in excitatory synapses [50].

ACTB also has a range of other roles related to the cytoskeleton.

Given its pleiotropic nature, reduction of ACTB in schizophrenia

may have a range of causes and consequences. For example,

expression of other actin-related or cytoskeletal proteins has been

implicated in schizophrenia and bipolar disorder [33,51–53], and

several schizophrenia susceptibility genes interact with actin and

the cytoskeleton, including DISC1 [54], calcineurin [55], Akt1

[56] and dysbindin [57]. Or, the reduction in ACTB mRNA may

be a correlate of differences in cellular or dendritic morphology

and cytoarchitecture [1–3,13,14], which may itself be in part

genetically influenced [58,59].

ACTB is often used as a normalizing, or housekeeping, gene.

Our finding that it is decreased in visual cortex in schizophrenia

and bipolar disorder indicates that caution is required in this

respect, notwithstanding negative findings in two prior studies of

schizophrenia in this region [18,60] and the equivocal [23] or

negative results [18,24,61,62] in other cortical regions. The effect

of alcohol and substance use on ACTB expression suggests that

this factor should also be examined if ACTB is to be used as a

housekeeping gene in human brain.

Thymosin b-10 is a small polypeptide, implicated primarily in

cancer biology, including motility, apoptosis, and angiogenesis,

and in inflammation [63,64]. It is expressed in neurons and in

oligodendrocytes [65,66], and is abundant in fetal brain [67,68].

Its specific neural functions are unclear, but it is notable that its

primary role is to sequester actin, by binding to actin monomers

and regulating actin polymerisation [64]. As such, the decreases in

TB10 and ACTB may be related, potentially in an antagonistic

way. That is, reduced b-actin levels would result in reduced

globular-actin (G-actin) and a consequent reduction in the

polymerisation of filamentous-actin (F-actin); reduced TB10 would

result in less G-actin being sequestered, and consequently promote

F-actin formation. Therefore, the reduction in TB10 expression

could be compensatory for reductions in b-actin, or vice versa.

Further studies are needed to tease apart the functional interplay

between ACTB and TB10 to clarify the interpretation of the

present findings. Intriguingly, MBP also binds to actin [69] and

affects actin polymerization [70]. Hence one may speculate that

the reductions in ACTB, TB10 and MBP expression may all

reflect a common process, or convergent functional sequelae.

Our study had several limitations. First, the arrays had very

limited coverage by current microarray standards (with only 157

transcripts reliably detected) so many transcripts could be altered

in schizophrenia and be undetected here, including other myelin

or cytoskeletal transcripts. Our finding of five altered transcripts

(,3% of total) is comparable to the proportion affected in

contemporary microarray studies of psychosis, Second, we did not

confirm whether changes in abundance were seen in the encoded

proteins. Third, although we inspected for potential confounding

variables – and controlled for them statistically where appropriate

– we cannot rule out such factors entirely.

In summary, we confirm that the visual cortex is not ‘spared’ by

the molecular neuropathology of schizophrenia, in that the

expression of several genes is altered. Our results extend the list

of affected transcripts therein to include myelin basic protein and

two b-actin-related genes. Overall, the emerging picture is that all

areas of neocortex surveyed thus far in schizophrenia show, to at

least some extent, evidence of involvement. One may also infer

that the neurodevelopmental or other processes which underlie the

changes also affect processes common to the neocortex, in addition

to others which may be distinctive to specific cortical areas,

circuits, or cell populations. Finally, the finding that two of the

transcripts were changed similarly in bipolar disorder as in

schizophrenia is consistent with the overlapping gene expression

profiles between these two disorders seen in other regions [71,72],

and provides the first evidence to our knowledge that the

molecular neuropathology of bipolar disorder [73,74] may likewise

involve the occipital cortex.
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