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Abstract

The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogen-

esis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorti-

coid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal

formation as well, but much less is known about its sensitivity to chronic stressors. In this

study, we investigate this question in a commercial bird model: the broiler breeder chicken.

Commercial broiler breeders are food restricted during development to manipulate their

growth curve and to avoid negative health outcomes, including obesity and poor reproduc-

tive performance. Beyond knowing that these chickens are healthier than fully-fed birds and

that they have a high motivation to eat, little is known about how food restriction impacts the

animals’ physiology. Chickens were kept on a commercial food-restricted diet during the

first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks

7–12 of life. To test the hypothesis that chronic food restriction decreases the production of

new neurons (neurogenesis) in the hippocampal formation, the cell proliferation marker bro-

modeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in

blood plasma were elevated during food restriction, even though molecular markers of hypo-

thalamic-pituitary-adrenal axis activation did not differ between the treatments. The density

of new hippocampal neurons was significantly reduced in the food-restricted condition, as

compared to chickens fed ad libitum, similar to findings in rats at a similar developmental

stage. Food restriction did not affect hippocampal volume or the total number of neurons.

These findings indicate that in birds, like in mammals, reduction in hippocampal neurogen-

esis is associated with chronically elevated corticosterone levels, and therefore potentially

with chronic stress in general. This finding is consistent with the hypothesis that the re-

sponse to stressors in the avian hippocampal formation is homologous to that of the mam-

malian hippocampus.
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Introduction

Once thought to be restricted to early neural development, neurogenesis is now widely

accepted to occur in adult vertebrate brains, including in birds and mammals. In adult mam-

mals, new neurons are added to the dentate gyrus region of the hippocampus, and the olfac-

tory bulb [1–4]. Neurogenesis in birds occurs all over the telencephalon [5], and is widely

accepted to be an ongoing process across the life span [2]. Neurogenesis is a multistage process

in which new neurons are born (proliferation), move to specific brain regions (migration),

and then are incorporated into existing brain circuits through dendritic growth and forming

synapses (differentiation) [2]. The proliferation of new cells which will develop into neurons

occurs in the subventricular zone (neurons destined for the olfactory bulb) and the subgranu-

lar zone (in the dentate gyrus) in mammals [6]. In birds, proliferation of neuronal progenitors

happens in the ventricular zone [7, 8] in particular ‘hot spots’ in dorsal and ventral portions of

the lateral ventricle wall [9].

Stressors are challenges to an organism that create internal adverse effects. Stress is defined

as an actual or perceived threat to homeostasis; homeostasis is then re-established through

adaptive behavioural and physiological responses [10]. Stress can have profound effects on hip-

pocampal morphology, connectivity, and function [11, 12]. If stress is chronic, it can lead to

hippocampal atrophy. This is thought to result from long-term glucocorticoid dysregulation

[13]. Hippocampal volumetric reduction between 8%–19% is reliably reported in studies of

humans diagnosed with Major Depressive Disorder [14–17], and in rodents exposed to

chronic stress [15, 18].

Neurogenesis in the mammalian hippocampus is sensitive to the effects of stressors [11, 19,

20]. The stress-induced suppression of hippocampal neurogenesis is especially pronounced in

the ventral (also called temporal), and less in the dorsal (also called septal) hippocampus [21].

This is consistent with other evidence suggesting that the dorsal and ventral hippocampus

serve separate functions, with the ventral hippocampus being especially involved in the regula-

tion of the stress response [22]. In the mammalian hippocampus, chronic stress negatively

impacts neurogenesis [23, 24] via stimulation of glucocorticoid receptors [11, 12]. This effect is

mediated, at least in part, by altering the function of the hypothalamic-pituitary-adrenocortical

(HPA) axis and the mechanisms which support it [12, 19, 25–28]. Glucocorticoid hyperfunc-

tion can reduce adult hippocampal neurogenesis [19, 28], but glucocorticoid hypofunction is

also damaging: low doses of corticosterone (CORT) replacement post-adrenalectomy are

required in rats to avoid apoptotic loss of dentate gyrus neurons [29]. Increases in CORT

above baseline levels do not always suppress adult hippocampal neurogenesis, however. Under

some conditions, they can actually increase neurogenesis, suggesting that CORT impacts the

hippocampus in a complex and bidirectional manner [30]. Therefore, it would seem that

CORT release is not damaging in itself, but rather it is the conditions which stimulate CORT

release that seem to dictate whether the effects on the hippocampus will be restorative or

damaging.

The avian hippocampal formation (HF) is homologous to the mammalian structure, as evi-

denced by developmental patterns [31] and connectivity [32–34], although its cyto-architec-

ture is strikingly different [2, 35, 36]. Functionally, the avian HF is similar to its mammalian

equivalent, being involved in spatial memory and navigation [37–40]. Like the mammalian

hippocampus, the avian HF is also involved in the regulation of the HPA axis [41, 42]. It

expresses both glucocorticoid (GR) and mineralocorticoid (MR) receptors [43–47] and, like in

rats, increased CORT levels and/or stress lead to a down-regulation of MR receptors in the

avian HF [43, 44, 48]. As in mammals, avian hippocampal morphology and neurogenesis are

sensitive to environmental stressors. Captivity shrinks hippocampal volume in wild-caught
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songbirds [37, 49, 50], and a number of stressors have been shown to decrease adult hippocam-

pal neurogenesis in birds [51–53]. At present, there is no accepted subdivision of the avian HF

that is equivalent to the dorsal-ventral distinction in rodents. However, based on topological

arguments, it has recently been suggested that the rostral avian HF may be equivalent to the

dorsal hippocampus in rodents, and the avian caudal pole to the rodent ventral pole [42].

Caloric restriction is a potential stressor, and can affect hippocampal neurogenesis. Interest-

ingly, the effect of caloric restriction on hippocampal neurogenesis seems to depend on the

developmental stage of the animals and/or on the pattern of food availability. In adult rats and

mice fed ad libitum every other day (and completely food deprived on the alternate days), calo-

ric restriction leads to an increase [54–57], while in adolescent rats, fed 60% of ad libitum for 2

months, caloric restriction leads to a decrease in hippocampal neurogenesis [58]. To date,

nothing is known about the effects of food restriction on hippocampal neurogenesis in birds.

Our model system is that of commercial broiler breeder hens (Gallus gallus domesticus).
These birds are the parent stock of meat chickens produced for consumption. During rearing

to adulthood, it is common industrial practice to restrict the amount of the birds’ food to

33%–40% of what they would eat if provided with ad libitum food [59, 60]. This restriction

results in hunger, shown behaviourally by increased foraging [61] and stronger motivation to

overcome adverse stimuli to obtain food [62], and physiologically by the upregulation of

expression of orexigenic neuropeptide mRNAs in the hypothalamus [63]. However, food

restriction also avoids many of the serious negative health consequences experienced by broiler

chickens fed ad libitum including reduced fertility, double ovulation, lameness, heart failure,

thermal dysregulation and increased mortality due to skeletal and metabolic disease [64]. This

situation results in what has been called the Broiler Breeder Paradox [65, 66] and has been

highlighted as a welfare dilemma [60, 61, 67]. Despite having their food severely restricted,

broiler breeders gain weight, grow and are reproductively viable like non-broiler genotypes

[68].

The purpose of this study was therefore to determine the effect of chronic food restriction

on avian hippocampal neurogenesis in adolescent broiler breeder chickens, and to assess

whether such an effect is stronger in the rostral or caudal pole of the HF. In addition to mea-

suring hippocampal neurogenesis, we also looked for markers of activation of the HPA axis

and its consequences.

Materials and methods

Animals

Twenty-four female broiler breeder chickens (Ross 308 line) were housed in groups of three,

across eight replicated pens. They were maintained and fed according to the 2007 Aviagen

Ross 308 management manual for broiler breeders (http://en.aviagen.com/ross-308/). Briefly,

a starter (19% crude protein) and a grower diet (15% crude protein) with an energy density of

11.7 MJ/kg was fed from 0–4 and 4–12 weeks of age, respectively. In the standard commercial

protocol, these diets are available ad libitum from 0–1 weeks and thereafter stepwise to 44 g/

bird/day at 6 weeks of age and 58 g/bird/day by 12 weeks of age. Half the birds were kept on

this regimen for the 12-week duration of the experiment (Food-Restricted or FR; n = 12). The

other half were released from restriction when 6 weeks old and fed the same diet ad libitum
(AL; n = 12) until 12 weeks old. To summarize, AL birds were food restricted from 1 week to 6

weeks old, and fed ad libitum from 6 weeks to 12 weeks old, and FR birds were food restricted

from 1 week to 12 weeks old. Animals used in this study were the same subjects used by Dunn

et al. [63]], Experiment One (see that study for protocols detailing exact feeding, housing and

husbandry regimes). At 11 weeks of age, two bromodeoxyuridine (BrdU) injections were
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administered subcutaneously on two successive days: first at a dose of 100mg/kg (solution of

50mg/ml), and then 87.9mg/kg the next day.

Tissue collection

The experiment was performed under a UK Home Office Project Licence PPL 60/3964. Blood

samples were taken from the brachial vein in the afternoon of the three last days of the birds’

lives. Birds were taken out of the pen and into another room for blood sampling, after which

they were returned to the pen (except on the last day). Birds from the two treatments were

alternated. The restricted birds were fed in the morning, so that they were sampled after they

had fed, and long before they expected to be fed again. We report hormone titres from the last

sample, when birds had most habituated to the blood sampling procedure. Right after the last

sample, the birds were humanely killed (intravenous injection of 1–2 mL of Sodium Pentobar-

bital (200 mg/mL) into a brachial wing vein) as specified in Schedule 1 of the UK Animals (Sci-

entific Procedures) Act 1986. The animals were weighed and their tarsometatarsal length was

measured. The adrenal glands, spleen, pituitary gland, basal hypothalamus and right HF were

dissected immediately after death, weighed, frozen in liquid nitrogen, and stored at -80˚C until

RNA was extracted. The left hemisphere was fixed in a solution of 5% acrolein and phosphate

buffered saline (PBS) for one hour, then into a fresh solution of 5% acrolein and PBS for a sec-

ond hour, followed by a 30% sucrose solution until the tissue was saturated and sank. Hemi-

spheres were then embedded in OCT Tissue-Tek1, quickly frozen in a mix of 95% ethanol

and dry ice before being stored at -80˚C until the tissue was sectioned in preparation for

immunohistochemistry.

Immunohistochemistry

From the left hemisphere, 50 μm coronal sections were cut on a Microm HM560 cryostat into 0.1

M Phosphate Buffered Saline, 7.4 pH (PBS) before being stored in a cryoprotectant solution (20%

0.3M PBS, 30% Ethylene Glycol, 30% Glycerol, and 20% deionised water) at -20˚C. When ready

for processing, the tissue was stained first for BrdU as a marker of newly-generated cells and was

then counterstained with an antibody against the Elav-like neuronal-specific protein Hu [69].

BrdU Labelling. Every fourth section (200 μm apart) was removed from cryoprotectant

into 0.1 M PBS and then washed 3 x 5 min. Free-floating sections were incubated for 15 min in

0.001% NaBH4, followed by 3 x 2min washes in 0.1M PBS. To reduce endogenous peroxidase

activity, sections were incubated in 0.3% H2O2 for 10 minutes before again being washed

3 x 2min in 0.1M PBS. BrdU substitutes for thymidine during S-phase of DNA replication.

To access this in the DNA, denaturation is required before immunolabelling. Sections were

placed in 2N HCl for 30 minutes in a water bath held at 37˚C. This was followed by 3 x 2 min-

ute 0.1M PBS washes. Sections were incubated for 60 minutes in blocking solution (10% Nor-

mal Goat Serum (NGS) in PBS + 0.3% TritonX (PBSx)) before being washed (3 x 2min 0.1M

PBS). Sections were then incubated overnight at 4˚C in 1:3000 anti-BrdU primary antibody

solution (AbD Serotec Cat# MCA2060T Lot# RRID:AB_10015293; rat anti-BrdU OBT0030,

Batch#0109 AbD Serotec, and 0.25% NGS in 0.3% PBSx). The next morning, the tissue was

washed thrice in 0.1M PBS before being incubated for 120 min in 1:1000 biotinylated second-

ary antibody (anti-rat IgG (H+L) made in goat (BA-9400 Vector Labs UK) in 0.1%PBSx), then

washed thrice in 0.1M PBS followed by 60 min in 1:200 HRP-streptavidin conjugate (Vector

Labs UK SA-5000) in 0.1%PBSx. After 3 x 2 minute 0.1M PBS washes, the tissue was stained

using the chromogen Slate Grey (Vector Labs UK SK-4700) for 3 minutes before the reaction

was stopped with tap water, following the recommended product instructions. The tissue was

then washed in 0.1M PBS (3 x 2 min).
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Hu labelling. Washed sections were left to incubate overnight at 4˚C in anti-Hu primary

antibody solution (1:3000; anti-HuC/HuD mouse IgG2b, Invitrogen A21271; with 0.37% NGS

in 0.3% PBSx). On the following morning, the tissue was washed thrice in 0.1M PBS before

being incubated at room temperature for 120 min in 1:1000 biotinylated secondary antibody

(anti-mouse IgG(H+L) made in goat; Vector Labs UK BA-9200 in 0.1% PBSx), then washed

thrice in 0.1M PBS followed by 60 min in 1:200 HRP-streptavidin conjugate (Vector Labs UK

SA-5000) in 0.1% PBSx. After 3 x 2 minute 0.1M PBS washes, the tissue was stained using the

chromogen Nova Red (Vector Labs UK SK-4800) for 3.5 minutes before the reaction was

stopped with tap water for 5 min. The tissue was washed in 0.1M PBS (3 x 2 min), and was

stored in the final wash until mounted onto slides.

Sections were floated in deionized water and were individually mounted onto gelatine-cov-

ered slides using a paint brush. Slides were left to air dry overnight before being cleared for 2

minutes in Histoclear1, removed, and immediately covered in Histomount1 and cover

glass. Slides were left until the mounting medium set, were cleaned of excess medium and

were then ready for microscopic investigation.

Microscopy analysis

Boundaries were drawn around the telencephalon and HF (Fig 1A–1C) at 2.5x magnification

in every 3rd section on the slide (i.e. every 12th 50μm section in the brain) using StereoInvesti-

gator 9.10.1 attached to a Leica DM-LB microscope. Telencephalon and HF volumes were cal-

culated by multiplying the surface areas of the sections by the distance between the sections

(50 μm x12 = 600 μm) and adding up these mini-volumes. Because of the irregular shape of

the HF and the slight differences in cutting angles, in some brains, the last hippocampal section

was quite large, because it was cut through the caudal pole of the telencephalon, which in

chickens is covered by the HF (e.g. Fig 1C). This large section was missing from some other

brains, because it was not present in the sample of one section every 200 μm. We used the pres-

ence or absence of this final section as a factor in the ANOVA to control for the extra variation

caused by this inconsistency. Two different researchers outlined the brain areas and counted

neurons, one did 8 birds (4 FR and 4 AL) and the other 16 (8 FR and 8 AL). We also used the

person counting the cells as an ANOVA factor to control for subtle differences in interpreta-

tion of the criteria.

Total hippocampal neuron numbers (Hu+; Fig 1D) were estimated stereologically in the

outlined sections using the Optical Fractionator (100x magnification (oil immersion); count-

ing grids of 50μm x 50μm, regularly spaced at 450μm intervals; mounted thickness estimated

at 15μm). We obtained Gundersen coefficients of error (m = 1) <0.06 for all estimates. Neuro-

nal density was calculated as the total neuron numbers divided by the total estimated volume

of the HF.

To estimate the density of new neurons, we counted each BrdU-positive cell in every other

outlined HF section (i.e. 1200 μm apart) using the Meander Scan function in StereoInvestiga-

tor. We counted three categories of cells: BrdU+/Hu- cells in the ventricular zone (Fig 1E),

BrdU+/Hu- cells in the rest of the HF, and BrdU+/Hu+ cells in the rest of the HF (Fig 1D).

These last ones represent the newly-generated neurons. In order to calculate the cell density,

the numbers were divided by the volume represented by the sampled sections. For the cells at

the ventricular zone, the numbers were divided by the length of the ventricular zone along

which they had been counted.

In order to investigate new neuron density in the rostral and caudal poles of the HF sepa-

rately, we defined the caudal HF as starting where the HF starts wrapping around the rest of

the telencephalon in coronal sections, and therefore where part of the hippocampal tissue can

Avian hippocampal neurogenesis
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be found in the ventrolateral part of the telencephalon as well at the dorsomedial end of the

section [70] (Fig 1C). Because the double-labelling had been performed in different staining

batches, with different levels of BrdU staining, we used staining batch as a random factor in

any analyses of BrdU-labelled cells. Each staining batch contained equal numbers of AL and

FR birds.

Fig 1. Photomicrographs of the HF at different levels. A-C Photomicrographs of a rostral (A), a medium

(but still part of the rostral pole; B), and a caudal (C) coronal section through the hippocampal formation (HF).

D. BrdU+/Hu+ (white arrow), BrdU+/Hu- (black arrow), and BrdU-/Hu+ (open arrows) cells from the rostral

section of the HF. E. BrdU+ cell in the ventricular wall of the caudal section of the HF. The scale bar in C

applies to A and B as well. The scale bar in D also applies to E.

https://doi.org/10.1371/journal.pone.0189158.g001
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Corticosterone measurements

CORT was assayed in plasma samples using an ELISA kit (Enzo Life Sciences, Exeter, UK) as

we have previously described for chickens [71]. A 1:20 dilution of plasma was used in combi-

nation with a 2% concentration of steroid displacement reagent.

Quantitative gene expression analysis

RNA extraction from frozen tissue samples and cDNA synthesis were performed as we have

described previously [63], except that adrenal and spleen tissue samples were disrupted using a

Polytron homogenizer (Kinematica, Eschbach, Germany). Gene expression was quantified

using real-time PCR as described in Dunn et al. [63]]. Pro-opiomelanoctin (POMC) and the

lamin B receptor housekeeping gene cDNAs were amplified with primers we have described

previously [63]. The primers used to amplify ADP ribosylation factor like GTPase 10 (ARL10)

cDNA were those described by Bureau et al. [72]]. Steroidogenic acute regulatory protein

(STAR) cDNA was amplified using forward primer 5’-GGCTTCTTAGCATCGACCTG (posi-

tions 956–975 of NM_204686) and reverse primer 5’- CCCTGACCAAAGCACTCAAT (posi-

tions 1096–1114); and for interleukin 6 (IL6) the forward primer was 5’- GGCTTCGACGAG
GAGAAATGCCT (positions 398–420 of NM_204628) and the reverse primer 5’- GCGGCCGA
GTCTGGGATGAC (positions 578–597).

Statistical methods

The General Linear Model and Linear Mixed Model analyses were used in SPSS Version 22.

Log transformation of the corrected values was used where appropriate. Several covariates

were employed to control for differences due to body mass, experimenter drawing outlines,

histological staining batch (used as a random factor), and telencephalon volume (when hippo-

campal volumes were compared). Negative results are also presented, when appropriate. Post
hoc analyses, when conducted, used Least Significant Differences. The level of significance was

set at α = 0.05. Descriptive statistics are expressed as mean ± SEM. The data can be found in

the supplementary materials.

Results

The raw data presented here can be found in the Supplementary Materials (S1 File). FR chick-

ens were smaller and lighter than AL chickens, with shorter tarsometatarsals (F(1, 23) =

67.880, p< 0.001) and lower body mass (F (1,23) = 304. 909, p< 0.001; Fig 2). AL birds had

a larger pituitary gland than the FR birds (F(1, 22) = 10.807, p = 0.003). This difference, how-

ever, is completely accounted for by the difference in body mass between the two groups, as

controlling for body mass removed this effect (F(1,21) = 0.014, p = 0.91; body mass as covari-

ate: F(1,21) = 0.417, p = 0.525). The adrenal gland mass was also larger in the AL than in the

FR birds (F(1,21) = 65.150, p<0.001), but again, this was accounted for by the differences in

body mass between the two groups (F(1,20) = 1.45, p = 0.243 when including body mass as a

covariate).

CORT titres were higher in the FR than in the AL birds (F(1, 22) = 30.40, p < 0.001; Fig

3A). There were no significant differences between the FR and AL groups for expression of

pituitary POMC (F(1,19) = 0.560, p = 0.464; Fig 3B) or for STAR (F(1, 20) = 0.812, p = 0.379;

Fig 3C) and ARL10 (F(1,20) = 0.170, p = 0.685; Fig 3D) in the adrenal gland. IL6 expression in

the spleen was significantly higher in the FR than in the AL birds (F(1,21) = 5.71, p = 0.026; Fig

3E).

Avian hippocampal neurogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0189158 December 6, 2017 7 / 19

https://doi.org/10.1371/journal.pone.0189158


Chickens in the FR treatment had similar absolute telencephalic volumes (minus the HF)

compared with AL chickens (F(1, 21) = 1.16, p = 0.294; Fig 4A), controlling for the experi-

menter who drew the outlines. Note that this was not controlled for body size, which clearly

differed between the two groups. Taking into account which experimenter took the measure-

ment, and whether the caudal pole was present or not, hippocampal volumes also did not differ

between the two groups, whether controlling for total telencephalon volume (F(1, 19) = 0. 226,

p = 0.640) or not (F(1,20) = 0.145, p = 0.707), although, when controlling for telencephalon

size, the lack of caudal pole did make the estimate smaller, as would be expected (F(1,19) =

8.98, p = 0.007; Fig 4B). Controlling for the same potential confounding variables as for the

hippocampal volume analysis, there were no differences between the two treatment groups in

total hippocampal neuron numbers (F(1,20) = 0.341, p = 0.566; Fig 4C) or in hippocampal

neuronal density (F(1,20) = 1.38, p = 0.254; Fig 4D).

There was a significant interaction between feeding treatment and hippocampal pole in the

analysis of the density of new hippocampal neurons (F(1,19) = 7.68, p = 0.012). Density of

BrdU+/Hu+ cells was reduced in FR compared to AL birds in the rostral pole of the HF (F

(1,16) = 10.94, p = 0.004), but not in the caudal pole (F(1,14) = 0.26, p = 0.62; Fig 5A). New

non-neuronal hippocampal cells were also less abundant in FR birds (F(1,12) = 6.09, p =

0.029), and this did not differ between the two poles (interaction: F(1,17) = 0.99, p = 0.34; Fig

5B). There were more BrdU+ cells in the lateral ventricle of the rostral pole of the HF than in

the caudal pole (F(1,22) = 18.90, p<0.001), but no treatment differences were found in the

density of BrdU+/Hu- cells (F(1, 15) = 0.19, p = 0.67), in either pole (interaction: F(1,22) =

0.081, p = 0.78; Fig 5C).

Discussion

Compared to chickens released from commercial food restriction from weeks 7–12 of life,

chickens on a commercial food-restricted diet showed elevated CORT levels in blood plasma,

increased IL6 expression, reduced numbers of non-neuronal cells in the entire HF, and

Fig 2. Body size. FR birds had lower body mass (A; 1467±81g) and shorter tarsometatarsal length (B; 75.4

±0.8mm) than AL birds (3458±81g and 85.3±0.8mm resp.).*** p < 0.001.

https://doi.org/10.1371/journal.pone.0189158.g002
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reduced neurogenesis in the rostral HF. Feeding condition, however, did not affect telencepha-

lon or hippocampal volume, nor total neuronal density and number in the HF. Along the lat-

eral ventricle, the site of cellular proliferation [9], there was no difference in the density of

recently divided cells.

Reduced overall mass and tarsometatarsal length provide evidence that the food restriction

treatment was effective: food-restricted birds were both lighter and smaller than their counter-

parts fed ad libitum and were within the range of the growth trajectory set out in the broiler-

breeder management manual (see Methods). Despite the fact that somatic growth was delayed

compared to the AL birds, brain size (telencephalon volume, hippocampal volume and hippo-

campal neuron numbers) did not differ between the two groups. This suggests that the birds,

despite growing more slowly, were not starved, and brain development continued normally in

both groups of birds.

The main finding of our study is that hippocampal neurogenesis (or at least the 1-week sur-

vival of newly-generated neurons in the avian HF) is down-regulated in food-restricted adoles-

cent broiler breeder hens, while the population of precursor cells did not differ. This is similar

Fig 3. Endocrinological and molecular stress markers. FR birds had higher baseline CORT levels in

plasma than AL birds (A). There were no differences in the expression of pro-opiomelanocortin (POMC) in the

pituitary gland (B), nor of steroidogenic acute regulatory protein (STAR) (C) and ADP ribosylation factor like

GTPase 10 (ARL10) (D) in the adrenal glands. However, Interleukin-6 (IL6) expression in the spleen was

significantly higher in FR than in AL birds (E). *** p<0.001; * p<0.05.

https://doi.org/10.1371/journal.pone.0189158.g003
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to the results of Cardoso et al. [58]], who found that food restriction decreased the number of

maturing neurons in the dentate gyrus of adolescent rats, but not the number of dividing cells.

It is, however, in contrast to the findings by Lee and colleagues in adult rats [54] and mice [55,

Fig 4. Brain size measures. There were no differences between FR and AL birds in telencephalon volume

(A), hippocampal volume (B), total number of hippocampal neurons (C) or density of hippocampal neurons

(D). In panel B and C, values from birds for which the caudal-most section of the HF was present are dark, and

those for which that section was missing are plotted in a lighter shade.

https://doi.org/10.1371/journal.pone.0189158.g004
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56], which show an increase in neurogenesis across the dentate gyrus when they had their ad
libitum food supply removed on alternate days. These findings may identify a potentially sensi-

tive developmental stage in both mammals and birds, during which the HF is sensitive to food

restriction. Whether food restriction would increase hippocampal neurogenesis in adult chick-

ens remains to be seen. Alternatively, Lee et al.’s rats and mice were able to compensate for the

alternating days’ feeding schedule by feeding more on the days when food was available. This

option was not available to our animals or to Cardoso et al.’s rats, and could therefore lead to

different results. It would be interesting to contrast these two conditions in relation to neuro-

genesis in chickens.

Why does food restriction suppress hippocampal neurogenesis?

One possibility is that the reduction in hippocampal neurogenesis due to food restriction is

driven by an energetic constraint: the food-restricted animals have a lower energy intake, and

therefore they cannot support as many new neurons as the ad libitum fed animals, especially

while they are still growing and developing. Indeed, Cardoso et al. [58]] speculate that their

finding that hippocampal neurogenesis in young rats is reduced by food restriction may be

due to an increased sensitivity to protein restriction during development. However, even

though our animals had restricted food intake, they were still growing at a “normal” rate for

chickens (if not for broilers), indicating that they are not in a state of starvation. More impor-

tantly, telencephalon size, hippocampal size and total hippocampal neuron numbers did not

differ between the two groups, suggesting that brain development was protected, despite differ-

ences in body growth. Similar results were also found in the adolescent rats [58].

A related possibility is that certain growth factors involved in the regulation of hippocampal

neurogenesis are affected by the amount of food animals have access to. For example, plasma

insulin-like growth factor 1 (IGF1) concentrations are decreased by food restriction in broiler

chickens, and increased by re-feeding [73]. We did not measure IGF1, but it is likely that in

our animals as well, this growth factor would differ between the two treatments. In rats,

peripheral IGF1 treatment increases the number of newly-born neurons in the dentate gyrus

of the hippocampus [74]. We did not find a difference in the density of dividing cells in the

ventricular zone in our study, but IGF-1 might have different effects in birds. Insulin-like

growth factor 2 (IGF2) is known to be expressed at times and in brain areas of increased neu-

rogenesis in bird brains [75], so it is possible that IGF-1 might be as well. Similarly, other neu-

rotrophic factors could link food availability to neurogenesis. We do not know whether the

effect we observed was specific only to the HF, or whether food restriction also affected neuro-

genesis in other parts of the avian forebrain. This remains a question for the future.

Another possibility is that the decrease in hippocampal neurogenesis in our birds was a

response to chronically increased CORT titres, which can suppress adult hippocampal neuro-

genesis in rodents [11, 12]. Indeed, despite the fact that the relative size of the pituitary did not

differ between the two groups in our study, and neither did the expression of a number of key

genes in the HPA axis, FR birds clearly had higher CORT blood titres than AL birds. This is

consistent with previous findings in food-restricted broilers [76] and other birds, in which

Fig 5. Neurogenesis. (A) There were significantly more BrdU+/Hu+ new neurons in the rostral HF of AL birds

than FR birds. This trend was not significant in the caudal pole of the HF. (B) There were significantly more

BrdU+/Hu- cells in the AL than in the FR birds, in both the rostral and caudal poles of the HF. (C) There is no

effect of treatment on the number of BrdU+ cells in the ventricular zone, but there are more ventricular BrdU+

cells in the rostral than in the caudal HF, and this effect is the same for both treatments. Different symbols and

shades of grey represent brains that were stained in different staining batches. Staining batch was used as a

random factor in the Linear Mixed Model. * p<0.05.

https://doi.org/10.1371/journal.pone.0189158.g005
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CORT titres increase in response to acute [77, 78] and chronic [79] food restriction. High

CORT levels have functional importance in promoting the recovery from metabolic stressors

by mobilizing energy stores via the stimulation of proteolysis and gluconeogenesis [80]. It is

therefore possible that reduced neurogenesis is a side-effect of the increased CORT titres. Car-

doso et al. [58] did not measure CORT in their animals. However, in a previous study using

the same food restriction treatment, they showed a shift in the circadian CORT peak to right

before the predicted feeding time, but not a continued increase in CORT levels throughout the

day [81]. Nevertheless, they observed a similar reduction in hippocampal neurogenesis. This

may indicate that this reduction is not due solely to an increase in CORT titres.

Indeed, increased CORT levels are not always associated with decreased neurogenesis. Cer-

tain types of stress, particularly those positive in nature, can stimulate neurogenesis and other

protective processes in rodents [82, 83]. This increase in neurogenesis is also dependent on an

increase in CORT levels [30]. In birds as well, a mild elevation of CORT levels improves spatial

memory performance and does not affect hippocampal volume or neuron numbers [84, 85].

Increased CORT levels associated with chronic negative stress, however, cause a decrease in

hippocampal neurogenesis [19, 26, 27, 30, 86–88]. Lehmann et al. [30] reported that CORT

release in mice given environmental enrichment after experiencing stressful conditions pro-

moted neurogenesis, thereby restoring previous hippocampal damage and providing stress-

resilience. In the same study, however, increased CORT associated with social defeat sup-

pressed adult hippocampal neurogenesis. This suggests that even if increased CORT titres are

directly responsible for the reduction in survival of new hippocampal neurons in food-

restricted adolescent chickens and rats, this would only happen if this increase in CORT levels

happened in a negative context [30]. It is unknown which other signalling pathways would be

responsible for the differentiation between positive and negative stressors in the HF, but one

possibility is the concept of the inverted U response, in which moderate increases have positive

effects, while higher levels have negative ones [89].

The final possibility is therefore that the food restriction and associated feelings of hunger

are experienced as a chronic psychological stressor. Our chickens are from a breed that has

been strongly selected for efficient conversion of food to muscle mass and growth rate.

When food restricted, they show strong physiological evidence of hunger [63], and food-

restricted broiler breeders have been shown to be very motivated to forage and eat [62]. The

frustration of not being able to feed when so highly motivated to do so may act as a strong neg-

ative psychological stressor. In rats as well [58], it is possible that hunger is experienced as a

more severe psychological stressor, especially during adolescence, when the energy needs are

more urgent. The only other finding in our data that supports this interpretation is that IL6
gene expression was upregulated in the spleen of food-restricted birds. IL6 biosynthesis is

commonly upregulated in human patients suffering from major depressive disorder [90], and

increased circulating IL6 protein was reported in chronically distressed domestic chicks [91].

IL6 gene expression was increased in lymphocytes by externally-administered CORT in laying

hens [92], but this increase was temporary, and not detectable after 1 week of CORT adminis-

tration. This suggests that the increased IL6 mRNA were observed after chronic food restric-

tion might have been due at least partially to CORT-independent mechanisms.

Implications for homologies between the avian and mammalian

hippocampal formations

As in mammals, we show here that in birds as well, a reduction in the number of newly-gener-

ated neurons in the hippocampus accompanies food restriction during adolescence and/or a

chronic increase in CORT concentrations in a presumably negative environment. Proliferation
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of the precursors (here in the ventricular zone) is not changed by these conditions, but survival

(here for one week) after proliferation is increased.

Interestingly, this effect was strongest in the rostral HF, and not detectable in the caudal

HF. Given that the rostral HF has been hypothesized to be equivalent to the rodent dorsal hip-

pocampal pole, and the caudal HF to the ventral pole [42], and the rodent ventral pole is more

sensitive to stressors than the dorsal pole [22], this finding contradicts that hypothesis. How-

ever, we should not be too quick to throw out the hypothesis yet. In rodents, the dorsal pole

also sometimes responds to chronic stress and/or increased CORT levels [93, 94], and in rare

occasions this even happens without a response in the ventral pole [95]. It should also be

pointed out that in coronal sections, the caudal pole of the avian HF is parallel to the cutting

plane, and therefore represented in many fewer sections, so that our sampling of the rostral

pole is much more robust than that of the ventral pole, leading to poorer statistical power.

Note also that the difference cannot be explained by differences in activity or spatial experi-

ence, because FR birds are more active and constantly exploring the environment, looking for

food, while the AL birds spend most of their time lying still. An experience-dependent increase

in neurogenesis, as often demonstrated in rodents [83, 96, 97], should therefore have favoured

the FR group, and no the AL group.

The similarity in the response of avian and mammalian adult hippocampal neurogenesis to

chronic stress indicates that this may be an ancient feature of the structure, inherited from the

last common ancestor more than 300 million years ago. More research is needed to better

understand the similarities and differences between the avian and mammalian HF.

Conclusion

In conclusion, the evidence in our study suggests that avian hippocampal formation is similar

in its response to at least one type of chronic stressor (or at least to physiologically increased

CORT levels) to the mammalian hippocampus. This is likely to represent a conserved feature

of hippocampal structure and function.
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