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1  | INTRODUC TION

In December 2019, a novel coronavirus-induced pneumonia called 
novel coronavirus disease 2019 (COVID-19) first appeared in Wuhan, 
China. Due to the spread of COVID-19, more than 200 countries 
around the world have been impacted. As of the end of September 
2020, there have been more than 20 million confirmed cases of 
COVID-19, and over 900,000 patients have died from the disease.1 
Based on epidemiological analyses, COVID-19 patients suffer from 
severe multiple organ injuries, including the lungs, kidneys and liver, 

which are also closely related to adverse outcome in cardiovascular 
diseases (CVDs).2-5 Due to the high homology between severe acute 
respiratory syndrome coronavirus (SARS-CoV) and severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), several studies 
have demonstrated the mechanism by which these viruses invade 
the human body. SARS-CoV-2 invades cells by relying on the spike 
protein of its surface, which is similar to SARS-CoV. The S1 subunit 
of the spike protein can bind to angiotensin-converting enzyme 2 
(ACE2) of the cell membrane and form a complex, which allows the 
virus to enter the cell by endocytosis and thereby induce cellular 
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Abstract
SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) 
pandemic, attacks multiple organs of the human body by binding to angiotensin-
converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already 
been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but 
also an important endogenous antagonist of the renin-angiotensin system (RAS). A 
large number of studies have shown that ACE2 can reverse myocardial injury in vari-
ous cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, 
anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming 
growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other 
major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role 
in the cardiovascular system to combat the negative effects of the ACE/angiotensin 
II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 
in cardiac protection remains unclear. Some approaches for enhancing ACE2 expres-
sion in CVDs have been suggested, which may provide targets for the development 
of novel clinical therapies. In this review, we aimed to identify and summarize the role 
of ACE2 in CVDs.
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damage (Figure 1).6,7 Because of the distribution and the function of 
ACE2, it must play a decisive role in COVID-19 patients with multiple 
organ damage.

ACE2 was first discovered in 2000 by Donoghue and 
Tipnis.8,9 The human ACE2 gene is 40 kb long, located on chro-
mosome Xp22 and composed of 18 exons.8,9 The protein of 
human ACE2, which is a type I integral membrane glycoprotein 
with an N-terminal signal peptide region, a hydrophobic region 
near the C terminus and a single active site catalytic region, is 
approximately 120 kD and consists of 805 amino acids.9 ACE2 
has 42% homology with the amino acid sequence of ACE and 
is widely expressed in the body, including the heart, vascula-
ture, kidneys, testes, gastrointestinal tract, brain and lungs.10-12 
Moreover, ACE2 is not only a plasma membrane-bound ectoen-
zyme; its soluble active form exists in plasma and urine, and it 
can be detected via routine blood tests.13

In the heart, ACE2 is mainly expressed in cardiomyocytes, 
cardiac fibroblasts and coronary artery endothelial cells and also 
serves as an important endogenous antagonist of the renin-angio-
tensin system (RAS), which mainly converts angiotensin II (Ang II) 
to angiotensin-(1-7) [Ang-(1-7)] and metabolizes angiotensin I (Ang 
I) to generate angiotensin-(1-9) [Ang-(1-9)]. Ang-(1-7) and Ang-(1-9) 
have been proven to have significant beneficial effects on the car-
diovascular system.9,14 Ang-(1-7) generally binds to the Mas recep-
tor (MasR), a G protein-coupled receptor discovered in 1986, and 
further regulates downstream molecular pathways, including the 
mitogen-activated protein kinase (MAPK), protein kinase B (AKT) 
and oxidative stress-related pathways.15-18 ACE2 restrains Ang II ac-
cumulation and down-regulates the angiotensin II type 1 receptor 
(AT1R), such that the ACE2/Ang-(1-7)/MasR axis has the opposite 
effect of the ACE/Ang II/AT1R axis and promotes anticardiovascular 
remodelling and mediate vasodilation.19 In addition, angiotensin II 
type 2 receptor (AT2R), one of the core receptors of the angiotensin 
family, is also activated by Ang-(1-7).20 ACE2/Ang-(1-7)/AT2R axis 

has the same beneficial effects as ACE2/Ang-(1-7)/MasR axis; how-
ever, the researches about the axis are limited.21

Given the existing knowledge of ACE2 distribution and function 
in the heart, we hypothesized that ACE2 plays a crucial role in the 
progression of SARS-CoV-2-induced myocardial injury. The present 
review aims to identify and summarize the functions and mecha-
nisms of ACE2 in clinical and animal models of major CVDs.

2  | COVID -19,  ACE2 AND C VDS

Due to the high expression of ACE2 in the heart and the mecha-
nism of SARS-CoV-2 transfection, we speculate that the poor 
prognosis of COVID-19 patients may be correlated with heart 
injury. At present, there are two major hypotheses about SARS-
CoV-2-mediated damage to the heart. On the one hand, SARS-
CoV-2 directly causes heart injury in patients without any CVDs; 
on the other hand, SARS-CoV-2 can also contribute to the nega-
tive prognoses of patients with heart diseases.22,23 In addition, 
some severe COVID-19 patients display higher levels of cardiac 
troponin I (cTnI), N-terminal pro-B-type natriuretic peptide (NT-
proBNP) and creatine kinase-MB (CK-MB), which collectively 
demonstrates that SARS-CoV-2 aggravates heart injury.24-27 A 
meta-analysis of cTnI in COVID-19 patients including four stud-
ies exhibited that the standardized mean difference (SMD) of cTnI 
was 25.6 ng/L.26 In addition, a multi-centre cohort study involv-
ing 191 patients infected with SARS-CoV-2 showed that of the 
54 deceased patients, 48% had hypertension, 24% had coronary 
heart disease, and approximately 23% had heart failure (HF).28 
Based on the clinical phenomena of ACE2 and heart injury, several 
studies have suggested that SARS-CoV-2 binds to ACE2 to enter 
cells and increases the expression levels of disintegrin and metal-
loproteinase 17 (ADAM17), which, in turn, induce ACE2 shedding. 
Thus, the function of ACE2 is compromised and simultaneously 

F I G U R E  1   Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) 
binds to angiotensin-converting enzyme 
2 (ACE2) and induces ACE2 shedding to 
produce soluble ACE2 in serum, which 
triggers an angiotensin II (Ang II)-mediated 
inflammation response
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accompanied by increasing ACE and Ang II expression levels. A 
higher level of Ang II not only has severe negative effects on the 
heart, but also increases cytokine release, including interleukin 
(IL)-6 and IL-7, which activate the MAPK pathway and thereby 
increase ADAM17 expression to form a positive feedback loop. 
Thus, ACE2 appears to be a major regulating factor in COVID-19 
patients.29-31 In recent years, an increasing number of studies have 
confirmed that neither ACE inhibitors (ACEIs) nor Ang II receptor 
blockers (ARBs) are associated with high mortality, which suggests 
that ACEIs and ARBs cannot exacerbate the prognoses of COVID-
19 patients. Meanwhile, there has been no evidence to support 
that evaluating ACE2 expression can improve heart injury during 
SARS-CoV-2 infection.32-34 In addition, although some drugs, like 
remdesivir, lopinavir and dexamethasone, have been identified to 
improve COVID-19 patients’ symptoms and attenuate inflamma-
tory response, there are no specific drugs invented to treat cardio-
vascular injury caused by SARS-CoV-2. 35-37

Based on the aforementioned information, we believe that the 
most powerful approach of addressing SARS-CoV-2-induced heart 
injury is to clarify the upstream and downstream molecular path-
ways of ACE2 in CVDs and find effective strategies to protect the 
heart.

3  | ACE2 AND MYOC ARDIAL INFARC TION 
(MI)

MI has a high incidence among patients with CVDs, and in the United 
States, nearly 0.8 million people are reported to suffer from MI each 
year.38 In recent years, multiple studies have shown that the RAS, 
especially ACE2, is involved in MI-induced myocardial remodelling.39 
In the early stage of MI, both ACE2 and ACE levels are remarkably 
increased in the heart, whereas in the late stage, ACE2 expression 
declines and is accompanied by HF, indicating the role of ACE2 
against the RAS.40,41 Similarly, clinical research has found that the 
serum ACE2 level of MI patients is significantly higher than that of 
healthy individuals and results in a negative prognosis.42,43 Further, 
the results indicate that the serum level of ACE2 may be a candi-
date for identifying the degree of myocardial injury. Inflammatory 
infiltration and myocardial fibrosis are the two major factors that 
induce cardiac structure remodelling during MI. Following develop-
ments in basic research, ACE2 is now believed to be resistant to the 
negative effect of ACE on myocardial remodelling post-MI mainly 
depending on the ACE2/Ang-(1-7)/MasR axis. In MI, loss of the ACE2 
gene leads to ventricular remodelling, increased myocardial fibrosis, 
neutrophilic infiltration and superoxide production via up-regulation 
of matrix metalloproteinase (MMP) 2, MMP9, interferon-γ, IL-6 and 
chemokines as well as regulation of phosphorylation of the extra-
cellular regulated protein kinase (ERK) 1/2 and c-Jun N-terminal ki-
nase (JNK) 1/2 signalling pathways.44 In contrast, overexpression of 
ACE2 can reverse collagen deposition by inhibiting the transform-
ing growth factor-β (TGF-β) pathway with decreasing collagen Ⅰ and 
Ⅲ, which also reduces the expression levels of inflammation-related 

factors ACE and Ang Ⅱ.45-47 Diminazene (DIZE), an activator of ACE2, 
is also used in some studies to improve myocardial function follow-
ing MI. Chen et al illustrated that DIZE attenuated MI in rats via a 
novel signalling pathway mediated by ACE2/AT1R/MasR.48 Given 
these findings, ACE2 may also be a therapeutic target for MI; how-
ever, as no effective drugs can adequately evaluate ACE2 expression 
in the heart, the concrete molecular mechanisms underlying ACE2 
actions need to be further investigated.

4  | ACE2 AND HYPERTENSION

Hypertension is one of the most common CVDs that is character-
ized by vascular remodelling and endothelial injury and leads to 
severe prognosis. RAS is a participant in the development of the 
disease.49 It is known that the ACE/Ang Ⅱ/AT1R axis regulates the 
constriction of blood vessels, and most available drugs aim to block 
this pathway. The ACE2/Ang-(1-7)/MasR axis is a potential target 
for combating the negative effects of the ACE/Ang Ⅱ/AT1R axis on 
hypertension, and ACE2 plays a key role in this axis. ACE2 regu-
lates blood pressure under physiological conditions, and down-
regulation of ACE2 gene leads to significant increase in the blood 
pressure along with an excess accumulation of Ang Ⅱ.50 In addition, 
ACE2 is significantly decreased in spontaneously hypertensive rat 
(SHR) or Ang Ⅱ-induced hypertension models.51,52 Interestingly, 
ACE2 and Ang Ⅱ can regulate each other to maintain a balance. 
Ang Ⅱ up-regulates AT1R and increases ADAM17 expression, 
which causes ACE2 shedding and diminishes the protective impact 
of ACE2 in hypertension whereas Ang Ⅱ can be converted into 
Ang-(1-7) by ACE2 to inhibit its own negative effect.53,54 Rentzsch 
et al found that Ang-(1-7), which directly regulates blood pressure 
and improves endothelial function via activating the ACE2 gene, is 
the major downstream regulator of ACE2.55 However, aside from 
Ang-(1-7), the downstream mechanism of ACE2 in hypertension 
remains unclear. Several studies have determined that overexpres-
sion of ACE2 in hypertension increases AT2R and MasR expression 
and inhibits AT1R expression.56,57 Furthermore, they evaluated 
nitric oxide (NO) release and reported down-regulation of in-
flammation-related pathways mediated by IL-1 b, IL-6, TNF-a and 
NF-kB.56,57 Activation and modification of ACE2 are essential for 
development of hypertension. DIZE and fibroblast growth factor 
21 (FGF21) can up-regulate ACE2 expression to improve pulmo-
nary hypertension and decrease inflammation-induced endothelial 
cell injury.58,59 Zhang et al found that AMP-activated protein ki-
nase (AMPK) phosphorylated ACE2 Ser680 in endothelial cells can 
enhance the function of ACE2 depending on regulation of Ang-(1-
7) and nitric oxide synthase.60 From the aforementioned informa-
tion, it is clear that there is limited knowledge on known signalling 
pathways of ACE2, and hence, further studies are warranted to 
analyse the potential targets in hypertension. Recently, it has been 
found that ACE2 overexpression also protects against neurogenic 
hypertension via regulation of baroreflex and autonomic function 
in the central nervous system (CNS).61 Although the role of ACE2 
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in hypertension is clear, the underlying mechanism needs to be 
elucidated to identify the relevant downstream signalling path-
ways and clinical trials need to be designed to determine whether 
up-regulating the ACE2 level can lower blood pressure in patients.

5  | ACE2 AND ARRHY THMIA

Arrhythmia is myocardial disease that is caused by electro-
physiological dysfunction and is often associated with oxidative 
stress.62 The RAS has been proven to be involved in the develop-
ment of arrhythmia.63 As a significant protein in the RAS, ACE2 
exerts negative effects on arrhythmia during the early stage. In 
ACE2 transgenic hearts, the gap junction proteins connexin40 and 
connexin43 were significantly down-regulated, thus prolonging 
PR and QRS durations and potentially inducing conduction dis-
turbances and lethal ventricular arrhythmias.64 However, recent 
studies have shown that ACE2 may be an important protective 
factor in lethal arrhythmia. Overexpression of ACE2 in an atrial 
fibrillation model activated extracellular signal-regulated kinases 
and up-regulated MAPK levels, as well as induced a decrease in 
the level of MAPK phosphatase 1 (MKP-1).65 These findings re-
sulted from decreases in atrial fibrosis collagen protein mark-
ers and TGF-β, which may be one of the molecular mechanisms 
underlying the protective effect of ACE2 in atrial fibrillation.66 
In addition, strong evidence has shown that ACE2 agonist DIZE 
can reverse hyperglycaemia-induced cardiac electrical changes in 
ventricular repolarization, thereby shortening the QT and QTc in-
tervals on an electrocardiogram.67 Moreover, Ang-(1-7) is a crucial 
protein in the downstream regulation of ACE2 that also plays a 
role in antiarrhythmic effects via reducing action potential repo-
larization phases and decreasing the late sodium (Na+), L-type Ca2+ 
and Na+-Ca2+ exchanger currents, thereby further mediating the 
balance of intracellular Ca2+ and sarcoplasmic reticulum Ca2+.68,69 
Therefore, additional emphasis should be placed on the role of 
ACE2 in arrhythmia, and new strategies for clinical antiarrhythmic 
drugs should be developed.

6  | ACE2 AND DIABETES RELE VANT C VDS

Metabolic dysfunction is a major consequence of diabetes and in-
cludes oxidative stress, inflammation and multiple organ injuries in 
the later stage, especially to the heart. The specific pathogenesis is 
thought to be related to the RAS.70 Recent studies have shown that 
the ACE2/Ang-(1-7)/MasR axis plays a significant role in diabetes-
induced cardiomyopathy. The expression of ACE2 decreased in the 
myocardial tissue of diabetic rats; furthermore, it inhibited myocar-
dial collagen expression as well as promoted collagen degradation by 
regulating the TGF-β pathway and activating MMP2.71 Interestingly, 
ACE2 also exerts this role by regulating Ang-(1-7) and Ang-(1-9) be-
fore activating angiotensin II type 2 receptor (AT2R).72-74 From this 
point of view, TGF-β and MMP2 may be downstream targets of 

AT2R. Moreover, administration of Ang-(1-7) significantly reduced 
myocardial lipid accumulation by up-regulating the expression of 
myocardial triglyceride lipase, which occurred as a result of up-reg-
ulating the level of sirtuin-1 (SIRT1). The activation of SIRT1 further 
regulated transcriptional activity of FOXO1 via SIRT1-mediated 
deacetylation, which was proved as one of the potential protective 
targets on oxidative stress and inflammatory response.75-77 In addi-
tion, Ang-(1-7) can activate the expression of sarcoplasmic reticulum 
Ca2+-ATP enzyme to improve the left ventricular systolic dysfunction 
and right ventricular fibrosis caused by hyperglycaemia.73 Clinical in-
vestigations of drugs targeting the ACE2/Ang-(1-7)/MasR axis have 
proven that ARB drugs like azilsartan and statins like atorvastatin 
can delay the progression of diabetic cardiomyopathy by increasing 
the expression levels of ACE2 and Ang-(1-7) combined with ACEI or 
DIZE and neprilysin inhibition therapy to provide better heart pro-
tection.78-81 Finally, from our review, there is no evidence that ACE2 
has effect on regulating blood glucose to improve diabetes relevant 
CVDs. These data suggest that the ACE2/Ang-(1-7)/MasR axis may 
serve an important target for the treatment of diabetes-induced 
myocardial injury in the future.

7  | ACE2 AND OTHER C VDS-INDUCED HF

HF is a terminal stage of heart injury caused by various factors 
and characterized by systolic dysfunction. Besides of the above 
diseases, dilated cardiomyopathy, age-related myocardial damage 
and cardiac afterload pressure overload all can induce HF happen-
ing. No clinically effective treatment strategies or sensitive predic-
tive indicators exist to provide an early warning of the disease.82 
As ACE2 was discovered, an increasing number of studies have 
prioritized identifying a novel therapeutic breakthrough based 
on the ACE2 pathways. Some reports have focused on the serum 
level of ACE2 in HF patients, which revealed that serum ACE2 is 
increased in HF and indicated that ACE2 has the potential to be-
come a reliable marker with the same efficacy as BNP.83-85 The 
main function of ACE2 in HF is the degradation of Ang Ⅱ whereas 
Ang-(1-7) combats oxidative stress, fibrosis and inflammation. In a 
pressure-overload heart, a model for inducing dilated cardiomyo-
pathy, Bodiga et al and Patel et al reported that loss of the ACE2 
gene led to increased nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase activity and fibrosis, accompanied by up-
regulated NADPH oxidase 2 (NOX2), p47phox, MMP2 and MMP9. 
This in turn activated ERKs, signal transducers and activators of 
the transcription (STAT) and AKT pathways, thereby resulting in 
further cardiac dysfunction. However, these observations were 
significantly reversed by a supplemental Ang-(1-7) or AT1R block-
ade.86-88 In age-dependent cardiomyopathy, ACE2 deficiency not 
only exacerbates oxidative stress injury but also stimulates the re-
lease of inflammatory factors via activating the MAPK pathway.88 
As the absence of ACE2 causes severe myocardial damage, drugs 
that up-regulate ACE2 expression may have a positive effect on 
improving cardiac function. Wang et al utilized common clinical 
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Sartan drugs, including olmesartan, candesartan, telmisartan, lo-
sartan, valsartan and irbesartan, and found that only olmesartan 
and candesartan increased ACE2/Ang-(1-7)/MasR expression and 
resisted pressure overload-induced pathological changes in the 
heart with markedly declined ACE and AT1R expression as well 
as inhibited ERK phosphorylation.89 In clinical research, spirono-
lactone, a mineralocorticoid receptor blocker, significantly in-
hibited oxidative stress by lowering ACE activity and increasing 
ACE2 expression in the macrophages of congestive HF patients. 
Eplerenone also appeared to attenuate NADPH oxidation, lead-
ing to the same effect as spironolactone in macrophages treated 
with aldosterone.90 B38-CAP, discovered from Paenibacillus sp, 
has a structure similar to ACE2 and significantly improves pres-
sure overload-induced HF and cardiac hypertrophy.91 Notably, re-
combinant human ACE2 (rhACE2) is also widely used in basic and 
clinical research for converting Ang Ⅱ to Ang-(1-7) against dilated 
cardiomyopathy in HF patients. RhACE2 has also been observed 
to attenuate doxorubicin-induced cardiac dysfunction by protect-
ing cardiomyocyte autophagy.92,93 However, despite the increas-
ing number of studies that have focused on the therapeutic role 

of ACE2 for patients with HF, specific target drugs need to be 
developed.

8  | CONCLUSION

A significant amount of data has shown that ACE2 plays a cru-
cial role in countering the development and progression of CVDs. 
In addition, the ACE2/Ang-(1-7)/MasR axis can improve CVDs 
through vasodilation, antiventricular remodelling, anti-inflam-
matory, antioxidant and antimyocardial fibrosis effects. Studies 
on the other signalling pathways of ACE2 are scarce, and only a 
handful of classic pathways have been explored in CVDs. In hyper-
tension, the function of ACE2 is to vasodilate and reduces blood 
pressure primarily by antagonizing the ACE/Ang II/AT1R axis, 
which can also affect the NO signal pathway in the CNS. In ar-
rhythmias, ACE2 activity can reduce the occurrence of arrhythmic 
events and regulate calcium-iron discrepancies. In addition, the 
antidiabetic cardiomyopathy effect of ACE2 is closely related to its 
antifibrosis effect via regulation of the TGF-β signalling pathway. 

F I G U R E  2   A diagram depicting the method for up-regulating ACE2 expression and the downstream molecular mechanism of ACE2 in 
cardiovascular diseases (CVDs)
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Furthermore, ACE2 can reduce myocardial collagen deposition in-
duced by hyperglycaemia and activate MMP2. HF is the terminal 
state of cardiac dysfunction resulting from various factors, and 
up-regulating ACE2 can reverse HF by improving cardiac remodel-
ling, inhibiting oxidative stress and decreasing inflammation. The 
specific agonists of ACE2, DIZE and rhACE2 are recognized to 
have good efficacy in the treatment of CVDs (Figure 2).

Nowadays, the number of COVID-19 patients is raising rapidly, 
and the relevant drugs are limited. Moreover, vaccine develop-
ment such as inactivated virus, adenovirus-vectored investiga-
tional vaccine and mRNA-based vaccine, has been in clinical trial 
stage, but which needs further long-term clinical experiments. As 
the receptor for SARS-CoV-2, ACE2 has become a major concern 
in recent months, and related investigations have shown that it is 
significantly related to the virulence and severity of the virus. Due 
to its high expression in the heart tissue as well as clinical studies 
that have identified widespread myocardial injury in infected pa-
tients, understanding the pathophysiological role of ACE2 in the 
heart is of the utmost importance. As a result, ACE2 is regarded as 
a potential target for the treatment of COVID-19 infection. In the 
feature, we believe the best methods defending against cardiovas-
cular injury induced by SARS-CoV2 infection are to focus on vac-
cine development and medicines targeting ACE2. Thus, identifying 
mechanisms to inhibit the ACE2 binding site for SARS-CoV-2 with-
out harming its normal physiological function in the heart presents 
a new challenge for researchers in the midst of the current global 
pandemic.
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