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Abstract

Species distribution models are scarcely applicable to invasive species because of their

breaking of the models’ assumptions. So far, few mechanistic, semi-mechanistic or statis-

tical solutions like dispersal constraints or propagule limitation have been applied. We

evaluated a novel quasi-semi-mechanistic approach for regional scale models, using his-

torical proximity variables (HPV) representing a state of the population in a given moment

in the past. Our aim was to test the effects of addition of HPV sets of different minimal

recentness, information capacity and the total number of variables on the quality of the

species distribution model for Heracleum mantegazzianum on 116000 km2 in Poland. As

environmental predictors, we used fragments of 103 1×1 km, world- wide, free-access

rasters from WorldGrids.org. Single and ensemble models were computed using BIO-

MOD2 package 3.1.47 working in R environment 3.1.0. The addition of HPV improved the

quality of single and ensemble models from poor to good and excellent. The quality was

the highest for the variants with HPVs based on the distance from the most recent past

occurrences. It was mostly affected by the algorithm type, but all HPV traits (minimal

recentness, information capacity, model type or the number of the time periods) were sig-

nificantly important determinants. The addition of HPVs improved the quality of current

projections, raising the occurrence probability in regions where the species had occurred

before. We conclude that HPV addition enables semi-realistic estimation of the rate of

spread and can be applied to the short-term forecasting of invasive or declining species,

which also break equal-dispersal probability assumptions.
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Introduction

Species Distribution Models (SDMs) are widely used in nature conservation and management

practice. In recent years they have been applied to unstable invasive species (invasive species
distribution models—iSDMs) [1,2]. In order to be reliable for modelling of any species, SDMs

have to meet many assumptions. The most important, called the equilibrium assumption [3],

states that a modelled species must be in an equilibrium with the area of interest, i.e. it should

have an equal probability of occurrence in every point inside the geographical space or in a set

of all unique combinations of different states of predictor variables, i.e. in environmental

hyper-space [4]. Depending on the stage of invasion, invasive species (IS) more or less fail to

meet this assumption [5,6]. In the initial phase starting just after passing large geographical

barriers, IS are usually extremely rare and occur in a few–more or less random–point, line or

small polygon localisations and thus do not occur in all places that are susceptible to invasion

[7–10]. In the next–space infilling–stage they disperse from initial places. Depending on the

availability of the suitable habitats, and often connected to human land use [11,12] as well as

the efficiency of short- and long-distance dispersal, it may result in different levels of patchi-

ness in distribution, especially when mechanisms responsible for near- and long-distance dis-

persal are separate [13–14]

As in every diffusion process, the patchy spatial pattern is strongly, positively autocorre-

lated, because the local density at any place is a function of previous densities at this and neigh-

bouring places [15]. This results in spatial autocorrelation (SAC) which causes problems in

spatial statistical inferring, including iSDMs.

The usual statistical approach involves calculating additional predictors representing the

intensity of the invasion phenomenon in the vicinity of a given model cell, e.g. the neighbour-

hood averaging or sum of abundance or the count of sites in the direct neighbourhood apart

from the cell itself. The predictor may be also autocovariate in an autologistic model (Fig 1A).

Various mechanistic approaches attempt to recreate the web of causal relationships that pro-

duce the distribution with SAC. Usually it requires previous empirical fitting of the model

parameters, like the distributions of the distance of dispersal, expressed as dispersal kernel (Fig

1B). A semi-statistical approach uses additional predictors, e.g. probability of propagule immi-

gration from the alleged initial sites into each model cell, computed from the predictor data

(Fig 1C). SDMs based on historical proximity variables (HPV) extend this semi-mechanistic

approach by adding to SDM one or more predictors, representing, e.g. the distance to the near-

est site existing in a precisely set moment in the past (Fig 1D).

Many remedies have been proposed in order to compensate for the consequences of

assumption breakage in autocorrelated data analysis. SAC in non-spatial statistics for bivariate

data, like Pearson’s correlation, can be compensated for by decreasing the number of degrees

of freedom, which is considered to remove information redundancy resulting from SAC

[3,16]. However, these simple solutions are not applicable to all SAC problems, e.g. they are

not suitable for a case where distance to independence cannot be estimated and the spatial

dependence may not be defined as simple function of a distance.

In spatial statistics, including SDMs, equilibrium assumption breakage due to SAC has

been accounted for either through statistical or mechanistic approach. In the statistical

approach, spatial corrections to predictions are used [3]. In autologistic models the standard

set of environmental predictors is extended by an additional variable, called the autocovariate

(Fig 1A), which accounts for the correlation between the value of the response variable at the

location and in its neighbourhood [17]. Other methods, like spatial eigenvector mapping, gen-

eralised least squares and generalised estimating equations are also available [18].
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Statistical approach models have the ability to explain large-scale distribution patterns,

from regional to continental scales using climatic or topographic indices or soil maps. They

are also relatively easy to implement, because they do not require expert knowledge or empiri-

cal data for model calibration [19]. However their outcome is static, and they often lack the

ability to predict future or potential distributions of invasive species. They also ignore or mask

the causal relationships behind the autocorrelated spatial pattern [3].

Mechanistic approach models allow for simulation of the process, but are either too simple

and unrealistic or, when more complex, require labour-intensive parametrisation [4,20,21]. In

mechanistic models of invasions, one tries to simulate the effects of invasion-process con-

straints linked with habitat, dispersal patterns or propagule pressure [14]. The most common

form of limitation is the dispersal limitation, which can be simulated in many different ways,

e.g. dispersal constraints [1] or dispersal kernels, i.e. the distribution of probabilities of species

immigration at any given distance from the source (Fig 1B). A few recent models, like the

recent R-based MIGCLIM model [22,23], allow for an integration of cellular automata with

dispersal constraints onto habitat suitability models produced, e.g. by the BIOMOD package

[24,25]. However, even the MIGCLIM package requires species-specific parameters to simu-

late its dispersal. Therefore, the empirical calibration of dispersal is still required.

Fig 1. The comparison of the historical proximity-based quasi semi-mechanistic approach to

modelling of the invasive plant species with SAC in their distribution with existing statistical,

mechanistic and semi-mechanistic approaches.

https://doi.org/10.1371/journal.pone.0184677.g001
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Semi-mechanistic approach models are intended to incorporate most advantages of both

approaches without inheriting their weaknesses [21,26]. Instead of empirical fitting and simu-

lational verification of dispersal kernels it attempts to infer process from pattern (Fig 1C) using

the highly effective regressive ability of SDM models [19,27]. The best examples of this attempt

are models of Accacia saligna, A. cyclops and Pinus pinaster in Cape Province [28]. In this

study, the probability of dispersal was estimated through adding to the SDM model an addi-

tional predictor which was the distance to the putative initial foci of invasive spread. Such

models were semi-mechanistic models, because they did not recreate the mechanism for inva-

sion course over time but nevertheless managed to estimate and include the effect of dispersal

on observed, highly autocorrelated spatial distributions in explaining and predicting. While

semi-mechanistic “inferring process from pattern” approach is still not common in modern

SDMs, it is suggested as a promising future solution [19].

We tested the model quality of an HPV approach in comparison with the bare SDM as a

control model. We used Heracleum mantegazzianum s.l.–giant hogweed–as a test plant. It is a

joint taxonomical unit, including H. mantegazzianum Sommier et Levier and H. sosnowskyi
Manden [29]. Since the end of 19th Century, this Caucasian perennial has become invasive in

many parts of the Northern Hemisphere, including North America and Northern, Central and

Eastern Europe [30–33]. In many parts of the new range it has non-even spatial distribution,

either in continental, regional or local spatial scales. For example, it is much more widespread

in Great Britain and southern Scandinavia than in France [30]. The fast increase of the number

of sites has been observed in many regions in non-native range, e.g. in the Czech Republic

[34,35].

There have been many attempts at modelling the distribution of giant hogweed using either

statistical or mechanistic approaches. E.g. autologistic models were applied to the 10×10 km

octade data for the national scale and 2×2 km tetrade data for regional scale in Great Britain

[34]. It was also applied to the data on giant hogweed occurrence in Denmark at both national

and regional scales [36]. The GLMM models were implemented for the local abundance of giant

hogweed in 1×1 km study areas in Germany [37]. The estimation of the continent-scale potential

range of giant hogweed has been done using the BIOCLIM algorithm and Global Biodiversity

Information Facility data [8]. Maxent and BIOMOD ensemble SDM models were applied for

Heracleum sosnowskyi in the Ukrainian Carpathians [33,38]. The mechanistic approach was

implemented in models of the abundance of giant hogweed in polygonal, homogenous land-

scape patches inside 1×1 km study areas in Germany [39]. In a set of studies, spatially explicit

mechanistic individually based models were applied to the demography of individuals inside a

single landscape patch [40–42].

The aim of this study is to test how the addition of Historical Proximity Variables (HPV)

quantifying distance to the nearest occurrence sites in different time periods in the past affects

the quality of the Species Distribution Model (SDM) of a current distribution of a spreading,

invasive giant hogweed in Central and Northern Poland (116,000 km2). HPVs tested in the

article differed in: minimal recentness (25, 10 and 5 yrs earlier than response data), informa-

tion capacity (which is low for a variable describing the simple presence or absence of previous

sites; moderate, in the case of the count of previous sites; and high, in the case of distance to

the nearest previously existing site) and the total number of HPVs included in a dataset. We

tested effects of the addition of one or more HPV on the model quality True Skill Statistic

(TSS) of giant hogweed.

In this paper we propose and evaluate an improvement for iSDMs in which we account for

SAC in regional-scale iSDM modelling of an invasive plant species with patchy distribution

during an infilling phase (Fig 1D). In comparison to the typical semi-mechanistic approach,

there is no separate mechanical model subsystem; however, the spatial dependence resulting
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from the dispersal process is emulated by inclusion of one or more historical proximity vari-

ables (HPV), allowing the SDM to estimate the possible spatial relation between the current

and past distribution in earlier stages of invasion. HPV predictors are based on the spatial dis-

tributions from explicitly defined time periods (5–25 years) before the date that the response

variable distribution was recorded. In order for such a model to be good enough, it should

improve an explanation, current distribution projections, or projections of the future

expanded range, perhaps even as a time series. The proper estimation of the relative impor-

tance of the dispersal from the earlier sites should allow for better projection of potential distri-

bution of an invasive species, using an assumption of uniform, little or no dispersal constraint.

We expected that:

1. an addition of Historical Proximity Variables would increase model quality in comparison

with exclusively environmental Spatial Distribution Models, both in single and ensemble

models;

2. the number of time periods, minimal recentness, information capacity and the type of algo-

rithm used would all significantly influence the increase in model quality; and

3. the improved models would be an interesting method for performing an SDM-based short-

term forecast for invasive species and other spatially unsaturated taxa.

Materials and methods

Giant hogweed distribution data

The data for giant hogweed we used (Fig 2) come from the time period of the initial colonisa-

tion and space infilling stage [33]. In some countries, e.g. in Great Britain or in Germany,

giant hogweed has a relatively dense and even distribution (Fig 2A), while in other countries it

has a sparse distribution with many new, recent sites, e.g. in Latvia, Estonia, Belarus and

Poland. The population of giant hogweed in Poland (Fig 2B) has increased from 196 sites pre-

sented as 146 ATPOL Atlas squares (10×10 km) in 2001 [43] to ca. 500 in 2011 and 1710 in

2014 [44].

As a response variable we used data collected in 2012 for the territory of Poland during a

civic science project [47]. During that project, data were collected from heterogeneous sources

between May and November 2012 from 673 national, regional and local institutions, as well as

municipalities located at least 50 km from previously known giant hogweed sites. Personal

observations were also gathered through the project’s website (http://barszcz.edu.pl), Facebook

fan page and e-mail. If reported giant hogweed localities were different than those previously

noted, a confirmation was attempted by direct contact with the authors of the record, and the

maximum possible examination of evidence (photos, videos or detailed descriptions of observed

individuals) was performed. In total, 1710 sites were identified in the whole country, out of

which 628 were located within the research area. The total number of data points was further

amended by 1000 pseudoabsences, located randomly within the reserch area. Therefore the

total number of analysed cases was 1628.

Historical proximity variables

Data on the historical existence of giant hogweed sites were taken from the field census of

giant hogweed populations, performed in May-June 2007 in Central and Northeastern Poland

over 116,000 km2 (Fig 3A and 3B, [48]). In this census giant hogweed sites found in both peer-

reviewed and grey literature were verified. If found, the geographical location of the center and

the spatial extension of the local population were noted with a Garmin E-Trex H GPS unit
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within an accuracy of minimum 10 m. Populations distant more than 500 m one from another

were treated as separate ones. Any new locations encountered during the census were mapped

in the same way. During the 2007 field census, in total 101 localities were eventually found.

Earlier history (before 2007) was examined by setting a population’s onset date (Fig 3A),

defined as the earliest year at which the given giant hogweed population at the given locality

had been known, either described in published sources or remembered by eyewitnesses. If the

exact date was not available, decennial estimation was attributed, in the form of the middle

year of the decade (e.g. 1975 for the years 1970–1979).

Based on these data, three partially overlapping subsets were defined (Fig 3B):

• all localities existing 5 years before the 2012 census (all present in 2007),

• all localities existing 10 years before the 2012 census (onset date< = 2002),

• all localities existing 25 years before the 2012 census (onset year< = 1987).

Data from the census were projected onto the http://worldgrids.org Level3 geographical

grid with cell size of 1/120 degree, i.e. ~1×1 km [47] using the rasterize() function from the R

package raster 2.2–31 with the count of locations as a grouping function. Three different levels

of information capacity were then extracted (Fig 3C):

• ‘Presence’ of sites inside a single raster cell, as a conversion of count into presence-absence

format (expressed as “P” at the end of set labels);

• ‘Count’ as a number of sites inside the raster cell, a direct result of the rasterize() function

from the package raster (labeled as “C”);

Fig 2. The localisation of the study area within the range of giant hogweed in (a) Europe and (b) in Poland. Distribution map–the data from Global

Biodiversity Information Facility: [43], except for Poland [44], Belarus [44–46], Lithuania, Latvia and Estonia [30]. The study area is indicated by a dark grey

colour.

https://doi.org/10.1371/journal.pone.0184677.g002
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• ‘Distance’, as a distance between each raster cell and the nearest occurrence site, using the

raster package’s distanceFromPoints() function with default settings (labeled as “D”).

If both ‘Count’ and ‘Distance’ were applied, the “CD” index was used.

Historical proximity variables variants

Each kind of HPV was computed for each time period. Thus 24 combinations of the standard

set of general variables exist–with the HPVs added, named after the HPV name and time

period: e.g. “5.P” is a variant with presence data from the time period of “5 years before”, and

“25.10.5.CD” is a variant with both Count and Distance from the time periods of “25 years

before”, “10 years before” and “5 years before”. There was one control variant (“No HPV”),

with no historical proximity variables added.

Environmental explanatory variables

As environmental predictors, we used the world-wide, free-access rasters prepared for the

World Soil Map made available by ISRIC—World Data Centre for Soils, from the WorldGrids

website [47]. We applied 105 Level3 geographical grids (1/120 degree, i.e. ~1×1 km). The data

comprising 90 categories belonged to nine groups: administrative and socio-economic, cli-

matic and meteorological, morphometric, land cover and land use, bioclimatic, urbanization

and lights at night, geological and soil parent material, natural hazard, and forest and wildlife

Fig 3. Generation process of historical proximity variables.

https://doi.org/10.1371/journal.pone.0184677.g003
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data (S1 Table). Their metadata with detailed description are available from the WorldGrids.

org website (http://worldgrids.org/doku.php?id=wiki:layers) [49]. The time coverage of the

data is similar to that of the modelled phenomena (~1987–2012). A few variables used in the

analysis were rescaled to the size of the used grid. Global predictors were cropped to the extent

of the study area. Some variables that were available only as Level1 grids (mainly soil data from

the Harmonized World Soil Database) were scaled up to the Level3 degree resolution. All ras-

ters with no variation inside the study area were omitted.

The authors are aware that the limited spatio-temporal correlation of the occurrence and

abundance data with predictor values may weaken the detection ability of less strong spatial

relationships. Data on the onset date of localities are not perfect, as there was no monitoring at

that time. There is a possibility that onset dates of some localities should be earlier than was

established or that more unknown sites existed before 2011, but there are no better historical

data so far. The model quality data and variables’ importance should be considered conserva-

tive estimations.

Statistical analysis

The modelling framework used in this study was BIOMOD2 package 3.1.47 working in R envi-

ronment 3.1.0. [50,51] with spatial point data as a response variable and the series of stack of

raster layers as predictors. We chose 7 of 10 available algorithms (Artificial Neural Networks–

ANN, Classification Tree Analysis–CTA, Flexible Discrimination Analysis–FDA, Gradient

Boosting Machines–GBM, Multiple Adaptive Regression Splines–MARS, Random Forests–RF

and Surface Range Enveloppe–SRE), that were fastest and the most flexible. We omitted algo-

rithms with restrictive error distribution requirements (like Generalized Linear Models–GLM

and Generalized Additive Models–GAM) or posing technical problems (Maximum Entropy

models–MAXENT).

In order to assess the effect of an algorithm and HPV characteristics on the model quality,

we melted modelling results using the function melt() from the reshape2 package, row-binded

using the rbind() function, and then added the following HPV set and model attributes:

• model algorithm used,

• combination of information capacity variables (“P”, “C”, “D”, “CD” or control),

• minimal recentness of time periods included (5, 10, 25 years or control),

• number of time periods included (1, 2, 3 or control).

Graphical analysis was performed using box plots with default settings from the latticist
package.

True skill statistic (TSS) was used as a measure of the model quality, since it was a default

measure in BIOMOD 2.1.37 [52]. TSS values below 0.4 are considered moderate; 0.4–0.6 are

good [53]. In BIOMOD2 only single models with TSS� 0.7 were considered good enough to

be chosen for ensemble models [25]. The second default model quality measure in BIOMOD2

software is ROC. Both TSS and ROC are often used in modelling papers. Both are robust, prev-

alence- independent methods. Their values differ slightly, with TSS being somewhat more var-

iable, i.e. giving relatively lower scores for weaker models. However, the differences between

their values are rather a matter for statistical debate [54–58]

In order to assess the importance and significance of HPV properties we performed a meta-

modelling, using melted BIOMOD2 modelling results as a dataset. As a meta-model algorithm

we used a Boruta() function from the Boruta 3.1 package [59]. It uses a large number of ran-
domForest() function model iterations and classifies all variables into three categories:
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‘Confirmed’, ‘Tentative’ and ‘Rejected’, based on the significance test comparing the mean

value of the Z-score for all variables with Z-scores of their randomized copies. ‘Confirmed’ sta-

tus was attributed to variables whose Z-score differed significantly at p = 0.01, which means

that they were significantly important for model quality. TSS values for single and ensemble

models were standardized inside these groups.

Results

Quality of models with and without historical proximity variables

Models with HPV scored better than the control variant with environmental predictors only

(Fig 4). The average quality of single models of the control variant was poor. They had a

median TSS value of 0.38 and InterQuartileRange (IQR) extending from 0.26 to 0.44. The

ensemble models for this variant were based on very few models that passed a 0.7 threshold.

Their average TSS value was 0.77, and IQR ranged from 0.74 to 0.79. The average quality of

single models with HPV was at least good, i.e. with median TSS = 0.6 and IQR ranging from

0.42 to 0.68, while the median TSS value of ensemble models with HPV was an excellent 0.82,

with IQR from 0.8 to 0.85.

The comparison of historical proximity variables variants

Not all HPV sets performed equally well (Fig 5). The median TSS value was the highest (0.68)

for the most recent ‘Distance predictors (5.CD, 10.5.D and 5.D) and the lowest (0.48) were for

variants least recent predictors of all kinds: ‘Distance’, ‘Count’ and ‘Presence’ (25.D, 25.C and

25.P). The control variant with no HPVs had the lowest quality (0.38). The variation of TSS

values for ensemble models was much smaller, regardless of the HPV variant. The variants

with the highest median TSS values were those with HPV from the most recent time period–

mainly based on ’Distance’ (5.CD, 10.5.D, 5.D, 25.10.5D, 25.10.5CD, 10D).

The role of historical proximity variables set attributes

HPV set attributes affect TSS values in different ways (Fig 6). Model quality expressed by the

median TSS value increases by 0.05 between consecutive numbers of time periods (Fig 6A).

Fig 4. TSS quality values of single (blue colour) and ensemble (green colour) BIOMOD2 models for

variants with and without historical proximity variables (HPV).

https://doi.org/10.1371/journal.pone.0184677.g004
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This increase is one third the amount of the difference between sets with one time period

(TSS = 0.52) and the control (TSS = 0.37, median TSS difference = 0.15).

Model quality is clearly affected by HPV set minimal recentness (Fig 6B). TSS median value

drops by 0.1 when increasing minimal recentness categories from 5 to 25. Information capac-

ity affects model quality less than minimal recentness (Fig 6C). Models for HPV sets with ‘Dis-

tance’ proximity variables were only slightly better than ‘Distance and Count’ HPV sets (~0.05

TSS difference), which performed better than models for sets with ‘Count’ alone or ‘Presence’

(~0.1 TSS difference). Variation of TSS median values for ensemble models is similar to that

for single models, but the range of values is much smaller (0.03).

Regardless of the algorithm used, the median TSS values of ensemble models were much

higher than those of single models (Fig 7), both for sets with HPV (0.81–0.83 vs 0.14–0.69) and

without HPV (0.76–0.79 vs 0.16–0.51). Single model algorithms diverged into three groups.

RF and GBM gave the best prediction (median TSS = ~0.7 for sets with HPV and ~0.5 for sets

without HPV). FDA, MARS, CTA and ANN model quality was lower (median TSS from 0.4 to

0.6 for sets with HPV and from 0.28 to 0.4 for sets without HPV). SRE was the worst model

(median TSS = 0.13 for sets with HPV and 0.06 for sets without HPV). Single models, espe-

cially ANN, had much higher level of variation in TSS values than ensemble models. All

ensemble models worked almost perfectly, and weighted mean was the best ensemble model

algorithm.

Fig 5. TSS quality values for single (blue) and ensemble (green) BIOMOD2 models produced using

different historical proximity variables (HPV) variants. Types of data included: P–presence, C–count, D–

distance; 5, 10, 25 –minimal recentness predictors expressed in number of years; detailed explanation in the

text.

https://doi.org/10.1371/journal.pone.0184677.g005
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Fig 6. TSS quality values for single (blue) and ensemble (green) BIOMOD2 models produced using historical

proximity variables (HPV) sets differing in the number of time periods (a), minimal recentness (b) and

information capacity of HPVs (c).

https://doi.org/10.1371/journal.pone.0184677.g006
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The importance and significance of historical proximity variables set

attributes

All tested HPV set attributes were classified as ’Confirmed’ by the Boruta meta-model, i.e. each

one of them is a significantly important predictor of the model quality at p� 0.01 (Table 1).

The most important determinant of the model quality was the kind of the algorithm both for

the simple and ensemble model groups (mean Z-score = 189.0). HPV set attributes affected

Fig 7. TSS quality values for single (blue) and ensemble (green) BIOMOD2 models produced using different algorithms, with and without

historical proximity variables (HPV). EMmean—Ensemble Model mean; EMwmean—Ensemble Model weighted mean; EMciSup—Ensemble Model

confidence interval Superior values; EMcilnf—Ensemble Model confidence interval Inferior values; EMca—Ensemble Model community averaging;

EMmedian—Ensemble Model median; RF- RandomForest; GMB—Gradien Boosted Machines; FDA—Flexible Discrimination Analysis; CTA—

Classification Tree Analysis; MARS—Multiple Adaptive Regression Splines; ANN—Artificial Neural Networks; SRE—Surface Range Envelope.

https://doi.org/10.1371/journal.pone.0184677.g007

Table 1. Relative importance (mean Z-score of the raw regression-type RF importance) and

significance� 0.01 of historical proximity variables (HPV) set attributes according to the Boruta

meta-model of the BIOMOD2 model true skill statistics (TSS) values.

HPV set attributes Mean Z-score Significance

Model algorithm 189.0 yes

Minimal recentness 49.0 yes

Information capacity 39.1 yes

Single/ensemble model 23.0 yes

Number of time periods 11.7 yes

https://doi.org/10.1371/journal.pone.0184677.t001
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model quality much less than diverse algorithms. The most important among set attributes

were the minimal recentness (mean Z-score = 49.0) and information capacity (39.1), while the

number of time periods was least important (mean Z-score = 11.7). The model group itself

was over eight times less important (mean Z-score = 23.1).

Discussion and conclusions

Invasive species distribution models quality with and without an addition

of historical proximity variables

HPV addition can be considered a serious improvement for simple iSDM models. An inclu-

sion of HPVs strongly increased average single model quality, from weak (TSS = 0.38) to at

least good (TSS = 0.6). The increase was observed also in the ensemble model group, where

models with HPVs were better than No HPV ensemble SDMs (TSS = 0.82 vs. 0.77). The

increase in the quality is quite substantial in relation to the other published giant hogweed

models with a statistical approach to SAC [34,36]. However, the Boruta meta-model revealed

that the model algorithm inside the single and ensemble algorithm groups was the most

important determinant of the model quality, much more than single vs. ensemble distinction

alone. We expected this, keeping in mind the huge differences in predictive ability between

very simple (e.g. SRE) and sophisticated (e.g. RF or GBM) model algorithms [20]. It is remark-

able that no matter what the algorithm was, an addition of any HPV set has increased the TSS

of the model, which demonstrates promising applicability of the method.

The increase in model quality caused by the addition of biologically significant HPV vari-

ables is clearly visible in the model projections. The No HPV model does not manage to dis-

cern areas that are preferred by the species but inaccessible through usual dispersal (Fig 8A).

In contrast to it, good HPVs model were excellent at limiting the probability of the species

occurring strictly to the regions where the species was found (Fig 8B).

Properties of historical proximity variables sets

The best variants were those with most recent HPVs and those with high information capacity

(i.e. the distance to the recent sites), while those with low information capacity (such as the

number of time periods included) were much less important. The Boruta meta-model con-

firmed that the most important determinants of model quality among HPV set attributes were

minimal recentness and information capacity, which were about four times more important

than the number of time periods included. The average quality of models decreases with

increasing minimal recentness of the distance map, i.e. the length of the time span between the

response data and the historical distribution (Fig 8B). This seems to confirm that the spatial

dependence on the previous distribution weakens steadily with time in the analyzed giant hog-

weed invasion case.

The highest importance of the ‘Distance’ HPVs seems to also be an effect of the prevailing

role of species expansion during the phase of space infilling. The existence of the site depends

also on its persistence, but in our case, the minimal time span of HPV variables (5–20 yrs) was

smaller than the minimal durability of giant hogweed populations (>50 yrs, [60]). In the case

of more fugitive, early successional invasive species, the estimated effect of the mere Presence

of previously existing sites or their Count may be much more important HPVs than in the

giant hogweed case, due to the greater importance of the persistence of earlier sites rather than

the creation of new sites only.

The inclusion of the ‘Distance’ HPV in the iSDM models should be a solution to the prob-

lem of propagule pressure confusion, i.e. the fact that the availability of propagules may be
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easily confounded with the plethora of populational and habitat factors [5,61,62]. The direct

analysis of the distance HPV representing the spatially dependent probability of species migra-

tion together with many other potential invasion determinants should allow for much more

successful estimation of their relative importance. It cannot replace individual or population-

level experiments but can greatly help in initial understanding of the process and the setting of

experiments.

Thus the case of giant hogweed invasion in the stage of space infilling seems to be well-

suited for an application of HPV-based iSDM models. It may be an effect of the relative domi-

nation of short-distance dispersal of minimally winged large giant hogweed seeds, most of

which land within a few meters of maternal plants [63–65]. Only a small amount of them travel

far away, accidentally brought by wind, water flow or transportation [35,66]. Deliberate seed

transport by humans was negligible in this area during the modelled period. In effect, most of

the new, distant sites developed mostly within a few kilometers of the earlier sites. The suitabil-

ity of the HPV approach implemented in this study may also result from the proper spatial res-

olution of the analysis. The raster cell size (1×1 km) was finely-grained enough to detect

changes in site distribution during the time-span years. When the minimal recentness of

HPVs reflects a longer time period, a larger site distribution would be detectable, and lower

spatial resolution (larger cells) would be appropriate.

Historical proximity variables of invasive species distribution models as a

quasi semi-mechanistic approach

The HPV iSDMs cannot be considered a semi-mechanistic approach, because they do not

include a typical mechanical model subsystem. However, the parameter that is estimated dur-

ing calibration of the models is the de facto probability of the survival of an older giant hog-

weed site or emergence of a new one as a function of the properties of habitat (which is similar

to classic SDMs and statistical approaches) and of the spatial properties of earlier species distri-

bution (which is similar to a mechanical approach). Like the earlier semi-mechanistic

approaches, (e.g. by Rouget and Richardson [28]), HPV iSDMs use SDM’s built-in mecha-

nisms of calibration of spatially dependent parameters. In the case of our models it can be

called a site dispersal curve; however, it is an analogue of the inferring process from pattern
idea–but implemented on a larger spatial and biological scale. As the direct biological pro-

cesses of invasion occur on the level of individuals, our models do not simulate basic biological

mechanism as in a typical mechanical approach, therefore calling them quasi semi-mechanistic
is appropriate.

The use of SDMs like those computed by the BIOMOD2 R package [25] allows also for

obtaining a desirable measure of uncertainty, which is of high importance both for an under-

standing of the phenomena and for potential practical applications [3,21,67].

Possible applications

The advantage of HPV iSDM models over the earlier semi-mechanistic approach lies in the

explicit inclusion of time in the model. As there is a given time span between the response data

and the historical proximity variables, the realistic rate of spread is estimated. Upon doing so,

it can be also used to create a short-term forecast (Fig 9A). In such a case, the distance to the

Fig 8. Projection maps of probability of giant hogweed occurrence, using (a) no historical proximity

variables and (b) with historical proximity variables of 5 years recentness of ‘Count’ and ‘Distance’

data applied in BIOMOD2 models. Both maps are current weighted mean ensemble model projections of

giant hogweed distribution in 2012.

https://doi.org/10.1371/journal.pone.0184677.g008
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earlier sites can be substituted with the distance to the present ones, and instead of the projec-

tion of the current distribution (Fig 10A) one can obtain the forecast for the near future (pres-

ent + time span, (Fig 10B)). It is even possible to iterate such a procedure, keeping in mind

that spatial and temporal accordance between the response data and predictors is a require-

ment for proper logical inference in any SDM [3,19,20]. Thus in the case of sequential comput-

ing of the HPV of iSDMs–where the next iteration takes HPV values from its precedent–the

predictor set should be amended in order to support the actuality and accuracy of the predictor

set.

One of the ‘Holy Grails’ of iSDMs is the potential distribution management of invasive spe-

cies. The obstacles to invasion originate from many successive barriers that must be surpassed

during a successful process [68]. In the initial phases of an invasion process (immigration),

every invasive species occurs in a small number of occurrences, which usually does not repre-

sent its true physiological niche. Models calibrated in this phase may underestimate the spe-

cies’ future or potential distribution [7,8]. In later phases (space infilling), simple iSDMs lack

the capability of separating habitat or climate constraints from the propagule deprivation.

HPV iSDMs seem to be an effective solution to this problem in the regional spatial scale. They

are developed on the base of the typical predictors describing habitat, climate, land use and

cover, etc., together with HPVs representing various intrapopulation phenomena (e.g. popula-

tion persistence, migration).

Successful construction of high-quality models makes possible the creation of projec-

tions or forecasts for different scenarios, including those with artificially set HPV values,

e.g. in a case where the distance to the nearest previously existing site is very small. The

model projection for this scenario can be interpreted as a probability of the site’s existence

after the time equal to the minimal recentness of HPV used or a probability of the final

space infilling (Fig 9B, Fig 10C). There is even a possibility of computing other maps explor-

ing differences in the probability values of the abovementioned projections. Such maps

might include a forecast of new site emergence (a projection of the probability forecasted

for the near future minus the probability for the current occurrence, Fig 10D) or an unsa-

turation map (the probability of potential occurrence minus the probability for the current

occurrence, Fig 10E).

The concept of HPV can be extended to other species groups that break assumptions of

equal probability, e.g. rare or declining species like fen meadow species, whose occurrence

probability depends on the distribution of their earlier sites (Fig 9C). The process of local

extinctions may be more related to change of historic land use regimes, i.e. changes in suitable

habitat availability. From the spatial and statistical point of view, present occurrences have

been either “recruited” from former ones or settled in new places. In both cases (survival and

colonization), clear spatio-temporal dependence of the distribution in year Y on the past distri-

bution in year Y minus time span should exist and should be detectable by the HPV models.

Thus HPV-based quasi semi-mechanistic SDMs are worth testing in such cases, as they may

be both the simplest and most realistic tool for understanding and prediction available to ecol-

ogists and nature managers.

Fig 9. Possible applications of historical proximity variables (HPV) in quasi semi-mechanistic species

distribution models (SDMs). (a) The inclusion and estimation of the explicit spatio-temporal relationships

between the current and the earlier distribution of the modelled species enables one to make a forecast using

the distance from the current distribution as one of the predictors. (b) The substitution of the distance to the

nearest earlier site with low or zero values makes possible computing the equivalent of the potential range for

invasive species. (c) The same idea should be applicable to the modelling of the declining species, where the

distance and the number of the previous sites should ameliorate the estimation of the current distribution.

https://doi.org/10.1371/journal.pone.0184677.g009

Improved SDM models for invasive giant hogweed

PLOS ONE | https://doi.org/10.1371/journal.pone.0184677 September 19, 2017 17 / 22

https://doi.org/10.1371/journal.pone.0184677.g009
https://doi.org/10.1371/journal.pone.0184677


Fig 10. Projections of current, forecasted and potential distribution maps and their derivative

products, produced using historical proximity variables (HPV) for the giant hogweed data from 2012,

with distance to the nearest site 2 years earlier as an HPV variable [45]. Maps a-c are weighted mean

projections of ensemble models with 3 algorithms (GBM, RF, CTA), 3 sets of 1500PA, 3 repetitions.

ROC = 0.971. BIOMOD2 3.1.25, R 3.0.2.

https://doi.org/10.1371/journal.pone.0184677.g010
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