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Hypothalamic kisspeptin neurons stimulate gonadotropin-releasing hormone (GnRH) and
luteinizing hormone (LH) release. Kisspeptin neurons in the anteroventral periventricular
nucleus (AVPV) of rats induce an LH surge for ovulation, and those in the arcuate nucleus
(ARC) regulate pulsatile LH secretion for follicle development and spermatogenesis.
Dysfunction of kisspeptin neurons thus reduces the reproductive function. This review
focuses on the effect of androgen or aging on kisspeptin expression in rats. Although
androgen directly suppresses ARC kisspeptin neurons in female rats, the AVPV kisspeptin
neurons are hardly affected. In rats, plasma LH concentrations decrease in both sexes with
aging, and ARC kisspeptin expression also decreases in old rats compared with young rats.
In addition, kisspeptin neurons may be associated with hyperprolactinemia in old female rats
because they are known to release prolactin through hypothalamic tuberoinfundibular
dopaminergic (TIDA) neurons. Hypothalamic kisspeptin neurons are thus the main regulator
to secrete LH, and inhibition of kisspeptin expression leads to various kinds of reproductive
dysfunction.
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I. Hypothalamic Kisspeptin Neurons on
Reproduction

Hypothalamic kisspeptin neurons play a pivotal role in
regulating the reproductive function by stimulating the
release of gonadotropin-releasing hormone (GnRH) and
luteinizing hormone (LH) in mammals. G protein-coupled
receptor 54 (GPR54) is a kisspeptin receptor encoded by
the Kiss1 gene, and mutations in GPR54 cause hypo‐
gonadotropic hypogonadism in humans and mice [7, 12,
39]. In rodents, hypothalamic kisspeptin neurons are
primarily localized in the anteroventral periventricular
nucleus (AVPV) and arcuate nucleus (ARC). AVPV kiss‐
peptin neurons are considered to be a target of estrogen-
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positive feedback to induce preovulatory GnRH/LH surges.
However, ARC kisspeptin neurons are negatively regulated
by sex steroids on GnRH/LH secretion. ARC kisspeptin
neurons that coexpress neurokinin B (NKB) and dynorphin
(Dyn) are known as KNDy neurons. They are thought to
be associated with the generation of pulsatile GnRH/LH
secretions [27, 45]. NKB and Dyn are also negatively con‐
trolled by estrogen [22]. Our previous immunoelectron
microscopic study showed that three neuropeptides in KNDy
neurons are separately contained in discrete neurosecretory
vesicles of cell bodies and axons (Fig. 1) [30], suggesting
that these neuropeptides, kisspeptin, NKB and Dyn are
separately synthesized in KNDy neurons.

II. Effect of Androgen on Kisspeptin
Expression and LH Release in Female Rats

Hyperandrogenemia is characterized by elevated
androgens in the plasma and is one of the criteria for
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the diagnosis of polycystic ovary syndrome [8]. Women
with hyperandrogenemia have ovulatory abnormalities,
which may lead to infertility [13]. Manneras et al.
showed that female rats continuously administered 5α-
dihydrotestosterone (DHT) from prepuberty to an adult age
exhibited irregular estrus cycles [29]. Additionally, pulsa‐
tile LH secretion was suppressed in DHT-treated female
rats (Fig. 2A) [21]. Thus, androgen affects the female
reproductive function. Kisspeptin neurons in the ARC are
considered to be a pulse generator of GnRH/LH for follicle
development in females. The number of Kiss1-expressing

cells in the ARC was significantly lower in DHT rats (Fig.
2A) [21], and hypothalamic kisspeptin immunoreactivity
was reduced in female rats chronically exposed to DHT [4].
These results indicated that androgen suppresses kisspeptin
expression in the ARC, resulting in the suppression of pul‐
satile LH secretion in female rats. These results coincide
with previous studies on male mice which found that Kiss1
expression in the ARC was reduced by DHT treatment in
castrated mice [40].

The LH surge in females is induced by high levels of
estrogen and triggers ovulation. Kisspeptin neurons in the

Double immunoelectron micrographs of the axons of KNDy neurons in the ARC of female rats. (A) Solid arrowheads show kisspeptin-
immunoreactive (ir) vesicles. Open arrowheads, neurokinin B (NKB)-ir vesicles. (B) Solid arrowheads, kisspeptin-ir vesicles. Open arrowheads,
dynorphin A (DynA)-ir vesicles. (C) Solid arrowheads, DynA-ir vesicles. Open arrowheads, NKB-ir vesicles. Bar = 200 nm. (D) Schematic illustration
of the KNDy neuron. Kisspeptin (K), NKB (N) and DynA (D) were observed in discrete neurosecretory vesicles in the axons and the cell bodies. For
details, refer to [30].

Fig. 1. 

(A) Kiss1 mRNA-expressing cells in the ARC and LH pulses in chronically DHT-treated female rats. Female rats were implanted subcutaneously
with 90-day continuous-release DHT pellets at weaning dates. Non-DHT animals were intact then. DHT and non-DHT animals were ovariectomized 2
weeks before the blood and brain were collected. Kiss1 cells were detected by in situ hybridization. Bar = 100 μm. (B) Kiss1 cells in the AVPV and
estradiol (E2)-induced LH surge. DHT and non-DHT rats were ovariectomized and implanted with tubes containing a high concentration of E2. Bar =
100 μm. For details, refer to [21].

Fig. 2. 
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AVPV respond to high levels of estrogen and induce an LH
surge. However, no LH surge was detectable in DHT
female rats in the presence of high estradiol (E2) (Fig. 2B).
Despite that, the number of AVPV Kiss1-expressing cells
did not vary significantly between non-DHT female rats
and DHT rats (Fig. 2B) [21]. In contrast to the ARC, kiss‐
peptin neurons in the AVPV were not affected by androgen
in female rats.

Kisspeptin neurons in the ARC express androgen
receptor (AR) in male mice and ewes [28, 40] and in the
AVPV of male mice [5]. Our study demonstrated that about
63% of kisspeptin neurons in the ARC expressed AR in
female rats, whereas kisspeptin neurons hardly expressed
AR in the AVPV (about 1.5%, [21]) (Fig. 3). Excessive
androgen levels in female animals thus suppress kisspeptin
expression in the ARC through AR, resulting in subsequent
suppression of LH pulses. Conversely, kisspeptin neurons
in the AVPV are not considered to be directly affected by
androgen (Fig. 3). The suppression of high E2-induced LH
surges in DHT rats may be caused by disruption in both the
hypothalamus and the pituitary, because administration of
GnRH agonist or kisspeptin did not induce LH release in
the plasma of DHT rats [21]. Hence, hyperandrogenemia in
women may adversely affect ARC kisspeptin neurons,
resulting in anovulation and menstrual irregularities.

III. KNDy Neurons in Aging Rats
The secretion of gonadotropins is elevated in post‐

menopausal women because the negative feedback effects
of ovarian sex steroids are lacking after the onset of the
menopause. However, some studies have shown that the
frequency or amplitude of pulsatile LH secretion decreases
in older postmenopausal women compared with younger
ones [16, 26, 36, 37]. These studies show that LH secretion
gradually decreases as aging progresses postmenopause. In

older men, testosterone levels decreases with aging [17];
however, some studies of older men did not show this
reduction in testosterone levels [1, 46]. Additionally, LH
concentrations increased modestly and slowly with aging in
men [46]. Mean LH secretion decreases with aging in rats,
and in old female rats, the amplitude of the LH pulse is also
lower [10]. The frequency and amplitude of LH pulses
decreased in old male mice compared with young ones [6].
Our study showed that total LH concentrations over three
hours decreased in both sexes with aging (Fig. 4A) [25].
These results suggest that LH secretion in rodents also
reduces with aging.

Regarding KNDy neurons, the number of Kiss1-
expressing cells in the ARC was lower in old female rats
compared with young ones (Fig. 4B). The mRNA expres‐
sion of Tac3 and Pdyn genes in the ARC, which are respec‐
tively encoding NKB and Dyn, also decreased in old
female rats. In male rats, the total number of Kiss1-, Tac3-
and Dyn-expressing cells in the ARC was lower in old rats
compared with young rats (Fig. 4B). The numbers of
kisspeptin-, NKB-, and dynorphin A-immunoreactive (ir)
cells were also lower in old rats of both sexes [25]. These
results show that a reduction in KNDy expression may be a
cause of reproductive dysfunction in old animals.

IV. Interaction between Kisspeptin Neurons
and Hypothalamic Tuberoinfundibular
Dopaminergic (TIDA) Neurons in Aging
Rats

The tuberoinfundibular dopaminergic (TIDA) neurons
are known to regulate prolactin secretion. The cell bodies
of TIDA neurons are found in the dorsomedial ARC and
project to the median eminence. Dopamine secreted from
TIDA neurons is released into the pituitary portal blood and
inhibits prolactin release in lactotrophs [11, 14]. TIDA neu‐

Expression of androgen receptor (AR) on kisspeptin neurons in the AVPV and ARC of normal adult female rats. Kiss1 mRNA-expressing cells,
red; AR-immunoreactive (ir) cells, green. Arrowheads indicate coexpression of Kiss1 and AR. Bar = 50 μm. For details, refer to [21].

Fig. 3. 
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rons are inhibited by serotonin, noradrenaline and estrogen,
resulting in increased prolactin secretion [11]. Kisspeptin
also induces prolactin release through inhibition of TIDA
neurons in the presence of estrogen [35, 42], and its fibers
are in physical contact with TIDA neurons [38, 42]. Biotin-
labeled kisspeptin bound to the cell bodies of TIDA neu‐
rons [19]. In addition, kisspeptin neurons express prolactin

receptors [24] and are suppressed by prolactin [3]. Thus,
kisspeptin and prolactin levels are regulated in coordination
with each other.

Serum prolactin levels are known to increase with
aging in female [20, 41] and male rats [15]. Tyrosine
hydroxylase (TH) is an enzyme of catecholamine synthesis
and identifies dopaminergic neurons. There was no differ‐

LH pulses (A) and Kiss1 mRNA expressions in the ARC (B) of young and old rats. Animals were gonadectomized 2 weeks before the blood and
brain were collected. Young rats, 2–3 months (M) of age; old rats, 24–26 M. Kiss1-expressing cells were detected by in situ hybridization. Bar = 100
μm. For details, refer to [25].

Fig. 4. 

Double immunostaining for tyrosine hydroxylase (TH, green) and kisspeptin (red) in the dorsomedial arcuate nucleus (ARC) of rats. Upper panels
show images from the ARC of young rats during the diestrus stage. Lower panels show images from old rats (24 months of age). Bars = 50 μm. For
details, refer to [20].

Fig. 5. 
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ence in the number of TH-ir cell bodies in the ARC or in
the levels of TH mRNA expression in the hypothalamus
between young and old female rats [20, 32, 34]. However,
dopamine levels in the pituitary portal blood of old rats
were lower than in young rats of both sexes [32], and TH
activity in the medial hypothalamus was reduced in old
female rats compared with young ones [34]. Hyperprolacti‐
nemia in old rats may therefore be induced by a decrease in
TH activity followed by a decrease in dopamine secretion
rather than by a decrease in the number of TH-expressing
cells.

Kisspeptin neurons are in contact with TIDA neurons.
Kisspeptin-ir fibers were found in the dorsomedial ARC of
both young and old female rats, but the number of TH-ir
cells in contact with kisspeptin-ir fibers did not differ
between young and old female rats (Fig. 5) [20]. Con‐
versely, kisspeptin expression in the ARC was lower in old
rats compared with young rats [20, 25]; thus the kisspeptin-
ir fibers in old rats may be detected by an accumulation of
kisspeptin in the terminal fibers due to suppression of kiss‐
peptin secretion. Variations in kisspeptin expression and/or
secretion may affect prolactin secretion via TIDA neurons
in old rats. At least, contacts between kisspeptin neurons
and TIDA neurons appear to be maintained during aging.
Kisspeptin receptor was expressed in only 15% of TIDA
neurons [18], and a current study has shown that kisspeptin
neurons rather than TIDA neurons regulate prolactin secre‐
tion through dopaminergic neurons in the hypothalamic
periventricular nucleus [2]. Kisspeptin activates neuro‐
peptides FF receptors [9], so further studies are needed to
investigate whether kisspeptin stimulates prolactin release
through other receptors, and dopaminergic neurons are in
contact with kisspeptin neurons in other areas of old rats.

Kisspeptin neurons stimulate GnRH/LH releases. Estrogen (E)
positively affects AVPV kisspeptin neurons through estrogen receptors
(ER). Estrogen (E) and androgen (A) negatively affect ARC kisspeptin
neurons through each receptor. Kisspeptin also induces prolactin release
through inhibition of hypothalamic tuberoinfundibular dopaminergic
(TIDA) neurons.

Fig. 6. 

V. Conclusion

Figure 6 shows the summary of this review. Kisspeptin
neurons in the hypothalamus are one of main regulators for
reproduction, and thus their dysfunction will lead to an
attenuated reproductive function. Hyperandrogenemia and
aging are considered to adversely affect kisspeptin neurons
in the ARC. Other factors, including leptin [31, 33], thyroid
hormone [44] and corticotropin-releasing hormone [23, 43],
are also involved in the expression of kisspeptin neurons. It
would appear that hypothalamic kisspeptin neurons sense
information that is used to control the reproductive function.
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