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Abstract

Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome
19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-
binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors,
chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-
mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed
wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration
sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events
near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS
were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven
independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS
in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random
integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome.
In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to
integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome.
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Introduction

The family of adeno-associated virus (AAV) represents defec-

tive, helper-dependent viruses that need to establish latency to

ensure persistence in their primate hosts [1]. Upon natural

infections in humans AAV genomes were shown to persist mainly

as episomes and integrated AAV genomes were rarely detected

[2]. The molecular mechanisms leading to integration have only

been characterized for AAV type 2 that prefers integration near a

site on human chromosome 19q13.42, called AAVS1 [3]. The

specificity of AAV integration is mediated by the large regulatory

AAV proteins, Rep78/68 [4]. During productive AAV replication

in the presence of either adeno- or herpesvirus as a helper virus,

Rep78/68 is required for AAV gene expression and DNA

replication. The AAV origins of DNA replication reside in the

145 bp inverted terminal repeats (ITRs) that flank the 4.7 kb

single-stranded AAV genome. Rep78 and/or Rep68 are expressed

from the AAV p5 promoter and were shown to bind to the Rep-

binding site (RBS) within the AAV-ITRs [5]. Rep unwinds the

DNA and introduces a single-strand nick at the adjacent terminal

resolution site (trs) [6]. The AAV-ITRs also serve as cis elements

for chromosomal integration [4]. A RBS homologue present in the

AAV p5 promoter was shown to mediate AAV integration in the

absence of the ITRs [7]. DNA sequences homologous to the RBS

and a nearby trs element were also found in AAVS1 [8,9] and, in

vitro, ternary complex formation of Rep68 with the AAV-ITR and

AAVS1 was shown [10]. A 33 bp sequence of AAVS1 spanning

the RBS and the trs element was sufficient to mediate AAV

integration in vivo [4,11]. AAV integrated at variable distances

from the RBS in AAVS1 and sequence rearrangements were

frequently found at AAV-chromosome junctions [8,9,12,13,

14,15]. Quantitative real-time PCR analysis of AAVS1-specific

AAV-2 integration within hours after AAV-2 infection and at

increasing MOIs showed that 10 to 20% of infected cells displayed

AAV integration within a 4 kb region of AAVS1 on chromosome

19q13.42 [16,17]. In AAV-infected and subsequently selected cell

clones up to 80% of AAVS1-specific integration had been

described before [18].

Although AAV has not been associated with disease in humans,

it is well established that AAV Rep78/68 induces DNA damage,

cell cycle arrest [19] and apoptosis [20]. In addition, AAV Rep

interferes with helper adenovirus- [21] herpes simplex virus
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replication [22]. AAV holds much promise as a vector for gene

therapy. As a rule, recombinant AAV vectors persist as non-

integrated, nuclear episomes. AAV vectors lack the integration

promoting rep gene and therefore only occasionally integrate into

the host cell genome. The preferred integration of wildtype AAV-2

in chromosome 19q13.42 is unique and is commonly viewed as a

specifically evolved virus-encoded targeting mechanism. Multiple

attempts were published that aim to exploit Rep-mediated

targeting specificity for chromosome 19q13.42 for the specific

integration of gene therapy vectors [23,24,25,26,27,28]. Yet

chromosome 19q13.42 is not the only target region. The presence

of alternative integration sites has long been postulated and in silico

analysis detected numerous consensus Rep-binding sites in the

human genome. Many of these bound Rep in vitro [29] but their in

vivo accessibility for AAV integration has not been explored so far.

From an evolutionary standpoint the assumption that AAV

latency is ensured by more than one target site or mechanism

appeared reasonable.

This study was designed to close the knowledge gap between

AAVS1-specific and assumedly non-AAVS1-specific wildtype

AAV integration and to compare the identified genomic sites to

those preferred upon AAV vector transduction. An open survey of

chromosomal integration preferences for wildtype AAV-2 was

conducted and complemented by the bioinformatic analysis of

genomic motifs and patterns in the genomic regions surrounding

the integration loci.

Results

General strategy of LSM-PCR
The genomic structure of latent AAV in infected cells is highly

variable. Wildtype AAV-2 was shown to integrate into the host cell

genome, as well as persist as extrachromosomal, nuclear episomes

[2,30]. In either case multicopy, concatemeric structures predom-

inate and often lead to unpredictable rearrangements involving the

145 bp inverted terminal repeats (ITRs). Therefore the retrieval of

AAV-chromosome junctions suffers from the inherent problem of

inefficient PCR reads through the hairpin ITR into the adjacent

chromosomal sequences. This leads to a predominance of

rearranged AAV genomes lacking chromosomal junctions in

previous PCR-based studies [31,32,33]. Furthermore, previously

cloned junctions often displayed unknown intervening sequences

of varying lengths between AAV and the identified chromosomal

sequence [12,15,16,27,34,35,36]. Therefore, unambiguous assign-

ment of the AAV-derived and chromosome-derived parts of

junctions requires sufficient DNA sequence lengths.

Several methods to identify virus-chromosome junctions have

been developed to study retrovirus integration, where generally a

single proviral copy per chromosomal site is found [37,38]. The

ultimate structure of the integrated long terminal repeat (LTR) is

generally predictable in a way that allows an integration-specific

PCR design. Linear amplification mediated (LAM)-PCR was

initially designed to retrieve rare retroviral vector integration sites

from small, clinical sample sizes [38]. We established a LAM-PCR

with AAV primers in the ‘‘D’’ element of the AAV-ITR, the

innermost and sole ITR region without internal inverse repetitions

(Figure 1A). Unfortunately, pure AAV sequences with rearranged

ITRs predominated, AAV-chromosome junctions were rare and

the chromosomal DNA part often too short for unambiguous

assignment to a unique genomic site. We then tested ligation-

mediated (LM)-PCR that had been employed for broad surveys of

lentivirus (HIV) or c-retrovirus (MLV) integrations [39,40,41].

LM-PCR relies on a first LTR-specific primer. A linker is ligated

to the first PCR strand that typically ends at the chosen restriction

site within the unknown chromosomal sequence. A primer

complementary to this linker ensures second strand synthesis and

retrovirus-chromosome junctions are amplified by using a

combination of retrovirus LTR-specific and linker-specific primer

sets.

For this study a variation of LM-PCR, named linker-selection-

mediated (LSM)-PCR was developed which enriched for bona fide

AAV-chromosome fusion sequences. The genomic DNA of AAV-

infected cells was cleaved with restriction enzymes that lead to

sufficiently sized DNA segments to allow unambiguous genomic

assignment of the chromosomal junction (Figure 1B). DNA

sequences were amplified with one primer for a unique AAV-

sequence, either of the p5 promoter or of the cap gene. The other

primer binds to the linker DNA attached to the unknown

chromosomal site. The structure of the linkers forces the PCR to

initiate within the AAV genome, thereby suppressing amplification

of chromosomal DNAs lacking integrated AAV. The use of non-

cut enzymes for AAV-2 DNA helped to circumvent the problem of

ligating linkers to episomal, non-integrated AAV DNA sequences.

To further enrich for AAV-chromosome junctions a biotin tag was

attached to the 59-end of the linker primer. Thus, chromosome-

derived PCR products could be enriched by streptavidin-mediated

magnetic bead selection. This lead to PCR products selected for

both, the presence of AAV and of an unknown chromosomal

DNA sequence.

AAV-2 integration sites
Using LSM-PCR a total of 1700 cloned PCR fragments were

screened for DNA inserts of a minimal fragment size (.500 bp) to

insure unambiguous detection of AAV-chromosome junctions.

Out of 350 DNA sequence runs a total of 129 unique junction sites

could be assigned to the human genome. Of these, 109 fulfilled the

criteria outlined in the methods for unambiguous assignment of a

single chromosomal site. Junctions were retrieved with non-cut

enzymes for AAV-2, PvuII or EcoRV or with DraI, which cuts

once in AAV-2 DNA outside of the region covered by the PCR. In

addition, 43 wildtype AAV-2 infected Hela-derived single cell

clones were generated of which eight harboured AAV-chromo-

some junctions that fulfilled the criteria outlined in the methods.

DNA sequence analysis revealed that AAV-2 wildtype integra-

tion sites were scattered over the entire human genome. The

Author Summary

This is the first unbiased genome-wide analysis of wildtype
AAV integration combined with a thorough bioinformatic
analysis of preferred genomic motifs and patterns in the
neighbourhood of the integration sites identified. The
preference of Rep-dependent AAV integration near
multiple consensus Rep-binding sites was lost in the case
of AAV vector integration in the absence of Rep
expression. Our findings challenge the commonly accept-
ed notion of site-specific AAV targeting to AAVS1 on
chromosome 19q13.42. Although AAVS1 contains a
canonical Rep-binding site, numerous additional sites
including the newly identified hotspots AAVS2 on
chromosome 5p13.3 and AAVS3 on chromosome 3p24.3
harbour functional Rep-binding sites suitable for AAV
integration. AAV vectors are quickly moving forward in the
clinic and Rep-dependent vector targeting strategies are
being actively pursued. Detailed information of AAV
wildtype versus recombinant AAV vector integration sites
and preferences are needed to evaluate the safety profile
of AAV vectors in gene therapy.

Wildtype AAV Integration Pattern
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chromosomal distribution pattern is displayed in Figure 2A. Over

one third of AAV integration sites were clustered at hotspots on

chr. 19q13.42, on chr. 5p13.3 and on chr. 3p24.3 (Figure 2B–D).

Infection with AAV in the absence of a helper virus leads to

transient, low Rep expression. Many previous AAV integration

studies used plasmid transfections of wildtype or vector AAV

constructs often in combination with a high-level Rep expression

construct. To evaluate whether high Rep expression influenced

the target site preference of AAV, the sequence data of previously

published transfection-based AAV integration sites [42] were

reevaluated with the more stringent criteria outlined in the

method. Of 157 DNA sequences retrieved after cotransfection of a

rep-expression construct and an AAV vector plasmid 47 junction

sequences fulfilled our criteria for unambiguous assignment of

AAV to a unique chromosomal site (Table 1).

Integration hotspots
For AAV wildtype 10% of all retrieved junctions were detected

at the hotspot on chr. 19q13.42 spread over a total of 33 kb

around AAVS1 (Figure 2B). Only one out of twelve chr. 19q13.42-

specific AAV junctions was located within the 4 kb region of

AAVS1, where a consensus Rep-binding site and an adjacent trs

site had been defined [4] The reevaluated distribution pattern of

junctions generated by transfection of AAV vector- and Rep

expression plasmids [42] was similar (Figure 2B). Latently AAV-

infected Detroit 6 cells [43,44] were analyzed as control. Using

cap-specific primers the junction was detected within AAVS1 at

nucleotide position 60,319,992. A second hotspot named AAVS2

was detected on the small arm of chr. 5p13.3 within an intergenic

region, where ten independent integration sites were detected

within 8 kb (Figure 2C). In seven of these junctions clustered

within 14 bp AAV had integrated directly into a consensus Rep

binding site. The reanalyzed chromosomal integrations from AAV

plasmid transfection [42] displayed a similar pattern with six

integrations within 16 bp of the consensus RBS (Figure 2C). The

third hotspot named AAVS3 was found on chr. 3p24.3

(Figure 2D). Out of 13 sites detected on chr. 3, three integrations

were clustered in a 8 kb region where a consensus Rep binding site

GAGT GAGT GAGT GAGC GAGC was detected on the

complement strand (Figure 2D).

Rep-binding affinity for RBS consensus sites in AAVS1,
-S2, and S3

To evaluate the binding affinities of Rep to the consensus RBS

of the hotspots on chr.5 and chr. 3 compared to the RBS of chr. 19

or within the AAV genome, double-stranded oligonucleotides

spanning the respective RBS regions (Figure 3) were submitted to

mobility shift assays (EMSA) with increasing amounts of purified

MBP-Rep78. Since it was previously shown that GAGG repeats

are deficient in binding to Rep [10,45], a mutated oligo derived

from the RBS of AAVS2 displaying GAGG GAGG GAGC

GAGG was used as a control. As an additional control, a random

oligonucleotide of similar length was used. As shown in figure 4,

the RBS of AAVS3 contained five instead of four GAGY repeats

and bound Rep with a two-fold higher affinity than the

oligonucleotide spanning the AAVS1 RBS and trs (Figure 4B).

The RBS of AAVS2 showed 76% of the Rep-binding affinity of

the AAVS1 sequence (Figure 4C). In contrast, the relative binding

affinity normalized to the AAVS1 sequence dropped to 13% with

the mutated AAVS2 oligonucleotide, which was in the range of the

random oligonucleotide (Figure 4C). These findings confirm the

importance of the GAGY repeats in Rep binding. As expected,

Rep78 displayed the highest affinities for oligonucleotides

spanning the A-stem of the AAV-ITR or the AAV p5–promoter

(Figure 4A, 4D). In summary, the newly discovered hotspots for

AAV integration, AAVS2 on chr. 5 and AAVS3 on chr. 3 display

RBS similarly proficient for Rep-binding as AAVS1.

Genomic features
To evaluate whether AAV-2 wildtype prefers specific motifs or

genomic features for chromosomal integration the detected

chromosomal junctions were compared to integration sites

described for infection of human cells with a rep-deleted AAV-2

based vector [46]. The published DNA sequence files were

reanalyzed using the criteria as outlined in the methods. This led

to 450 junctions that could be included as an AAV vector-specific

Figure 1. Linker-selection-mediated (LSM) PCR for cloning of
chromosomal AAV integration sites. (A) Genome structure of AAV-
2 with the rep and cap genes and their promoters flanked by inverted
terminal repeats (ITRs) at either end of the ssDNA genome. The hairpin-
structured ITRs contain internal repeat elements and complements
thereof, represented by small letters. The positions of the Rep-binding
sites (RBS) are represented by asterisks. (B) Schematic representation of
the LSM-PCR strategy for amplification of AAV-chromosomal junction
fragments. Wavy lines indicate chromosomal DNA. Linkers are displayed
by thick, grey lines, AAV-specific primers by small, horizontal arrows. For
restriction enzyme digestion indicated by vertical arrows either one of
the following enzymes were used: PvuII or EcoRV (non-cut for AAV-2) or
DraI (single-cut in AAV-2).
doi:10.1371/journal.ppat.1000985.g001
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data set (Table 1). The preference for integration next to selected

genomic features was analyzed for rep-positive AAV wildtype and

for rep-deficient AAV vectors (Table 2). The data showed that the

integration frequency of AAV wildtype in genes was higher than

expected by chance (Table 2). The frequency was comparable to

that of rep-deficient AAV vectors, thus confirming the findings by

Miller et al. [46].

Chromatin state at AAV integration sites
To analyze the effect of epigenetic modifications on AAV

integration the association of integration sites with histone

modifications as markers for open or closed chromatin were

assessed by chromatin immunoprecipitation sequencing (ChIP-

Seq) analysis as outlined in the methods. Trimethylated lysine 27

of histone 3 (H3K27me3) is correlated with gene repression (closed

chromatin) [47], while methylation of lysine 4 in H3K4me3 and

H3K4me1 is indicative of promoter or enhancer regions (open

chromatin) [48]. As shown in table 2 the association of AAV

wildtype with open chromatin regions is significantly higher than

expected from random controls. Conversely, the respective

association with closed chromatin is significantly reduced. In

summary, AAV wildtype prefers integration into open chromatin

whereas closed chromatin was avoided.

Bioinformatic analysis of the AAV integration sites
A series of publications have shown that fused combinations of

two to four GAGC motifs bind to Rep78/68 of AAV-2

[4,49,50,51,52,53]. Moreover, in vitro ternary complex formation

of Rep68 with the AAV-2 ITR and AAVS1 of chr. 19q13.42 [10]

led to the concept of Rep acting as an adapter that targets AAV to

the human genome. Although only AAV-2 has been analyzed for

chromosomal integration so far, all known AAV serotypes

displayed various combinations of GAGC and/or GAGT motifs

in the ITR and the p5 promoter. An alignment of these AAV

elements to the integration hotspots AAVS1, AAVS2 and AAVS3

is displayed in Figure 3.

Based on these data we hypothesized that AAV-2 wildtype, due

to the presence of Rep, prefers integration at chromosomal sites in

closer proximity to consensus Rep binding sites than would be

expected from control sites. The hypothesis was tested with the

three sets of junctions derived from: 1. Infection with AAV-2

wildtype, 2. Cotransfection of plasmids coding for an AAV vector

and a constitutive Rep-expression cassette, and 3. Infection with

Rep-deficient AAV vectors (Table 1). The distances between any

one integration site and its nearest Rep-binding site were

determined in the human genome and compared to similarly

determined distances of individual control sites to the nearest Rep-

binding sites. Calculations were repeated using various combina-

tions of RBS as displayed in Figure 5.

The choice of randomly generated genomic control sites was

considered optimal for comparative analysis of the three sets of

data. Yet, a concern was the choice of restriction endonucleases for

the identification of the wildtype AAV-2 integration sites by LSM-

PCR. To control a bias introduced by a conceivable non-random

genomic distribution of the restriction sites, the average distance of

PvuII, EcoRV, or DraI-generated restriction sites to putative Rep-

binding sites was compared to the average distances of random

sites to Rep-binding sites. PvuII restriction sites were found to be

closer to Rep-binding sites than random control sites (Figure S1).

This was assumedly due to the high G+C content of the PvuII

recognition sequence and of the consensus Rep-binding sites. Both

EcoRV and DraI sites were found further apart from Rep-binding

sites in accordance with their high A+T content (Figure S1). To

circumvent any bias arising from the use of PvuII, the data set for

AAV wildtype infection was calculated against the data set of

random control sites as well as against the data sets for the

restriction site–related controls. Since not more than two thirds of

sites were generated with PvuII, the PvuII-related control sites

would at most underestimate the association to Rep-binding sites

and was therefore used as the most stringent control set. In

addition all calculations were also performed with the set of

random controls leading to similar findings (Figure S2).

Figure 2. Chromosomal distribution of AAV-2 integration sites. DNA of AAV-2 wildtype infected Hela cells was analyzed for viral integration
by the LSM-PCR-method. DNA sequence data from 117 cloned AAV-chromosome junctions were assigned to unique loci. (A) Distributions of
junctions on individual chromosomes are shown as percentage of the total 117. (B–D) AAV integration sites drawn to scale for chromosome 19 (B), 5
(C), and 3 (D). Shown are the chromosome ideograms and enlarged bands of hotspots found on chr. 19q13.42 (AAVS1) and chr. 5p13.3 (AAVS2). Solid
arrows represent sites detected upon wildtype AAV-2 infection. Open arrows represent junctions stemming from cotransfection of AAV vector- and
Rep-expression plasmids.
doi:10.1371/journal.ppat.1000985.g002

Table 1. Summary of data sets analysed in this study.

Author Reference Source of integration sites
Number of
junctions Aim of study

Drew et al. J Gen Virol, 2007 Cotransfection of neo-expressing AAV vector- and
rep expression plasmids in HeLa cells. Selection of
G418-resistent cell clones

47 (157) Characterization of Rep78-dependent
AAV-2 vector integration sites

Miller et al. J Virol, 2005 AAV-2 vector infection of human diploid fibroblasts,
no cell selection, analysis between
14–40 days p.i.

450 (1172) Integration site pattern of AAV-2 vector
integration (no rep)

Hüser et al. This study AAV-2 wt infection of HeLa cells, analysis at
4 days p.i.

109 a Integration site pattern of wildtype
AAV-2 integration

Hüser et al. This study AAV-2 wt infection of HeLa cells, expansion of single
cell clones, no selection, analysis at 3–4 weeks p.i.

8 a Integration site pattern of wildtype
AAV-2 integration

Numbers in brackets represent the total numbers of junctions published in the given reference.
aJunctions derived from AAV-2 wildtype infected cells four days p.i. and from those after clonal expansion were combined for statistical analyses.
doi:10.1371/journal.ppat.1000985.t001
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The bioinformatic calculations with GAGC GAGC as a

minimal Rep-binding site strikingly confirmed our hypothesis that

integration of wildtype AAV takes place close to Rep-binding sites

with very high significance (p ,0.0001). A comparable effect was

seen with the data set for AAV vectors in the presence of Rep

(p,0.001). Most importantly, the set of integration sites for AAV

vectors in the absence of Rep did not show any difference of

integration site preference compared to random control sites

(Figure 5A). With a frequency of 15,707 sites per human genome

the Rep binding motif GAGC GAGC occurs sufficiently frequent

to lead to a mean distance of around 50 kb to the next AAV

integration site in the presence of Rep. In the absence of Rep the

mean distance to AAV (vector) integration sites rises to around

130 kb (Figure 5A). To ensure that the presence of repetitive DNA

in the random controls did not lead to a bias in the analysis, an

independent control calculation was performed for AAV wt data

using AAV vector infection data as background. The high

significance level was maintained (data not shown). The

significance of the Rep-associated preferential integration near

GAGC GAGC sequences was further underlined by the results of

similar calculations for the putative Rep-binding motif GAGT

GAGC, where no such association was found. Only in the

presence of presumably large amounts of Rep (AAV vector

transfection, Rep+++) a small effect was seen (Figure 5B).

Obviously the GAGT GAGC motif is not sufficient to attract

Rep and the AAV genome for integration. When an additional

GAGC repeat is added (GAGY GAGC GAGC) the integration

preferences of AAV wildtype and Rep-expressing AAV vectors

shifted to closer proximity to Rep-binding sites (p,0.0001). This is

especially surprising since only 616 sites per human genome are

found for GAGY GAGC GAGC (Figure 5C). To allow more

potential Rep-binding site permutations, calculations were repeat-

ed with the consensus GAGC GAGC GAGC with one or two

random mismatches. This led to a significantly decreased mean

distance to AAV junctions in spite of the fact that up to 100-fold

more genomic hits were found for the motifs (Figure 5D; E). A

single nucleotide exchange in the GAGY GAGC GAGC motif

(Figure 5F, GAGY GAGC GAGA) on the other hand led to a

complete loss of association to AAV integration sites. This is

surprising in view of the reported in vitro binding of Rep to this

motif [45] and supports the assumption that the C at the 39 end of

the Rep binding motif is relevant for Rep-binding in vivo. Motifs

GCCC GAGT GAGC and GAGT GAGC ACGC are part of the

RBS in the viral p5 promoter. The individual motifs are found at

very low frequency (n = 85, or n = 82, respectively) in the human

genome, so that either no RBS was found in the same contig or the

distance to the next RBS was more than several thousands kb. For

these reasons we did not proceed with calculations for these motifs.

To further exclude the possibility that the calculated associations

with Rep binding sites were predominantly based on sequences

assigned to the hotspots AAVS1 and AAVS2, the significance of

the associations was re-evaluated with data sets omitted for the

hotspot sequences (Table 3). The robustness of the data becomes

evident by the fact that the highly significant association of AAV

junctions to motifs GAGC GAGC and GAGY GAGC GAGC is

maintained. In summary, AAV prefers integration sites in the

vicinity of consensus Rep-binding elements, most prominently on

chr. 19q13.42 (AAVS1), chr. 5p13.3 (AAVS2), and chr. 3p24.3

(AAVS3). But even in the absence of hotspots AAV still shows a

highly significant integration preference for Rep-binding motifs at

numerous additional sites in the human genome.

Discussion

This study represents the first genome-wide survey of wildtype

AAV-2 integration in the human genome combined with a

thorough bioinformatic analysis of the surrounding genome. We

show here that wildtype AAV-2 infection leads to preferential

integration in the vicinity of consensus Rep-binding sites (RBS) at

defined hotspots as well as at numerous additional genomic sites.

In contrast, AAV-2 vectors in the absence of Rep-expression

integrate without discernable preference for consensus Rep-

binding sites.

Hotspots of AAV integration
At the hotspot on chr. 19q13.42, up to 10% of all AAV

junctions were scattered over a region of 33 kb, mostly in

centromeric direction with regard to the previously defined core

4 kb AAVS1 site. AAV vectors in the absence of Rep expression

do not show any preference for chr. 19q13.42 [46]. The here

identified, novel hotspot AAVS2 on chr. 5p13.3 displayed roughly

8% of all junctions retrieved from wildtype AAV-2 infection and

23% of those retrieved from cotransfection of AAV vectors in the

presence of Rep distributed over a region of 14 kb. A cluster of 13

independent junctions was found within 14 bp of the AAVS2 RBS

that was shown to be similarly proficient in binding to Rep in vitro

as is the RBS of AAVS1 (Figure 4). The high in vivo integration

numbers may in part be due to the choice of HeLa as target cells.

These are hypertriploid with up to 12 copies of the p-arm of chr. 5

[54]. The extra gain of integrations within the described 8 kb

region is however unique for the AAVS2 site and not

accompanied by a parallel increase of integrations at additional

sites on the overrepresented p-arm of chr. 5, where 201 additional

Figure 3. Sequence alignment of Rep-binding sites. RBS
elements present in the ITR and the p5 promoter of all known AAV
serotypes are aligned and related to consensus RBS sites present at
chromosomal integration hotspots. Rep binding element GAGC is
displayed in bold letters. Both GAGC and GAGT elements are
highlighted in grey.
doi:10.1371/journal.ppat.1000985.g003
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GAGC GAGC repeats and three additional GAGY GAGC

GAGC repeats were counted. The only fourfold tetranucleotide

repeat on the chr.5 p-arm is found in AAVS2 (GAGT GAGT

GAGC GAGC; Figure 2C). In addition, junctions of rep-deficient

AAV vector were reported to be underrepresented on chr. 5 [46].

A major difference between the hotspots on chr. 5 and chr. 19

concerns the presence of genes. The junctions identified on chr. 19

span the region of the transcribed gene for protein phosphatase 1,

regulatory subunit 12C (PPP1R12C). The 8 kb AAVS2 sequence

identified on chr. 5p13.3 represents an intergenic region to the

best of current knowledge. It is well known that Rep expression

leads to extensive rearrangements of AAVS1 [18,55,56]. Appar-

ently, PPP1R12C is essential, since the majority of latently infected

cell lines display gene duplications [57] and simultaneous AAV

integrations in both alleles have never been reported. A currently

unresolved question concerns the presence of a terminal resolution

site (trs) next to the RBS of AAVS2 and AAVS3. In AAVS1 the

spatial configuration of RBS and trs resembles that of the AAV-

ITR. The trs element lies next to the RBS and serves as a nicking

site for Rep [4]. In AAVS2 and AAVS3 the nearest perfect trs

elements (59-GTTGG-39) are 400 and 500 bp away from the RBS,

which represents the mean statistical occurrence for this motif.

Unfortunately, the consensus nucleotide requirements for a

functional trs element are not defined well enough to conduct a

meaningful bioinformatic search. Therefore, the presence of

nicking sites next to the RBS in AAVS2 or AAVS3 remains open

at present.

Target site choice for AAV integration
Besides the identified integration hotspots numerous additional

chromosomal junction sites were found for integrated wildtype

AAV-2, scattered over the human genome. From the bioinfor-

matic calculations it appeared that the perfect tetranucleotide

repeat GAGC GAGC represented the minimal requirement for

Rep-dependent targeted integration, and GAGY GAGC GAGC

represents the optimized in vivo target sequence for wildtype AAV-

2. Hotspots AAVS1, AAVS2, and AAVS3 display this core

sequence fused to additional imperfect GAGY repeats. Other

AAV serotypes display RBS sequences with similar numbers of

GAGC and/or GAGT repeats, extended by additional imperfect

repeats. AAV5 Rep co-crystallised with the hairpin-structured

AAV5-ITR revealed that five Rep monomers bind to five

consensus tetranucleotide repeats of the RBS, each of which was

contacted by two Rep monomers from opposite faces of the DNA

[58]. AAV2-Rep78/68 was shown to simultaneously bind to the

RBS of the AAV-2 ITR and to that of AAVS1 [10]. Although it is

currently unknown whether other AAV serotypes integrate at all,

this is highly likely in view of the ability of both AAV-2 Rep and

the relatively distant AAV-5 Rep to multimerize and simulta-

neously bind to clustered GAGY repeats.

In the initial descriptions of AAVS1, site-specific nicking of the

trs by Rep bound to the adjacent RBS was viewed as preferred

entry site for AAV recombination [4]. Meanwhile the majority of

AAV integrations on chr. 19q13.42 were found many kb away

from the RBS-trs combination, and neither AAVS2 or AAVS3

display obvious trs homologues next to the RBS. Therefore

alternative explanations for RBS-dependent AAV integration

should be considered. The potential use of preexisting chromo-

somal breakage sites recalls a mechanism already proposed for the

integration of rep-deficient AAV vectors [34,59]. Alternative

integration concepts include the use of imperfect trs elements for

nicking as shown in vitro [4,60,61], or the ability of Rep78 to

induce DNA damage in vivo by single-strand nicking of cellular

Figure 4. Binding of MBP-Rep78 to Rep-binding sites of AAV-2 and of chromosomal integration hotspots. (A) to (C) Electrophoretic
mobility shift assays (EMSA) were performed with 32P-labeled double-stranded oligonucleotides in the presence of increasing amounts of affinity-
purified MBP-Rep78 as indicated above the autoradiograms. (D) Quantitative determination of the bound fractions of the different RBS and control
oligonucleotide probes as a function of the amount of MBP-Rep78 protein in the binding reaction. EMSA gels shown in (A) to (C) were subjected to
phosphorimager analysis to determine the relative amount of unbound and bound 32P-labeled oligonucleotides. The relative binding affinity was
calculated as follows: The highest amount of Rep used in this assay (1000 ng) bound 31% of the random oligonucleotide. The amount of Rep that
bound the same fraction of the other oligonucleotides was determined and normalized to the binding of the chr. 19 (AAVS1) oligonucleotide.
doi:10.1371/journal.ppat.1000985.g004

Table 2. Genomic features and chromatin state associated with AAV-2 wildtype- and AAV vector-derived integration sites.

Genomic feature
AAV wt infection %
of sites (n = 117)

AAV vector infection
% of sites (n = 450)

Random control
% of sites p-Value wta p-Value vector a

RefSec genes 50.4 51.8 40.1 ,0.05 ,0.01

RefSec genes tss+/22 kb 6.8 5.6 2.9 ,0.05 ,0.01

Ens genes 51.1 51.3 40.7 ,0.05 ,0.0001

GenScan genes 83.8 74.0 69.5 ,0.001 ,0.05

Known genes 57.3 55.8 45.2 ,0.01 ,0.0001

Known genes exons 3.4 3.6 2.7 n.s. n.s.

CpG 0.9 1.6 0.7 n.s. ,0.05

CpG+/22 kb 7.7 6.4 4.1 n.s. ,0.05

Histone modification

H3K4me1 13.7 n.d. 7.5 ,0.05 n.d.

H3K4me3 6.8 n.d. 2.3 ,0.01 n.d.

H3K27me3 28.2 n.d. 42.2 ,0.01 n.d.

aP-values were determined in comparison to random controls, n.d. = not determined, p.0.05 were not considered statistically significant (n.s.).
doi:10.1371/journal.ppat.1000985.t002
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chromatin [19]. It is conceivable that the introduction of single-

strand nicks occurs anywhere in accessible chromatin, even if the

nicking site is hundreds or thousands of bp apart from the RBS on

an extended DNA strand. HMGB1, an ubiquitous architectural

protein that serves as key component of the chromatin remodelling

complex may be of help [62]. Its long-known in vivo interaction

with Rep [63] may help remodel the chromatin to make it

accessible for nicking by Rep. Rep was also shown to contact other

key players of the nucleosome remodelling complex as compo-

nents of the transcription- or DNA replication machinery

Figure 5. Statistical analysis of distances of integration sites from human Rep-binding motifs. AAV integration sites of different data sets
were analyzed for the proximity to the next Rep binding sites. Calculations were performed with the following putative Rep binding sites: GAGC
GAGC (A); GAGT GAGC (B); GAGY GAGC GAGC (C); GAGC GAGC GAGC, one mismatch (D), or two mismatches allowed (E), and GAGY GAGC GAGA (F).
Average distances of integration sites from putative Rep binding sites are displayed as mean +/2 S.D. The levels of significance are marked by
asterisks. P-values .0.05 were not considered statistically significant. P-values ,0.01 were considered highly significant. For the analysis of wildtype
AAV integration data a PvuII-related control set was used in addition to the random control set.
doi:10.1371/journal.ppat.1000985.g005

Table 3. Neighbourhood analysis of wildtype AAV-2 integration sites and RBS motifs found outside of the hotspots on chr.
19q13.42 (AAVS1) and on chr. 5p13.3 (AAVS2).

RBS motif all integration sites (n = 117) no chr.19q13.42 (n = 106)
no chr.19q13.42 no chr.5p13.3
(n = 96)

GAGC GAGC ,0.0001 ,0.0001 ,0.001

GAGY GAGC GAGC ,0.0001 ,0.001 ,0.01

GAGC GAGC GAGC (1 mismatch allowed) ,0.01 ,0.05 not significant a

GAGC GAGC GAGC (2 mismatches allowed) ,0.001 ,0.01 ,0.05

Displayed are p-values calculated with the PvuII control set.
ap-values .0.05 were not considered statistically significant.
doi:10.1371/journal.ppat.1000985.t003
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[64,65,66]. Any of these mechanisms can be exploited to open the

chromatin for AAV integration. In summary, Rep with its

combined DNA-binding and endonuclease activity appears to

serve as a relatively imprecise targeting tool for AAV integration

preferably in open chromatin regions in the reach of consensus

Rep-binding sites prevalent in the human genome.

Implications for Rep-dependent targeting of AAV vector
integration

The early finding that Rep would mediate site-specific AAV

integration on chr. 19q13.42 had immediate implications for gene

therapy. A variety of concepts were devised to incorporate Rep as

an adapter to target AAV-ITR flanked transgenes to a specific site

[26,27,28,57,67]. In the majority of cases appropriate cell selection

or PCR for AAVS1 led to cells displaying the desired integration.

The reported high frequencies of integration into AAVS1 are

difficult to reconcile with our findings, unless the level of Rep

expression is considered to have an impact on target site choice.

Upon AAV infection Rep is only moderately expressed due to

autoregulation of the AAV p5 promoter. Rep-dependent AAV

vector transductions typically use strong heterologous promoters

that lead to high and sustained Rep expression levels. Increasing

Rep levels may increase the overall probability for integration

anywhere in the genome, including at hotspots. Under these

conditions AAVS1-specific integration will be detected more

readily. This appears however to come at the price of genomic

rearrangements in reach of alternative Rep-binding sites. There-

fore, it is plausible that in the absence of any selection AAV

integration into AAVS1 is typically unstable and difficult to detect.

In summary, Rep expression increases the probability for

integration next to one of several genomic hotspots. However, the

net genotoxic effect is unpredictable both with respect to the

integrity of the AAV integration locus itself and with respect to the

numerous additional sites where Rep binds and initiates

chromosomal damage. Therefore, the current concept of a

relatively precise site-specific targeting of AAV should be extended

to a concept of a relative preference for accessible chromatin

regions in the neighbourhood of any of the numerous consensus

Rep-binding sites. More recent approaches for site-specific vector

targeting try to exploit DNA sequence-specific zinc-finger

nucleases to target a genomic sequence of wish [68]. Although

zinc-finger nucleases are not free from off-target genotoxicity, at

least the genomic targeting site for the transgene can be more

precisely defined, a goal that appears to be inherently unachie-

vable using Rep as an adapter molecule.

Materials and Methods

Cells
Detroit 6 cells harbouring latent AAV-2 genomes and HeLa

cells were grown in Dulbecco’s modified Eagles’s medium (Gibco)

supplemented with 10% fetal calf serum, penicillin (100 U/ml),

and streptomycin (100 mg/ml).

AAV infection
Viral stocks of wildtype AAV-2 with infectious titers of 56109

i.u./ml were prepared on HeLa cells as described before [16]. For

the analysis of AAV integration sites 1.76106 HeLa cells were

seeded overnight on 10 cm diameter dishes and infected with

AAV-2 at a MOI of 500. Cells were harvested at 96 hours post

infection (p.i.) for the extraction of genomic DNA. The period of

cell growth after infection was minimized to reduce the chances of

selection of particular integration sites during cell proliferation.

Alternatively, AAV-infected HeLa cells were seeded to microtiter

plates at a dilution of 60 cells per plate and grown up as single-cell

clones without drug selection.

Plasmids
Plasmid pTAV2-0 covers the AAV-2 wildtype genome (GenBank

accession number AF043303), pRVK the 4 kb fragment of the

AAVS1 locus on chromosome 19 (GenBank accession number

S51329), and pAAVS1-TR covers an AAV-ITR/AAVS1 junction

[16]. Plasmid pMBP-Rep78 encoding Rep78 fused to maltose-

binding protein (MBP) was described before [69].

Production and purification of MBP-Rep78 fusion protein
MBP-Rep78 encoding Rep78 fused to maltose-binding protein

was expressed und purified essentially as described [69]. Briefly,

E.coli strain BL21 transformed with pMBP-Rep78 was grown at

30uC to an OD600 nm of 0.6 to 0.8. Production of MBP-Rep78 was

induced with 0.3 mM IPTG for 3 h at 30uC. Cells were harvested

by centrifugation and lysed by sonication for 2 min (30% duty

cycle) in lysis buffer of 50 mM phosphate pH 7.8, 300 mM NaCl,

1% (v/v) Triton X-100, 0.1 mM PMSF. Cell debris was removed

by centrifugation at 65006g for 20 min at 4uC. The supernatant

was adsorbed to amylose resin (New England Biolabs) in a batch

process and the resin was washed extensively (5 washes with about

100 volumes of the resin) with lysis buffer. The adsorbed proteins

were eluted with lysis buffer containing 10 mM maltose and

analyzed for purity by SDS-polyacrylamide gel electrophoresis.

Electophoretic mobility shift assays (EMSA)
Binding of MPB-Rep78 fusion protein to 32P- labeled double-

stranded oligonucleotide probes was detected by altered mobility

of the probes in nondenaturating polyacrylamide gels essentially as

described previously [70]. Briefly, oligonucleotides of 46–49 nt

length were end-labeled with T4 polynucleotide kinase and

annealed. EMSA reactions were performed for 20 min at 20uC
as follows: 0.015 pmol of labeled DNA substrate was incubated

with the indicated amounts of MBP or MBP-Rep78 in a binding

buffer containing 25 mM HEPES-KOH (pH 7.8), 10 mM MgCl2,

40 mM NaCl, 1 mM DTT, 2% glycerol, 12.5 mg/ml BSA, 0,01%

Nonidet P40 and 5 mg/ml salmon sperm DNA. The following

oligonucleotides were used:

AAV-ITR (nucleotide position 85–133): GCCTCAGTGAGC-

GAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCA;

AAV-ITR complementary strand: TGATGGAGTTGGCC-

ACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGC

Chr. 19q13.42 (AAVS1): TGGCGGCGGTTGGGGCT-

CGGCGCTCGCTCGCTCGCTGGGCGGGCGGGC

Chr19 (AAVS1) complementary strand: GCCCGCCCGC-

CCAGCGAGCGAGCGAGCGCCGAGCCCCAACCGCCGC-

CA

Chr. 5p13.3 (AAVS2): AGCTGGACCCCACGCTCGCT-

CACTCACTCTCCCCTCACCGCTTTGT

Chr. 5 (AAVS2) complementary strand: ACAAAGCGGT-

GAGGGGAGAGTGAGTGAGCGAGCGTGGGGTCCAGCT

Chr. 3p24.3 (AAVS3) GCTTCCCAAGGGGAATGAATGT-

GCGCTCGCTCACTCACTCACTCCTCAC

Chr.3 (AAVS3) complementary strand: GTGAGGAGTG-

AGTGAGTGAGCGAGCGCACATTCATTCCCCTTGGGA-

AGC

Chr. 5MUT (AAVS2 mutated): AGCTGGACCCCA-

CCCTCGCTCCCTCCCTCTCCCCTCACCGCTTTGT

Chr.5MUT (AAVS2 mutated), complementary strand: ACAA-

AGCGGTGAGGGGAGAGGGAGGGAGCGAGGGTGGGG-

TCCAGCT

Wildtype AAV Integration Pattern

PLoS Pathogens | www.plospathogens.org 10 July 2010 | Volume 6 | Issue 7 | e1000985



AAV p5 (nucleotide position 245–292): TCACGCTGGGTATT-

TAAGCCCGAGTGAGCACGCAGGGTCTCCATTTTG

AAV p5 complementary strand: CAAAATGGAGACCCT-

GCGTGCTCACTCGGGCTTAAATACCCAGCGTGA

random control: CAGAGCAGCAGCACAGACGCTAGCA-

GATCTCCTGCGACCGGAGATGTG

random control, complementary strand: CACATCTCC-

GGTCGCAGGAGATCTGCTAGCGTCTGTGCTGCTGCT-

CTG

Preparation of genomic DNA
Total genomic DNA was extracted by SDS/proteinase K

digestion followed by repeated phenol/chloroform extractions and

ethanol precipitation, as described before [71]. High molecular

weight DNA (2 mg) was digested with restriction enzymes that lead

to a mean genomic fragment size of around 4 kb and produce

blunt-ends ready for linker/adapter ligation. Non-cut enzymes for

AAV-2 DNA were preferred, PvuII, EcoRV. Additional junctions

were retrieved with DraI (one cut in AAV-2 wildtype DNA).

Digested genomic DNA was purified by repeated phenol-

chloroform extractions and precipitated with ethanol.

Linker-Selection-Mediated (LSM) PCR
A linker-based strategy described in [39,40] and outlined in

more detail in the manual of the GenomeWalker kit (Clontech)

was modified as outlined in Figure 1B. The following oligos were

used for linker construction: ‘‘Linkerlong’’ (59GTA ATA CGA

CTC ACT ATA CGG CAC GCG TGG TCG ACG GCC CGG

GCT GGT 39) and ‘‘linkershort’’ (59ACC AGC CC 39modifika-

tion: 29,39-dideoxyC). Equal amounts of ‘‘linkerlong’’ and

phosphorylated ‘‘linkershort’’ (100pmol each) were annealed and

ligated to restriction enzyme-digested genomic DNA.

PCR-primers: The linker-primers were ‘‘P linker outside’’ with

biotin attached to its 59 end (59-GTA ATA CGA CTC ACT ATA

CGG C; Tm = 58.4uC) and ‘‘P linker nested’’ (59-ACT ATA CGG

CAC GCG TGG T; Tm = 58.8uC). Two AAV-2-specific primer

sets were used. The first primer set covered the AAV p5 promoter:

‘‘AAV2p5’’ (59-TCA AAA TGG AGA CCC TGC GTG CTC A;

Tm = 64.6uC, AAV-2, nt 293–269), primer ‘‘AAV2p5 nested’’ (59-

TAA ATA CCC AGC GTG ACC ACA TGG TG; Tm = 64.8uC,

AAV-2, nt 260–235). The other primer set is located in the cap

gene region, as described before [2]: ‘‘CAPgsp1’’ (59-GTC TGT

TAA TGT GGA CTT TAC TGT GGA CAC; Tm = 65.4uC,

AAV-2, nt 4320–4349) and ‘‘CAPgsp2’’ 59-GTG TAT TCA GAG

CCT CGC CCC AT; Tm = 64.2uC, AAV-2 nt 4357–4379).

The PCR reaction contained 0.2 mM dNTPs, linker primer

and AAV specific primer (0.25 mM, each), 2.5 U proofreading

hot-start polymerase (Herculase) in reaction buffer, as provided by

the supplier (Stratagene). Of the preceding linker-ligation reaction

1–5 ml was added to a final volume of 50 ml. PCR conditions were

as follows: 3 min at 98uC, followed by 10 cycles of 40 sec at 98uC,

30 sec at 65uC, and 4 min at 72uC, followed by 20 cycles of 40 sec

at 98uC, 30 sec at 65uC, and 4 min + 10 sec per cycle at 72uC,

terminated by an extension period of 10 min at 72uC. Biotin-

labelled PCR products were further enriched on streptavidin-

labelled Dynabeads M-280, as outlined by the supplier (Invitro-

gen). Subsequent nested PCR used conditions identical to the first

round but with pairs of the nested PCR primers, as outlined above.

Finally, to add overhangs of multiple As, PCR products were

incubated with 1 U Taq polymerase (New England Biolabs).

Analysis of LSM PCR products
Products of LSM-PCR reactions were separated on agarose

gels. To ensure sufficient chromosomal fragment lengths, PCR

bands of a calculated minimal length (.500 bp) were excised and

purified by the QIAEX II Gel extraction kit (Qiagen, Hilden,

Germany). TOPO-TA cloning was performed as described [72].

Colonies were PCR-screened with the M13 forward (-20) and

reverse primer pair (0.4 mM, each) with 0.2 mM dNTP, 2 U Taq

polymerase (New England Biolabs) at the following conditions:

10 min at 94uC, followed by 30 cycles of 30 sec each at 94uC,

52uC, and 72uC, followed by 10 min at 72uC. Column-purified

PCR products were submitted to DNA sequencing using the

primer provided by the TOPO-TA cloning kit. DNA sequences

were run on a CEQ2000 genetic analysis system (Beckman) using

the CEQ Dye Terminator Cycle Sequencing Quick start kit

(Beckman) and the run method LFR-a. Cycling conditions were as

follows: 1 min at 96uC, followed by 30 cycles 20 sec at 96uC,

20 sec at 50uC and 4 min at 60uC.

Integration site determination
The genomic positions of AAV integration sites in the human

genome (assembly from March 2006, hg18) were determined using

the BLAT tool from the UCSC Genome Browser web site (http://

genome.ucsc.edu/cgi-bin/hgBlat) [73]. A match was defined as a

BLAT search result fulfilling all of the following criteria:

1. A human chromosome-derived part of the DNA sequence is at

least 100 bp in length and of 98% or higher homology to the

database.

2. A shorter chromosomal match is acceptable if it displays a

minimum of 25 bp of a contiguous DNA sequence match.

3. A part of the sequence allows assignment of AAV.

4. In the case of unassigned base pairs between the AAV and the

human part of the sequence, this sequence is no longer than

20 bp.

5. Sequences matching to multiple chromosomal regions (i.e.

repeat regions) were discarded in view of the inability to

unambiguously assign the surrounding genome for subsequent

bioinformatic analysis (see below).

6. Duplicate AAV-chromosomal fusion sequences (identical viral

and identical human DNA sequences) were counted only once.

In addition to the LSM-PCR derived sequences, the original

DNA sequence files of 157 chromosomal junctions [42] kindly

provided by Dr. G.W. Both, North Ride, Australia were

reanalyzed applying the above inclusion criteria. This led to 47

DNA sequences suitable for our analysis (Table 1). In their study,

HeLa cells had been cotransfected with plasmids for constitutive

RSV-promoter-driven Rep78 expression and for recombinant

AAV vectors expressing a SV40-promoter-driven neomycin gene

[42]. Furthermore, 1100 DNA sequences from a published

analysis of rep-deficient AAV vector integration sites in diploid

human cells [46] were reanalyzed. Since the PCR methods

employed in our study and in the one by Drew et al. [42] cannot

detect the matching left and right junction sites generated by one

AAV integration event, only one chromosomal junction was

analyzed per rescued provirus. The original DNA sequence files

(DU711025.1 to DU709854.1) of Miller et al. [46] were

downloaded from the Genome Survey Sequences (GSS) Database

of NCBI (http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucgss)

and reanalyzed using the UCSC March 2006 human genome

build. The analysis led to a total of 450 junction sequences that

fulfilled all of the above inclusion criteria for bioinformatic

comparisons. For the subsequent data analysis we implemented

software in C++ using the software library SeqAn [74] and several

Python scripts.
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Determination of distances of integration sites to
putative Rep binding sites

For different Rep binding motifs, we computed the average

distance of virus integration sites to the closest occurrences of Rep

binding motifs within the genome. We supposed that the observed

integration events were independent from each other and the

sample size was high enough for assuming the distance to be

normally distributed. To assess whether these distances differ

significantly from expectation, several background models were

generated:

(1) For the background model ‘‘random’’, we assumed that the

probabilities for the observation of virus integrations were

equally distributed among all conceivable positions in the

genome. A program was implemented that computed the

exact mean and standard deviation of this background

distribution.

(2) Since the integration site analysis required a suitable restriction

enzyme site in the neighbourhood of the integrated virus three

background-models for the restriction enzymes DraI, EcoRV

or PvuII were generated. These models served as a corrective

tool for an eventual bias of a non-uniform distribution of the

respective restriction enzyme sites in the genome. For each

AAV integration site observed, the distance to the closest

restriction site was determined individually. Then, 1000 control

sites per integration site were generated that displayed the same

distance to randomly chosen restriction sites.

The generation of both, the data analysis and the background

model was confined to those genomic contigs that contained at

least one Rep binding motif, since otherwise the distance to the

‘‘closest Rep binding motif’’ would not be defined. A given set of

AAV integration sites was considered to be significantly closer to

Rep binding motifs than expected by chance, if the significance

was calculated for all relevant background models. Data sets of

AAV vectors were analyzed with the ‘‘random’’ background

model. We applied a Z-test for determining statistical significances

for the distances of integration sites to Rep binding sites. For

comparing integration sites from AAV wildtype infection sites

against those from rep-deficient AAV vector infection we applied

the Student’s t-test.

Presence of genomic features
AAV integration sites were examined for the occurrence of

various genomic features using tables available in the UCSC

database. For the determination of significant divergences from

expectations, we compared the actual integration sites with a set of

100,000 randomly chosen control sites in the human genome

using a two-tailed binomial test.

Analysis of chromatin state
Chromatin immunoprecipitation sequencing (ChIP-Seq) data were

used to define the state of histone modifications in genomic regions of

AAV integration. H3K27me3 domains determined by Cuddapah

et al. were used as markers for closed chromatin (http://www.wip.

ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSM325898)

[75]. Regions enriched for H3K4 methylation (open chromatin)

were determined as follows: The raw ChIP-Seq reads by Robertson

et al. [76] (http://www.bcgsc.ca/data/histone-modification) were

mapped to the human genome using Bowtie [77], and peaks were

called using MACS [78]. H3K4me1/3 domains are then defined as

5 kb windows around the centers of the peaks.

Supporting Information

Figure S1 Distribution of restriction sites in relation to Rep

binding sites. (A) Cleavage sites of restriction enzymes used to

digest genomic DNA of wildtype AAV-2-infected Hela cells and

the numbers of occurrences per human genome are shown. (B)

The mean distances of restriction enzyme cleavage sites to Rep

binding sites were compared to those of random control sites to

Rep Binding Sites. Calculations are displayed for consensus RBS

that yielded significant proximity of integration sites to RBS as

displayed in Figure 5. P-values were , 0.00002 for all motifs.

Found at: doi:10.1371/journal.ppat.1000985.s001 (0.13 MB TIF)

Figure S2 Bioinformatic analysis of AAV-2 wildtype integration

sites. Distances of integration sites from Rep Binding Sites were

calculated and the z-score was assessed in relation to the following

control sites: (A) GAGC GAGC; (B) GAGT GAGC; (C) GAGY

GAGC GAGC; (D) GAGC GAGC GAGC one mismatch

allowed; (E) GAGC GAGC GAGC two mismatches allowed. In

order to analyze only the Rep-binding sites outside of integration

hotspot regions, sites within the hotspots of chr. 19 (AAVS1) and/

or chr. 5 (AAVS2) were omitted in separate calculations.

Found at: doi:10.1371/journal.ppat.1000985.s002 (0.25 MB TIF)
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