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Abstract: Recently, phenylboronic acid (PBA) gel containing microneedle (MN) technology with acute
and sustained glucose-sensitive functionality has attracted significant research attention. Herein,
we report a polyvinyl alcohol(PVA)-coated MNs patch with an interconnected porous gel drug
reservoir for enhanced skin penetration efficiency and mechanical strength. The hybrid MNs patch
fabricated with a novel, efficient method displayed a “cake-like” two-layer structure, with the tip part
being composed of boronate-containing smart gel attached to a porous gel layer as a drug reservoir.
The porous structure provides the necessary structural support for skin insertion and space for
insulin loading. The mechanical strength of the hybrid MNs patch was further enhanced by surface
coating with crystallized PVA. Compared with MNs patches attached to hollow drug reservoirs,
this hybrid MNs patch with a porous gel reservoir was shown to be able to penetrate the skin more
effectively, and is promising for on-demand, long-acting transdermal insulin delivery with increased
patient compliance.

Keywords: phenylboronic acid; gel; glucose-responsive; microneedle; insulin; drug reservoir

1. Introduction

Insulin therapy remains one of the most important aspects of diabetes treatment,
especially Type 1 and advanced Type 2 diabetes [1,2]. Usually, insulin therapy requires sub-
cutaneous injections several times per day, which results in pain, infections, and decreased
quality of life (QoL) [3,4]. Thus, there is a need for novel delivery methods for insulin that
are noninvasive and convenient. In this regard, transdermal insulin delivery has attracted
attention due to its advantages such as better patient compliance and avoiding the first-pass
effect [5]. However, the molecular weight of human insulin (5808 Da) exceeds that of the
threshold (less than 500 Da) for permeating the stratum corneum barrier [6]. To overcome
this, various chemical or physical enhancement methods have been investigated, such
as chemical or biochemical enhancers, electroporation, magnetophoresis, iontophoresis,
etc. [7–9]. Among these, microneedle (MN) technology has attracted great interest due to
its convenience, high delivery efficiency, low cost and painless administration [10]. MN
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patches contain needles that are sharper than hypodermic needles, with lengths of approxi-
mately several hundred micrometers, i.e., long enough to penetrate the stratum corneum
without reaching blood vessels or nerves [11]. Therefore, MN patches can form microscale
channels for efficient transdermal insulin delivery in a noninvasive way [12].

Another concern associated with insulin therapy is inconsistent glycemia control.
Overdoses of insulin can result in hypoglycemia that may lead to behavioral and cognitive
disturbance, coma, brain damage, and even death [3]. Smart insulin MN patches, encap-
sulating glucose-sensitive elements such as glucose oxidase (GOx) [13], glucose-binding
proteins such as concanavalin A (Con A), and [14] phenylboronic acid (PBA) [15], negate
this risk by mimicking the pancreas, secreting insulin in response to hyperglycemia [16]. For
example, the reported GOx polymeric nanoparticles embedded smart insulin MN patches
are capable of providing on-demand insulin release; this is essential to achieve continuous
glycemic control in a manner which is minimally dependent on patient compliance [17–19].
However, safety concerns associated with GOx, such as intolerance of long-term use,
protein-denaturing issues during storage, the creation of toxic byproducts via reactions
with glucose, and “burst-like” release behavior in response to hyperglycemia conditions,
may affect its wide application [13,20–22]. Compared with protein-based glucose-sensitive
elements, PBA has unique advantages. As a synthetic compound, it avoids problems of
denaturing, and its interaction with glucose does not lead to the creation of any harmful
byproducts [23]. In addition, the reversible glucose-binding characteristic guarantees the
long-term functionality of PBA-based MNs, and the glucose sensitivity can be controlled
by modifying the stereochemistry and electronic properties [24].

These features underline the potential of PBA in glucose sensing and self-regulated in-
sulin delivery applications. Our group has designed a derivative of PBA bearing optimally
electron-withdrawing para-carbamoyl and meta-fluoro substituents (4-(2- acrylamidoethyl
carbamoyl)-3-fluorophenylboronic acid, AmECFPBA), achieving a pKa value of about 7.2,
i.e., close to physiological pH [25,26]. Since AmECFPBA undergoes a glucose-dependent
change in anionic boronate fraction, combining it with acrylamide hydrogel generates a
surface localized, microscopically dehydrated “skin layer” in response to glucose. This
“skin layer” is able to control the diffusion of the loaded insulin, and disappears upon
hydration with an increase of glucose concentration. Thus, a “skin layer” driven insulin
release control capacity allows the synthetic PBA gel to function as a self-regulated insulin
delivery system [27]. We have further developed several types of boronate-containing
hydrogel MNs exhibiting acute and long-term glucose-responsive insulin release control, to-
gether with improved safety and feasibility for large-scale production due to their enzyme-
and nanoparticle-free characteristics [28–30].

Aspects which require further research are as follows: (i) the hollow structure of
the drug reservoir attached to the boronate-containing smart hydrogel MNs considerably
impacts their skin insertion efficiency; and (ii) limited drug loading capacity remains an
issue common to all MNs [31]. The strategy of attaching a drug reservoir to the back of
MNs is advantageous in terms of providing adequate drug loading for long-term use [31]; a
hollow drug reservoir allows sufficient space for drug loading. However, its hollow nature
may decrease the skin insertion efficiency, since the insertion force cannot be transferred to
the majority of the needles located in the middle part.

Hence, here, we report a hybrid glucose-responsive insulin MNs patch attached to
a porous gel drug reservoir for enhanced skin penetration efficiency. Three fabrication
methods were investigated, and ultimately, a two-step photopolymerization method was
selected to fabricate the MNs patch. The PBA-containing hydrogel constitutes the needle
tips only, while the porous gel layer attached to the back serves as the drug reservoir.
The interconnected porous structure of the porous gel reservoir provide space for insulin
loading and ensure physical support, especially in the middle part of the MNs, where
force is applied during use. Furthermore, the loaded liquid insulin solution could be
transported to the needle tip by capillary action. To further improve the mechanical
properties of the proposed device, the MNs patch was coated with a crystalized PVA layer
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by the dipping-drying method. This MNs patch, with a “cake-like”, two-layer structure,
displayed acute and sustained self-regulated insulin delivery with significantly improved
mechanical strength and skin insertion efficiency, which suggests its potential for diabetes
management applications.

2. Results and Discussion
2.1. Gel Synthesis

Porous gel was synthesized according to a method described in a previous publica-
tion [32]. A cross-section SEM image (Figure 1A) clearly shows the interconnected pores
present throughout the gel after removing porogen PEG. This porous structure enabled
rapid fluid transportation [33,34]. As a result, this porous matrix could be readily filled
with the pregel solution (of glucose-responsive gel) due to its capillary action, followed by
diffusion throughout the micropores [32]. After APS/TEMED-catalyzed radical copolymer-
ization, the glucose-responsive gel formed within the porous structure, and the hybrid gel
was obtained. Figure 1B shows the internal structure of the hybrid gel, which is remarkably
different from that in Figure 1A. The SEM image proves the successful development of a
hybrid, glucose-responsive porous gel, highlighting the benefits of the porous structure for
both wetting and ease of diffusion.
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Figure 1. SEM image of (A) porous gel and (B) porous gel combined with glucose-responsive gel.

2.2. Hybrid MNs Fabrication

The MNs patch was fabricated with widely-used micromolding technology [35]. The
depth of the MN patch was designed to be 700 µm, i.e., enough to effectively and painlessly
penetrate the stratum corneum but not so long as to touch nerve fibers and blood vessels.

Type 1 hybrid MNs were fabricated by immersing the porous gel MNs in a glucose-
responsive pregel solution (Figure 2A). The porous MNs displayed opaque color (Figure 2B)
due to light scattering caused by the pores. Rhodamine B was added to the pregel solution
to visualize the distribution of the glucose-responsive gel in the hybrid MNs. As seen in
Figure 2B, although a pinkish color was observed in the internal structure, the majority of
the glucose-responsive gel remained on the surface. This was due to the quick gelation
which occurred during the APS/TEMED-catalyzed radical copolymerization, i.e., the
glucose-responsive gel formed on the surface before wetting and diffusing into the porous
structure. Furthermore, the MNs tips formed by the porous gel were fragile, and broke
when peeled off from the PDMS template. This affects the needle shape and further impacts
skin penetration. Thus, another method was sought for hybrid MNs fabrication.

The type 2 hybrid MNs patch was fabricated by one-step photopolymerization.
The polymerization of glucose-responsive gel was initiated by photoinitiator Irgacure
184 instead of APS/TEMED. As shown in Figure 3, the pregel solutions of porous gel
and glucose-responsive PBA gel were blended in various ratios and added to the PDMS
template to allow MNs formation under UV light. Although conical needle shapes were
observed in the MNs patch fabricated using this method, the distribution of the two gels
was not homogenous (Figure 3B,C), which may affect the insulin release profile.
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Figure 3. (A) Schematic of type 2 hybrid MNs fabricated by blended pregel solution. (B) Morphology
of type 2 hybrid MNs fabricated by blending the pregel solution with a volume ratio of porous
gel/glucose-responsive gel 5/5 (v/v). (C) Morphology of type 2 hybrid MNs fabricated by blending
the pregel solution with a volume ratio of porous gel/glucose-responsive gel 6/4 (v/v).

The hybrid MNs fabrication method was further optimized. Two-step photopolymer-
ization was applied to avoid inhomogeneous distribution of the two gels. Figure 4A shows
a schematic of the fabrication by two-step photopolymerization of type 3 hybrid MNs. To
ensure the quality of the needle molding and to control insulin release, the needle tip part
was first formed by glucose-responsive gel (yellowish color in Figure 4B). After photopoly-
merization of the tip part, the pregel solution of porous gel was added to serve as the drug
reservoir (i.e., the white base layer in Figure 4B). This “cake-like” structure was expected to
achieve glucose-responsive insulin release, whilst the interconnected porous drug reservoir
was intended to promote rapid fluid transportation with enhance mechanical strength.
The conical needle shape (Figure 4C) and porous base layer structure (Figure 4D) were
confirmed by SEM images.
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2.3. Mechanical Strength and Skin Penetration

Relatively low mechanical strength limits the wide application of hydrogel MNs [36].
To increase the mechanical strength, one strategy is to fabricate MNs with a dense polymer
network. As seen in Figure 5A,B, with increasing crosslinking density and monomer con-
centration, the mechanical strength increased accordingly. These results imply that a tight
polymer network could result in MNs with increased mechanical strength. Meanwhile,
the gel formulation must be carefully optimized to avoid decreased drug release rate with
increased crosslinking density and monomer concentration. Another strategy is surface
coating with materials with ideal mechanical strength. PVA is a widely used material for dis-
solving MNs due to its excellent biocompatibility and hydrophilicity [37]. Our MNs could
be easily coated with PVA by the dipping-drying method. Notably, the aqueous stability
and stiffness of PVA can be dramatically increased with heat treatment due to heat-induced
crystallization [30]. After heat treatment, the mechanical strength of the type 3 hybrid
MNs surface coated with PVA increased from 335.6 ± 14.2 to 505.6 ± 64.5 mN/needle
(Figure 5C). The mechanical strength of PVA-coated type 3 hybrid MNs was further en-
hanced by increasing coating times. By repeating the coating and heating process three
times, the MNs patch yielded 672.6 ± 14.1 mN/needle, i.e., a 10.2-fold margin of safety
over the force required for insertion into the skin (60 mN per needle) without breakages.
No obvious morphological changes were observed with different coating times (Figure S1).

Besides mechanical strength enhancement due to the optimized gel formulation and
PVA coating, the porous drug reservoir design also increased skin insertion efficiency.
Figure 6A shows a schematic of a previously reported drug reservoir attached to the back
of MNs [28,30]. Due to its hollow design, the MNs patch functioned like a diaphragm; con-
sequently, the force applied to the back of the patch was concentrated at the edge, with little
force being transferred to the needles in the middle area. In contrast, the newly designed
reservoir with an interconnected porous structure helped to achieve more homogeneous
force distribution (Figure 6B). Thus, every needle should be subjected to a similar level
of pressure, leading to enhanced skin insertion efficiency. Figure 6C,D compare the skin
insertion efficiency between the two types of reservoirs. The skin penetration efficiencies
were 65% (Figure 6D) and 30% (Figure 6C), respectively. The conical needles remained
intact after skin insertion (Figure S2).
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2.4. Glucose Responsive Insulin Release

The increased monomer concentration and crosslinking density, different polymeriza-
tion methods and surface coating with a PVA layer would obviously affect the functionality
of the gel. Hence, it was important to verify the glucose-responsive insulin release capa-
bility of the type 3 hybrid MNs. Insulin was added to the porous drug reservoir of the
PVA-coated MNs patch, and the back and side parts of the porous reservoir were sealed
with water-proof epoxy resin (silicone one-component room temperature vulcanizing rub-
ber) to avoid leakage. This insulin-loaded type 3 hybrid MNs patch was challenged with
various glucose patterns (Figure 7A. As seen in Figure 7A, the release of insulin could be
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controlled according to the glucose pattern for at least 9 h. This result suggests that in
type 3 hybrid MNs, a “skin-layer” still formed under normoglycemia and hypoglycemia
conditions which regulated the glucose-responsive insulin release. Figure S3 shows the
MNs patch still maintained its original needle structure after challenged with various
glucose patterns and release loaded insulin for 9 h.
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Figure 7. (A) In vitro glucose-responsive insulin release experiment at pH 7.4 and 37 ◦C. Time-course
changes in the fluorescence intensity of FITC-labeled insulin released from microneedle with a “cake-
like” structure (black line). Temporal patterns of the fluctuation in glucose concentration (red line).
Initial equilibration was performed until no leakage of insulin was found. (B) Glucose-dependent
equilibria of PBA derivatives and schematic representation of skin-layer-regulated glucose-responsive
insulin release.

Consistent with the glucose-dependent shift in the equilibria of PBA (Figure 7B),
the surface of the PBA gel-containing MNs was found to change rapidly, from a swollen
hydrophilic state to a shrunken hydrophobic state, upon abrupt decrease in glucose con-
centration, forming a thin surface layer with collapsed polymer network [25,27,38]. This
dehydrated surface layer, or “skin layer”, was able to control the diffusion of loaded in-
sulin molecules, and thus, shut down release under hypoglycemia conditions. With an
increase of glucose concentration and binding with PBA, the hydration of the PBA gel led
to the disappearance of the skin layer, thereby restoring insulin release. By fine-tuning
the chemical structure of the PBA and gel, the glucose concentration at which the skin
layer formed was brought to normal blood glucose levels, thus allowing effective insulin
release control under physiologically relevant conditions [26]. This “skin-layer” controlled
release mechanism offers unique advantages, such as remarkably shortened response time,
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reversibility, and continuous insulin diffusion control, compared to methods based on other
glucose-sensitive elements.

3. Conclusions

Herein, we described a PVA-surface-coated, glucose-responsive insulin-delivering
MNs patch attached to a porous gel back-layer serving as a drug reservoir for improved
mechanical strength and skin penetration.

Among three fabrication methods, two-step photopolymerization was found to be the
most promising. In this method, the tip region was formed by the PBA-containing smart
hydrogel, and the base layer was synthesized by the porous gel with interconnected pores.
This porous structure left enough space for insulin loading and rapid fluid transportation
by capillary action and diffusion. Furthermore, compared to a previously designed drug
reservoir with a hollow structure, the porous gel layer provided structural support when
applying force to the back of the MNs patch. The mechanical strength of the patch was
further improved by optimizing the monomer concentration and crosslinking density of
the PBA-containing hydrogel, as well as the PVA surface coating method. The PVA-coated
MNs with porous gel layer displayed significantly improved skin penetration efficiency
compared to MNs attached to hollow drug reservoirs. More importantly, despite the PVA
surface coating, neither the modified gelation protocol nor the attachment of the porous gel
layer interfered with the glucose-responsive functionality of the MNs patch. Acute and
long-lasting glucose-responsive insulin release was observed, suggesting the potential of
this device to achieve persistent glycemic control for diabetic patients in a painless and
convenient way.

4. Materials and Methods
4.1. Materials

Trimethylolpropane trimethacrylate (TRIM), triethyleneglycol dimethacrylate, polyethy-
lene glycol (10 kDa), 2-methoxyethanol, glycidylmethacrylate, Irgacure 184, N-Isopropylacry
lamide (NIPAAm), ammonium persulfate (APS), tetramethyl-ethylenediamine (TEMED),
4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AmECFPBA) and methanol,
N,N′-methylenebis- (acrylamide) (MBAAm) were purchased from Wako Pure Chemical Indus-
tries (Tokyo, Japan). Poly(vinyl alcohol) (Mw 13,000–23,000, 98% hydrolyzed) and fluorescein
isothiocyanate (FITC)-labeled bovine insulin were purchased from Sigma-Aldrich (Tokyo,
Japan). Mouse skin was purchased from Hoshino Laboratory Animals, Inc., Bandou-shi,
Japan. Waterproof epoxy resin KE-3424-G was obtained from Shin-Etsu Chemical Co. Ltd.,
Tokyo, Japan.

4.2. Methods
4.2.1. Synthesis of Porous Gel

Porous gel with PEG as a porogen was synthesized according to the method described
in a previous publication (Scheme 1) [32]. Briefly, PEG was dissolved in 2-methoxyethanol
with a final concentration of 20 wt%. The monomer solution was prepared by mixing
glycidyl methacrylate, TRIM, and TEGDMA with a molar ratio of 1:0.26:0.79. Before
photopolymerization, the porogen solution was mixed with a monomer solution with a
porogen ratio of 56%. Irgacure 184 (1 wt% to the monomer) was added to the reaction
solution as a photoinitiator. The reaction was carried out under 365 nm UV light for 15 min.
A porous structure was obtained by immersing the gel in methanol/water (1:1 volume)
several times to remove the porogen PEG.

4.2.2. Synthesis of Hybrid Glucose-Responsive Porous Gel

The glucose-responsive PBA gel reaction solution was prepared by dissolving NIPAAm
and AmECFPBA in MeOH/H2O (4/6, v/v) with a fixed molar ratio of 92.5:7.5 and a total
monomer concentration of 3 M. The cross-linker, MBAAm was added to the pregel solution
with 20 mol% monomer concentration. After the addition of 12 µL of 10 wt% APS and 12 µL
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of TEMED into 1 mL of reaction solution, the polymerization was initiated (Scheme 2). To
synthesize the hybrid glucose-responsive porous gel, the porous gel with porogen removed
was quickly immersed in the glucose-responsive PBA gel solution, vacuumed for 2 min
to ensure the pregel solution entered the pores present throughout the porous gel, and
then removed to allow polymerization to occur. Unreacted monomers were removed by
washing in MeOH/H2O (4/6, v/v) several times. The internal structure of the hydrogels
was visualized by scanning electron microscopy (SEM, JEOL, JSM-6000, Yamagata, Japan).
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4.2.3. Type 1 Hybrid MNs Fabrication

Type 1 hybrid MNs were fabricated by micromolding technology with conical shape
needle template (needle height 700 µm, pitch-to-pitch size 500 µm, patch diameter 1.2 cm).
Pregel solution of the porous gel was added on the MNs template, vacuumed for 5 min
to ensure that the reaction solution perfectly filled the MNs tip and base layer region, and
photopolymerized under 365 nm UV light for 15 min. Once the porogen was removed
and the MNs were totally dried, the MNs were immersed in the glucose-responsive PBA
pregel solution containing TEMED/APS as an accelerator and initiator, and vacuumed for
2 min. Radical copolymerization of the glucose-responsive PBA gel was carried out at room
temperature as described before. The unreacted monomers were removed by washing.

4.2.4. Type 2 Hybrid MNs Fabrication

Type 2 hybrid MNs were fabricated by combining the porous gel and the glucose-
responsive PBA gel. To ensure gelation under UV light, Irgacure 184 was added to the
glucose-responsive PBA gel solution as an initiator, instead of APS and TEMED. The porous
gel reaction solution was mixed with the glucose-responsive PBA reaction gel at a certain
ratio, and photopolymerization was carried out under 365 nm UV light for 15 min. The
unreacted monomers were removed by washing.

4.2.5. Type 3 Hybrid MNs Fabrication

Type 3 hybrid MNs were fabricated in two steps. Firstly, the glucose-responsive
PBA reaction gel with Irgacure 184 as a photoinitiator was added to the MNs template,



Gels 2022, 8, 74 10 of 12

vacuumed for 5 min, and photopolymerized under 365 nm UV light for 90 s. Then, the
porous gel solution was added to the MNs template and photopolymerization continued
for 15 min. The unreacted monomers were removed by washing.

4.2.6. PVA Coating

The tip part of the type 3 hybrid MNs was coated with PVA by the tipping-drying
method. The MNs needles were tipped with 10 wt% PVA solution, with residual solution
being carefully removed by tissue paper. The samples were then left to dry overnight at
room temperature. The following day, the PVA-coated MNs were placed in an oven at
130 ◦C for 1 h to induce crystallization of PVA. This coating and heating step was repeated
several times, as needed.

4.2.7. MNs Morphology Study

The morphology of the MNs was observed by optical microscope (Olympus, Japan)
and SEM. The dried MNs sample was coated with a thin layer of gold (around 150 nm in
thickness) to ensure sufficient conductivity. The gold-coated sample was titled at a certain
angle as needed and visualized by SEM (JEOL, JSM-6000, Yamagata, Japan).

4.2.8. Mechanical Strength

The mechanical strength of the MNs was evaluated by a bond tester (Dage 5000,
Nordson, Manchester, UK). The MNs were fixed to the test platform by vacuum with a
stainless steel testing probe placed 200 µm above the MNs base layer. During the test, the
testing probe pressed horizontally against the needles with increasing force. The mechanical
strength was recorded as the maximum loading force before needle fracture.

4.2.9. Skin Penetration

The micropores resulting from MNs skin penetration were observed by staining MNs
administrated (5 min) mouse skin with trypan blue for 30 min. The skin penetration
efficiency was calculated by the following equation:

Skin penetration efficiency = Micropores created by MNs skin penetration/Total number
of needles in one MNs patch × 100%

4.2.10. In Vitro Release

The glucose-responsive release profile of the MNs was investigated by high-performance
liquid chromatography (HPLC, JASCO HPLC system) with a Tricorn empty high-performance
column (GE Healthcare, 50 mm length, inner diameter 10 mm). Insulin was loaded into the
porous drug reservoir of the MNs patch coated with crystallized PVA by immersing the
MNs in 130 mg/L FITC-insulin solutions and vacuuming for 5 min. The drug reservoir
was sealed by a waterproof epoxy resin, i.e., KE-3424-G. The drug-loaded MNs patch
was challenged with glucose at various concentrations (between 100 and 500 mg/dL) by
passing a mixture of PBS and 100 mg/dL glucose solution through the two pumps of the
HPLC system, controlled by the ChromNAV software (JASCO, Tochigi Prefecture, Japan).
The flow rate was kept at 1 mL/min, and the MNs patch was equilibrated with PBS until
no leakage was observed. The in vitro release of FITC-labeled insulin was monitored by
determining the real-time fluorescence of FITC (Ex 490 nm, Em 520 nm). The in situ glucose
concentration was determined by the refractive index detector.

4.2.11. Statistical Analysis

All measurements were taken in triplicate (n = 3). Reported results and graphical data
are mean values with a standard deviation encompassing a 95% confidence interval.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/gels8020074/s1, Figure S1: The appearance of the type 3 MNs with “cake-like” structure
(A) without PVA coating, (B) coated with PVA and heated once, (C) coated with PVA and heated
twice and (D) coated with PVA and heated three times. Figure S2: The appearance of the type 3 MNs
with a “cake-like” structure after skin insertion. Figure S3: The appearance of the type 3 MNs with a
“cake-like” structure (A) before and (B) after HPLC experiment.
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