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Abstract

The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant
implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence
suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nerv-
ous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various
regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological
functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous sys-
tems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we exam-
ined the interplay between the nervous system and the tumor immune microenvironment. We have also identified
drugs that target the nervous system for cancer treatment. In this review we present the work supporting that thera-
peutic agent targeting the nervous system could have significant potential to improve cancer therapy.
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Introduction

The nervous system is present throughout the body
and keeps the organism stable and functioning by
transmitting chemical and electrical signals controlled
by the central nervous system (CNS) [1, 2], the appe-
tite, and the energetic metabolism. Since the twen-
tieth century, scientists have begun to focus on the
crosstalk between the tumor microenvironment and
the nervous system [3-5]. Increasing evidence has
shown that neurological dysregulation is highly cor-
related with tumorigenesis and progression [6-9].
The brain performs different neurological functions in
each specific area and is directly or indirectly related
to complex body behaviors or diseases [10—12]. In the
hypothalamus, chronic stress affects tumor develop-
ment and the immune system, which is mediated by
the paraventricular nucleus (PVN) through the hypo-
thalamic—pituitary—adrenal (HPA) axis [13] and the
sympathetic-adrenal system (SAS) [14]. The disruption
of the circadian rhythm affects the suprachiasmatic
nucleus (SCN), which changes the tumor microen-
vironment of tumor cells and immune cells [15-18].
Beyond the hypothalamus, the prefrontal cortex (PFC),
amygdala, ventral tegmental area (VTA), and the auto-
nomic nervous system (ANS), contribute to the mod-
ulation of cancer onset and progression [11, 19-21].
Neurotransmitters affect cancer progression by activat-
ing the corresponding receptor pathways in tumor cells
or immune cells [22-24]. The interaction between the
nervous system and the tumor immune microenviron-
ment is of significant importance [25]. Therefore, the
elaborate balance of the nervous system, tumorigen-
esis, and tumor immune microenvironment is becom-
ing increasingly apparent, highlighting the potential to
harness neurobiological mechanisms in cancer therapy
[6, 26—29].

In this review, we explored the complex interactions
between the nervous system, cancer progression, and
the tumor immune microenvironment. Moreover, we
explored the impact of stress on tumor growth via the
HPA axis and SAS, disruption of circadian rhythms
on immune cell dynamics, and the influence of neu-
rotransmitters such as dopamine, glutamate, seroto-
nin, and gamma-aminobutyric acid (GABA) on cancer
cell behavior. The impact of the nervous system on the
tumor immune microenvironment was also examined.
Furthermore, we considered the therapeutic potential
of neuromodulatory drugs and emerging strategies that
leverage the influence of the nervous system on can-
cer for novel treatment approaches. This review high-
lights the burgeoning field of cancer neuroscience and
its potential to tumor immune microenvironment and
cancer therapy.
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Nervous system regulation on tumorigenesis

and cancer progression

Neurological functions in central nervous system impact
on tumorigenesis and cancer progression

Stress

PVN is a midline thalamic structure adjacent to the third
ventricle that controls stress, arousal, emotional memory,
motivation, metabolism, and immunity [30, 31]. Stress
experiences are divided into physical stressors (toxins
and pathogens) and psychological stressors (schizo-
phrenia, depression, harmful, abusive, and environmen-
tal factors of the community environment) [32]. These
stressful experiences are related to the regulation of the
immune system, which affects tumor development and
prognosis [33—35]. However, the way in which the nerv-
ous system, tumor, and immune systems communicate is
not well understood. The effect of stress on tumors and
the immune system is mediated primarily by the HPA
axis [13] and the SAS [14], the two main functional axes
through which the hypothalamus functions [36, 37].
Glucocorticoid synthesis is controlled by the HPA axis,
which produces cortisol as the main glucocorticoid in
humans [38—-40]. Glucocorticoids have been confirmed
to promote breast cancer metastasis by activating the
glucocorticoid receptor in tumor cells and play an immu-
nosuppressive role in orthotopic and patient-derived
xenograft models [41]. Furthermore, glucocorticoids dic-
tate the dynamics of circulating tumor cell generation in
patients with breast cancer and mouse models [42].

In addition to the HPA axis, catecholamines epineph-
rine (adrenaline) and norepinephrine (noradrenaline)
are produced and secreted in the medulla of the adrenal
gland and are regulated by stress through SAS [43-45].
The role of SAS in cancer was first studied in an ortho-
topic ovarian cancer xenograft mouse model in which
conditions such as physical restraint or periodic immo-
bilization were applied, while the HPA axis remained
active, blocking the B-adrenergic pathway ceased tumor
progression [46]. Additionally, the discharge of catecho-
lamines can trigger the HPA axis, which is regulated
by the PVN, via noradrenergic neurons located in the
nucleus of the solitary tract [47]. The observed reduction
in tumor progression in a murine stress model follow-
ing total adrenalectomy or surgical laparotomy indicates
that neuroendocrine axes are among the multitude of
influential factors, and their activity can be modulated by
diverse brain regions [48] (Fig. 1, Table 1).

Circadian rhythms and wakefulness

The World Health Organization’s International Agency
for Research on Cancer designated circadian rhythm
disruption as a probable carcinogen to humans in 2007
[49]. Circadian rhythms include sleep—wake cycles,
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Fig. 1 Neurological functions in central nervous system involved in tumorigenesis and progression. Neurological function, including stress,
circadian rhythms, wakefulness, cognitive processes and emotional responses regulated by the central nervous system impacts on cancers. Stress
affects the paraventricular nucleus (PVN), which influence on the hypothalamic—pituitary—adrenal (HPA) axis and sympathetic-adrenal system
(SAS) is crucial for stress-related immune modulation and tumor progression. The suprachiasmatic nucleus (SCN), which governs circadian rhythms
contributes to tumorigenesis and tumor immune microenvironment. Wakefulness regulated by the lateral hypothalamus (LH) impacts on cancer
progression. Cognitive and emotional regulation by the prefrontal cortex (PFC), amygdala, and hippocampus are affected in cancer patients

and cancer therapies

eating-fasting patterns, activity-rest cycles, and day-night
cycles, which ensure the coordination of organ func-
tions and physiological processes throughout the body to
achieve and maintain homeostasis [50-52].

In mammals, the SCN of the anterior hypothalamus
serves as the principal circadian pacemaker [53, 54].
Pituitary tumors and vascular diseases in humans dis-
rupt daily rhythms, and SCN-ablated animals can restore
rest-activity rhythms by grafting neonatal SCN tissue [53,
55, 56]. Circadian rhythm mechanisms encompass vari-
ous biological processes such as the synthesis and break-
down of molecules, cell cycle, immune cell activities,
programmed cell death, and repair mechanisms for DNA
damage [57, 58]. Growing evidence suggests a relation-
ship between chronic disturbances in circadian rhythms
and tumorigenesis [59-62]. Activity-rest cycles have
been identified as a significant factor in patients with
metastatic colorectal cancer (CRC) [63]. In breast can-
cer-prone p538*%"/* WAPCre conditional mutant mice,
chronic circadian rhythm disturbances promote the
development of breast cancer [64]. In addition, night shift
work and the disruption of circadian clock genes have
been associated with the progression of breast, prostate,
and lung cancer [65—67]. The photic input of the retina
to the SCN is regulated by adenosine 3’,5"-monophos-
phate (cAMP) signaling, neuropeptides vasoactive intes-
tinal polypeptide, and neurotransmitter GABA signaling

[68-70]. Positive regulators of circadian transcription
proteins are circadian locomotor output cycles kaput
(CLOCK), brain, and muscle aryl hydrocarbon receptor
nuclear translocator 1 (BMAL1), which bind to cryp-
tochrome (Cry) and period (Per) genes with their E-boxes
through two helix-loop-helix domains [71-73]. Although
CRY and PER interact with casein kinase Ie as a heter-
odimer, their function has a negative effect on CLOCK/
BMAL1-driven transcription [74—77]. Furthermore, cir-
cadian genes are transcriptionally upregulated or down-
regulated by Rev-erba (Nrldl) and Rev-erbp (Nrl1d2) or
retinoid-related orphan receptors [78—80].

The circadian genes associate with tumorigenesis.
In CRC patients, the mutation of the pivotal circadian
clock gene Per2 has been implicated in the augmen-
tation of intestinal and colonic tumorigenesis in the
ApcMiV+ model, mediated through the upregulation of
the B-catenin signaling cascade [81]. In addition, loss
of Per2 and BMALI1 accelerates KrasS'?P mutation-
mediated lung cancer progression [66]. Furthermore,
researchers have reported the tumor suppressive role of
Per2 in different cancers [82-85]. Peng et al. showed that
sleep deficiency continuously promotes the production
of palmitoyl-coenzyme A catalyzed by long-chain fatty
acyl-CoA synthetase 1, which facilitates CLOCK-Cys194
S-palmitoylation, fatty acid oxidation (FAO)-sensed cir-
cadian disruption, and enhanced tumorigenesis [86].
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Table 1 Neurological function and related brain region in tumorigenesis

Neurological Function

Pro/Anti-Cancer Related Brain Region

Main Effects and Affected
Pathways

References

Stress Pro-cancer

Circadian Rhythms Anti-cancer

Wakefulness Pro-cancer

Cognitive and Emotional Pro-cancer

Responses

Paraventricular nucleus (PVN)

Suprachiasmatic nucleus (SCN)

Lateral hypothalamus (LH)

Prefrontal cortex (PFC), Amyg-
dala, Hippocampus, Ventral
tegmental area (VTA)

Activation of the HPA axis
leads to increased glucocorti-
coids, which promotes tumor
progression and metastasis
through glucocorticoid recep-
tor activation on tumor cells

[13][33-48],

Disruption of circadian [15-18] [49-90],
rhythms impacts the molecular
synthesis, cell cycle, immune
cell activities, programmed

cell death, and DNA damage
repair mechanisms. Mutations
in circadian genes like Per2 can
upregulate 3-catenin signaling
pathways, promoting intestinal
and colonic tumorigenesis.
Loss of circadian clock genes

is associated with the progres-
sion of various cancers

The HO neurons influence
the HPA axis and sympathetic
nervous system, leading

to increased corticosterone
secretion which has immuno-
suppressive effects and pro-
motes cancer cell behavior.
The activation of HO neurons
also modulates the body’s
response through changes

in the HPA axis and sympathetic
nervous system activity

Stress-induced alterations [107-133,139, 140, 142, 143]
in brain regions involved in cog-
nition and emotion can lead

to structural changes, affecting
neuronal function. Glutamate,
acting on NMDA and AMPA
receptors, modulates neuronal
excitability and has been impli-
cated in the growth of gliomas,
PDAC, and breast to brain
metastasis. Antipsychotic drugs
are used in cancer treatment
which has a antitumor effect

However, BMALI1 deletion suppressed tumorigenesis in
a RAS mutation-triggered cutaneous squamous tumor
model [87].

GABA influences SCN activity by inhibiting PVN
autonomic neurons during the day and enabling their
activation at night. This mechanism regulates the cycli-
cal secretion of melatonin by the pineal gland, which
controls the sleep—wake pattern [88]. Melatonin in the
bloodstream enhances immune responses by binding to
melatonin receptors present in immune cells [89]. Fur-
thermore, melatonin has been shown to increase effector
and regulatory T cells, which are associated with antitu-
mor immunity [90].

The lateral hypothalamus (LH) is a vital region to
regulate wakefulness, which is related to appetitive and
consummatory behaviors through lateral hypothalamic
GABAergic neurons (LHEABAY [91-93]. Hypocretin/
orexin (HO) neurons, which secrete the neuropeptide
hypocretin (HCRT; Orexin), play an essential role in
inflammatory disorders and wakefulness [94—97]. These
two significant efferent outputs from the HO system
cause changes in body functions and cancers on both the
HPA axis and the sympathetic nervous system [97]. Acti-
vation of HO neurons caused by hyperarousal promotes
corticosterone secretion, which has multiple effects on
the immune system and cancers [98, 99]. Furthermore,
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the sympathetic nervous system is partly included in LH,
and HO neurons can activate the sympathetic nervous
system to modulate multiple body responses [100]. Yi
et al. reported that HO neurons are essential for hepatic
gluconeogenesis through the sympathetic nervous sys-
tem [101], and Borniger et al. used a dual HO-receptor
antagonist to identify metabolic abnormalities caused
by HO signaling activation, which uncovered the meta-
bolic and sleep abnormalities that infected central neu-
romodulators, contributing to breast cancer progression
[102]. Sleeping behavior is a key factor in maintaining
HO release, which modulated hematopoiesis [103-106].
Collectively, the mechanism by which circadian rhythms
and wakefulness influence cancer development requires
further exploration (Fig. 1, Table 1).

Cognitive processes and emotional responses

The PFC, amygdala, and hippocampus regulate cogni-
tive function, emotions, and behaviors [107, 108]. These
brain regions can be impaired in individuals experiencing
cognitive decline or in those diagnosed with psychiatric
disorders [109, 110]. Reports indicate that cognitive dete-
rioration is observed in individuals with breast cancer or
CRC [111], and a significant debilitating consequence of
systemic cancer treatment is the impairment of cognitive
function [112, 113]. Patients exhibited greater cognitive
deficits compared to healthy individuals, and the etiology
of cognitive impairment is hypothesized to result from
direct tumor invasion, paraneoplastic syndrome, and
distant metastasis [114]. In another study, patients with
localized breast cancer had a higher cognitive impair-
ment before any cancer treatment, which was mostly
related to fatigue [115].

Stress has a significant impact on the reshaping of the
brain structure, especially the PFC, amygdala, and hip-
pocampus [116-118]. Therefore, the brain regions can
change owing to long-term exposure to stress or long-
term use of glucocorticoids, which can lead to modifica-
tions in neuronal structures or dendritic reorganization
[119-121]. Moreover, the neurotransmitter glutamate
acts in multiple areas of the brain by binding to spe-
cific glutamate receptors, such as N-methyl-d-aspartate
(NMDA) receptors [122], a-amino-3-hydroxy-5-methyl-
4-isoxazole-propionate receptors (AMPA), and Kainate
receptors, regulating neuronal excitability [123]. These
glutamate receptors are abundant in PFC, amygdala
and hippocampus [124]. Glutamate has been reported
to act as a growth factor in gliomas [125], pancreatic
ductal adenocarcinomas, and breast-to-brain metas-
tasis (B2BM) [126-128]. Dizocilpine, an antagonist of
the NMDA receptor, and GYKI52466, an antagonist of
the AMPA receptor, both demonstrate antiprolifera-
tive effects on cells derived from colon adenocarcinoma,
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astrocytoma, and carcinomas of the breast and lung
[129]. In B2BM cells, activation by glutamate ligands of
N-methyl-D-aspartate receptors (NMDAR) has been
identified as a key signaling pathway for breast cancer
metastatic colonization of the brain, implicating invasive
tumor growth [130].

In patients with schizophrenia, the functional connec-
tivity of the VTA can be altered, which could be related
to cognitive dysfunction, emotional blunting, and abnor-
malities in reward processing experienced by patients
[131, 132]. Some studies have indicated that reduced
functional connectivity between the VTA and brain
regions, such as the prefrontal cortex, ventral pallidum,
and nucleus accumbens, may be associated with the
severity of schizophrenia symptoms. Neurons within the
VTA that emit dopamine are central to the modulation of
behaviors linked to reward seeking, decision processes,
working memory, the prominence of incentives, the sig-
nificance of stimuli, and avoidance reactions [131, 132].
Dopamine-producing neurons in the VTA, which express
the enzyme tyrosine hydroxylase (TH) and release dopa-
mine, are regulated by various brain regions as well as by
local GABA and glutamate neurons within the VTA itself
[133]. GABA, glutamate, and dopamine are involved in
normal brain information processing; however, patients
with schizophrenia who suffer from behavioral and
cognitive dysfunction have a neurotransmitter prob-
lem [134]. Therefore, patients with schizophrenia have
a high mortality rate for cervical cancer, breast cancer,
and CRC, which is partly owing to inappropriate cancer
screening and difficulties in coping with treatment [135,
136]. Antipsychotic drugs are the main treatment for
schizophrenia, including clozapine and chlorpromazine,
which act as dopamine D2 receptor antagonists [137,
138]. Recent studies have shown that chlorpromazine
inhibits cancer progression and promotes drug sensitivity
[139]. In non-small cell lung cancer (NSCLC), resistance
to tyrosine kinase inhibitors (TKIs) is primarily driven
by the T790M mutation in the epidermal growth factor
receptor (EGFR). Combination treatment with chlor-
promazine and TKIs can restore sensitivity to gefitinib
in TKI-resistant cells [140]. Furthermore, a chlorproma-
zine derivative (JX57) was confirmed to inhibit endome-
trial cancer progression through the GRP75-AMPK axis
[141]. Similarly, chlorpromazine induces apoptosis and
G2/M phase arrest in oral and colorectal cancer [142,
143] (Fig. 1, Table 1).

Peripheral nervous system impact on tumorigenesis

and cancer progression

Neurogenesis in tumor microenvironment regulation

The peripheral nervous system extends from the cen-
tral nervous system and encompasses the sympathetic
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nervous system (SNS), parasympathetic nervous system
(PNS), and enteric nervous system. It acts as a homeo-
static regulator, managing bodily functions such as blood
pressure, heart rate, gastrointestinal motility [144, 145]
and the immune system [146]. Functionally, the “fight
or flight” response is regulated by the SNS by promoting
the cardiovascular organ [147]. In contrast, the “rest and
digest” response is regulated by PNS by decreasing heart
rate and increasing digest function [148]. Noradrena-
line is the neurotransmitter of the SNS, recognized by
a-adrenergic and [-adrenergic receptors. Acetylcho-
line (ACh) is a neurotransmitter of the PNS and is rec-
ognized by the nicotinic and muscarinic ACh receptor
[12]. Consequently, the critical role of ANS in periph-
eral tumors involves modulating the microenvironment,
affecting tumor growth and metastasis, and potentially
influencing the patient’s response to the treatment, war-
ranting increased attention [149-152]. As embryonic
development requires the formation of the nervous sys-
tem through neurogenesis, the production of blood cells
through hematopoiesis, the establishment of blood ves-
sels through angiogenesis, primary tumor tumorigen-
esis, and metastasis also depend on the establishment
of interconnected networks of the nervous, immune,
and vascular systems [153]. The expansion of nerve fib-
ers from existing nerves is stimulated by neurotrophic
factors that are produced and discharged into the tumor
microenvironment. This process leads to the formation
of nerve networks associated with the tumor, which in
turn produce neural signals that play a role in control-
ling the development and spread of cancer [8, 154, 155].
Neural progenitor cells, characterized by the expres-
sion of doublecortin (DCX™"), have been localized to the
subventricular zone (SVZ) and are known to traverse
the blood-brain barrier, infiltrate prostate tumors, and
modulate tumorigenesis [156]. Moreover, overexpres-
sion of semaphorin 4F increases nerve density through
tumor axonogenesis and neurogenesis, which could con-
tribute to the crosstalk between nerve fibers and cancer
cells [157, 158]. Granulocyte colony-stimulating factor
has neurotrophic properties that enhance nerve spread
in prostate tumor [154]. In gastrointestinal malignancies,
enteric neural progenitors exhibit superior regenerative
capacities compared to CNS progenitors [159]. Glioblas-
toma cells promote tumor neurogenesis by activating
PISK/AKT and CDC42. Furthermore, glioblastoma stem
cells invade the SVZ via the CXCL12/CXCR4 axis [160].
Collectively, these studies underscore the crucial role of
neurogenesis in TME (Fig. 2, Table 2).

Sympathetic nervous system
Chronic stress promotes cancer development [35, 161].
Catecholamines, the main neurotransmitters that play a
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vital role in the stress response, are strongly correlated
with tumorigenesis and development [162, 163]. The fib-
ers of the SNS and receptors of SNS neurotransmitters
are widely distributed in the pancreas, making pancreatic
cancer sensitive to neural signaling [164—166]. Further-
more, SNS fibers also innervate in the bone marrow, and
chronic stress promotes acute lymphoblastic leukemia
progression via f-adrenergic signaling pathway mediated
by other host cell type [167]. B-blocker propranolol also
had an antiproliferation effect on myeloma cells, indi-
cating that stress hormones could be an essential part of
multiple myeloma [168].

In DEN-induced hepatocarcinogenesis, adrenaline
promoted hepatocellular carcinoma (HCC) prolifera-
tion, which could be reversed by 2 antagonists (ICI-
188,551 and butoxamine). In this mechanism, adrenaline
inhibited autophagy by disrupting Beclin1/VPS34/Atgl4
complex, leading to HIFla stabilization. Inhibition of
B2-adrenergic signaling also improved sorafenib sensitiv-
ity in HCC [169].

Magnon et al. observed autonomic nerve fibers in the
prostate gland in mouse models, while sympathectomy
or genetic deletion of stromal f2/3 adrenergic receptors
could prevent tumor development [155]. In addition,
B-adrenergic receptor signaling activated by noradrena-
line is significant in the angiogenic switch, which pro-
motes the development of prostate cancer. Although
deletion of Adrb2, the gene encoding [(2-adrenergic
receptor could inhibit prostate cancer progression by
blocking endothelial oxidative phosphorylation [170].
Furthermore, SNS and PNS densities were associated
with a poor survival rate [155].

Catecholamine depletion by 6-hydroxydopamine
attenuates tumor neovascularization and inhibits tumor
progression. Notably, catecholamines improved tumor
neovascularization by promoting VEGF expression
secreted by polarized M2 macrophages. Meanwhile,
blocking catecholamines creates an immunosuppressive
microenvironment in which myeloid-derived suppressor
cell (MDSCs) recruitment is reduced and dendritic cells
(DCs) are activated [28, 162]. Chemically induced breast
cancer progression can be regulated by sympathetic and
parasympathetic nerves, in which sympathetic nerves
have a promoting role, while parasympathetic nerves
have an inhibiting role [171] (Fig. 2, Table 2).

Parasympathetic nervous system

In cancer progression, the PNS serves a complex role.
Specifically in pancreatic ductal adenocarcinoma
(PDAC), the formation of PNS nerves is linked to tumor
initiation and is a marker of unfavorable outcomes
[172]. Additionally, the muscarinic acetylcholine recep-
tor 3 [173-176], a muscarinic receptor in the PNS, is
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Fig. 2 The peripheral nervous system involved in tumorigenesis and progression. The peripheral nervous system significantly contributes to tumor
microenvironment regulation through the sympathetic nervous system (SNS), parasympathetic nervous system (PNS), and enteric nervous system.
During development, the superior cervical ganglia (SCG), the prevertebral sympathetic ganglia, the celiac ganglia (CG), the superior mesenteric
ganglia (SMG), the inferior mesenteric ganglia (IMG), and the pelvic ganglia (PG) extend axonal projections to supply and interact with various
peripheral organs and tissues. The neurogenesis within the SNS and PNS, stimulated by neurotrophic factors in the tumor microenvironment,
leads to the formation of nerve networks that influence cancer development and spread. The vagal nerve is shown to modulate memory

T cells and suppress MDSC expansion through the secretion of the anti-inflammatory peptide TFF2. 3-blockers, such as propranolol, exhibit
antiproliferative effects on myeloma cells and enhance the efficacy of immunotherapies targeting CTLA4 and PD-1. Adrenaline in hepatocellular
carcinoma (HCC) proliferation is important, along with the reversal of this effect by 32 antagonists, which also improve sorafenib sensitivity in HCC.
Catecholamine depletion is depicted as a means to reduce tumor neovascularization and progression, with an emphasis on its effect on VEGF
expression by M2 macrophages and the subsequent immunosuppressive microenvironment. Lastly, sympathetic and parasympathetic nerves

denervation suppress cancer progression

upregulated in HCC tumors and is correlated with a poor
survival rate in PDAC [177, 178].

In contrast, subdiaphragmatic vagotomy in a murine
pancreatic cancer model increased colon carcinogen-
esis and tumor progression [179, 180]. Nicotine and
acetylcholine acts as ligands for nicotinic acetylcholine
receptors (nAChRs) including, a5, a7, B2, p4, which
are expressed not only in the nervous system but also
in NSCLC. Among these, a7 nAChR and heteromeric
a5, B2, p4 nAChRs were found to promote tumor

progression by enhancing invasion and regulating tumor
proliferation [181].

In summary, increasing evidence suggests that the
brain exerts specific and targeted control over the
immune system, a function facilitated by ANS. From a
physiological perspective, the SNS and PNS, along with
their local and hormonal mechanisms, serve as a means
for the body to maintain balance and stability. Denerva-
tion or adrenergic receptor blockers may be therapeutic
solutions for cancer development [28] (Fig. 2, Table 2).
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Table 2 Peripheral nervous system and tumorigenesis
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Peripheral Nervous System

Pro/Anti-Cancer Cancer Type Mechanism

References

Sympathetic nervous system (SNS) Pro-cancer PDAC

ALL

HCC
PDAC

Parasympathetic nervous system (PNS) Dual role

NSCLC

Extensive distribution of SNS fibers and their [164-166]
neurotransmitter receptors in the pancreas,
influencing tumor growth and metastasis

through neural signaling

Chronic stress promotes the progression
of ALL via the B-adrenergic signaling pathway
mediated by other host cell types

Adrenaline promotes HCC proliferation

by disrupting autophagy through the Bec-
lin1/VPS34/Atg14 complex, leading to HIF1a
stabilization

PNS neurogenesis is associated with stimulat- ~ [172, 179, 180, 324, 325]
ing tumors and poor prognosis. Vagotomy
or genetic deletion of stromal 32/3 adrenergic

receptors can prevent tumor development

Nicotinic acetylcholine receptors (NAChRs) [181]
expressed in NSCLC, where a7 nAChR and het-
eromeric a5, 2, 34 nAChRs promote tumor
progression by enhancing invasion and regu-

lating tumor proliferation

The role of synapse, neurotransmitters

and neurotrophins in cancer

Synapse

Synaptic genes and synapse input are found in brain
tumors [128, 182] and the interaction between synapse
and cancer cells is a key aspect of the pathophysiology of
cancers [183-185]. Neurogliomal synapses were found
in tumor microtubes generate AMPA receptor-driven
postsynaptic currents which enhanced tumor growth and
invasion [125]. NMDAR activation is achieved through
the formation of pseudo-tripartite synapses between
cancer cells, and glutamatergic neurons induce breast-to-
brain metastasis [130]. Moreover, the close-range inter-
actions between immune cells and the synaptic produce
different effects on fine tuning of the immune response
[186, 187] or participating in synapse elimination and
plasticity [188—-190].

Collectively, therapies aimed at specific glutamate
receptor subtypes, post-synaptic signaling pathways,
or the processes essential for synapse formation could
potentially serve as treatment targets to decelerate brain
tumor growth [191]. This raises the question of whether
synapse formation exists in other tumor types and the
related mechanisms need to be further explored.

Dopamine

Dopamine (DA), a crucial monoamine neurotransmitter
in the CNS, is also known as a catecholamine [192]. It is
produced in the basal ganglia, digestive tract, spleen, and
pancreas [193, 194]. DA plays a role in cognition [195],

behavior [196, 197], affective state transition [198], addic-
tion [199], and reward system [200]. Elevated circulating
dopamine concentrations are observed in the plasma of
individuals with lung cancer, and it has been demon-
strated that dopamine suppresses the proliferation and
cytotoxic capabilities of T cells [201].

Dopamine D1 receptors (DRD1) play an inhibitory role
in osteosarcoma OS732 cells through the ERK1/2 and
PI3K/AKT signaling pathways [202]. The DRD1 inhibi-
tor SKF83566 inhibits glioblastoma (GBM) proliferation
and invasion through the DRD1-c-Myc and UHRF1 axes
[203]. Additionally, immune cells including lymphoid and
myeloid lineages express DA receptors [194, 204].

Dopamine receptor D2 (DRD2) suppresses certain
cancer-related characteristics and is found to be overex-
pressed in various types of cancer including gastric, cer-
vical, lung, and breast cancer [205-209]. In breast cancer,
DRD2 enhanced M1 macrophages, restricted NF-«xB
signaling, and triggered pyroptosis [210]. Given the sig-
nificant role of DRD2, research has been conducted to
explore its potential as a therapeutic target [211, 212].
The agonist of the DRD2, bromocriptine, suppressed the
expression of the c-Myc oncogene and enhanced the lev-
els of the tumor suppressor proteins p53, p21, and p27.
The concurrent use of bromocriptine with docetaxel
heightened the cytotoxic effect on prostate cancer cells
and slowed the progression of bone metastasis in pros-
tate cancer [213]. In drug-resistant and metastatic breast
cancer, the DRD2 antagonist sulpiride enhances the
dexamethasone response by decreasing MMP-2 expres-
sion [214]. As a DRD2 antagonist and a butylbenzene
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antipsychotic, haloperidol initiates ferroptosis and boosts
the effectiveness of temozolomide. Mechanistically,
haloperidol antagonizes DRD2 activity, which induces
autophagy and ferroptosis and enhances chemoradio-
therapy in GBM [215]. A separate study found that DRD2
antagonists such as thioridazine, pimozide, haloperidol,
and remoxipride reduced the formation of spheroids
in U87 GBM cells, whereas DRD2 agonists like PHNO,
sumanirole, and ropinirole promoted spheroid formation
in these cells [216]. NMDAR in the spinal cord is essen-
tial for the experience of chronic pain and is influenced
by the dopamine receptors DRD1 and DRD2. Addition-
ally, blocking DRD1 and DRD2 with antagonists has been
found to decrease levels of p-NR1, p-NR2B, Gq protein,
p-Src, spinal CGRP, and c-Fos, thereby providing relief
from bone cancer-induced pain [217]. In addition, DRD5
is expressed in human pituitary adenomas, glioblasto-
mas, colon cancer, and gastric cancer, while SKF83959,

Astrocytes 5-HTRs

Ifenprodil

Wnt-5a/PRICKLE1
/REST axis
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an agonist of DRD5, suppresses tumor proliferation by
inhibiting mTOR activity and inducing autophagy [23]
(Fig. 3, Table 3).

Glutamate
In the CNS, glutamate is the main excitatory neuro-
transmitter that mediates excitatory signals to maintain
biological functions [218—-220]. Glutamate has been dem-
onstrated to be involved not just in learning and mem-
ory processes, but also in the bioenergetic, biosynthetic,
and metabolic capabilities that contribute to oncogenesis
[221-223]. It has been reported that excitotoxic concen-
trations of glutamate were released by glioma cells [224].
Glutamate receptors, including inotropic receptors
(iGluRs) and metabotropic receptors (mGluRs), are
involved in malignant diseases of breast cancer, pros-
tate cancer, lung cancer, CRC, melanoma, osteosar-
coma, multiple myeloma, glioma, medulloblastoma, and

G CaD)

GABA,-R

! -
NMDAR
@

e

—— :
4 —[cor)
A *ﬁ /
METTL3
@ 30 z
mGIuR1 Stabilize CREB N ERK1/2 GABAS-H
HK: A
\ 200 PI3K/AKT
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Fig. 3 The role of neurotransmitters and its receptors in cancer progression. Neurotransmitters exert significant influence cancer progression
through specific signaling pathways. Dopamine modulates cancer cell behavior via the D1 and D2 receptor pathways, DRD1 inhibits osteosarcoma
cell growth through ERK1/2 and PI3K/AKT pathways, while DRD2 inhibits breast cancer by NF-kB signaling. DRD1 inhibitor SKF83566 inhibits tumor
proliferation through DRD1-c-Myc and UHRF1 axes. The agonist of the DRD2, bromocriptine, enhanced the levels of the tumor suppressor proteins
p53, p21,and p27. The concurrent use of bromocriptine with docetaxel heightened the cytotoxic effect on tumor cells. SKF83959 inhibits DRD5
which induce autophagy via mTOR signaling. 221At-labelled mGIuR1 inhibitor, 221At-AITM, induces senescence of tumor cells and exerts antitumor
effects in multiple tumors. mGIuR1 also triggered by astrocytes through the Wnt-5a/prickle planar cell polarity protein 1/RE1 silencing transcription
factor axis. The role of the NMDAR, activate MAPK and CaMK which lead to activation of CREB transcription factor and m® A modification. NMDAR
antagonist ifenprodil synergized with sorafenib downregulated genes in WNT signaling. 5-HTRs are shown to promote cancer cell proliferation
through Notch signaling, MAPK, and PI3K/Akt pathways. GABA receptors influence tumor growth through Wnt signaling, MAPK, PI3K/Akt pathways
and the GABA,-R-PKC-CREB axis which can be influenced by GABAs-R agonist Baclofen or GABAg-R antagonist CGP
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few leukemias [225-228]. iGluRs are categorized into
NMDAR, AMPAR, and kainate receptors, while mGluRs
are segregated into three subfamilies: groups I, II, and
III [126, 222]. In 32 different tumor types, mGluR1 was
abnormally expressed. A 221At-labelled mGluR1 inhibi-
tor, 221At-AITM, induces senescence of tumor cells
and exerts antitumor effects in multiple tumors [229].
In addition, combination therapy with PI3K/mTOR
inhibitors and HER2 or mGluR1 inhibitors efficiently
decreases tumor growth in PTEN wild-type-PI3K/AKT
mutant prostate cancer [230]. In the cerebral microen-
vironment, lung cancer cells are dependent on mGluR1
signaling, triggered by astrocytes through the Wnt-5a/
prickle planar cell polarity protein 1/RE1 silencing tran-
scription factor axis. Furthermore, mGluR1 facilitates the
stabilization of EGFR, promoting brain metastasis [231].
Additionally, the activation of sirtuin 1 in the spinal cord
by SRT1720 downregulates mGluR1/5 expression, alle-
viating bone cancer pain [232, 233]. Overexpression of
mGluR1 also enhances melanoma progression through
angiogenic signaling. Downstream of mGluR1, the AKT-
mTOR-HIF pathway increases the concentrations of IL-8
and VEGF, leading to abundant blood vessels and tumor
proliferation [234]. Riluzole can prevent tumor growth
by inhibiting glutamate release in a Phase II trial in
advanced melanoma [235].

NMDAR are expressed in different tumors and play a
dual role in cancer development [236, 237]. Downregu-
lation of the NMDAR2B subunit has been detected in
esophageal cancer, gastric cancer, and non-small cell
carcinoma [238-240]. Acting as a promoter of tumo-
rigenesis, the activation of the NMDAR, the calcium-
independent mitogen-activated protein kinase (MAPK)
pathway, and the calcium-dependent calmodulin kinase
(CaMK) pathway all contribute to the activation of the
cAMP-responsive element-binding (CREB) transcription
factor [241, 242]. In combinatorial CRISPR-Cas9 screen-
ing, the NMDAR antagonist ifenprodil synergized with
sorafenib downregulated genes in WNT signaling and
stemness and decreased the self-renewal ability of HCC
cells [243]. Additionally, CREB upregulates the proto-
oncogene c-Fos in a DNA double-strand-breaking man-
ner. Breaking strands accelerate the transcription of early
response genes and are recognized as the cause of tumo-
rigenesis [244—246]. Li et al. provided evidence that glu-
tamate from nerve cells causes calcium influx into PDAC.
Furthermore, NMDAR-activated Ca?*-dependent pro-
tein kinase CaMKII/ERK-MAPK pathway and METTL3
mRNA transcription were upregulated, and hexoki-
nase 2 expression was subsequently upregulated by
N6-methyladenosine modification, which improved
PDAC cells’ glycolysis and promoted perineural invasion
[247]. Activated T cells suppress MDSCs through the
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JNK-NMDAR-ARG-1 pathway, which is attenuated by
the NMDAR inhibitor, MK801 [248]. Similarly, NMDAR
activation enhances the immunosuppressive activity of
TAMs by triggering calcium influx and reactive oxygen
species (ROS) production. Single-cell RNA sequenc-
ing showed that MK801, memantine, and magnesium
blocked NMDAR ability and altered TAM phenotypes,
which induced T cell and NK cell-mediated antitumor
immunity [24] (Fig. 3, Table 3).

Serotonin (5-hydroxytryptamine, 5-HT)

Derived from tryptophan, 5-HT is a key neurotransmitter
in the CNS, impacting the nervous system, gastrointesti-
nal function, cancer initiation, and immune response in
an autocrine or paracrine fashion [249-255]. 5-HT func-
tions are primarily achieved by activating 5-HT receptors
(HTRs), including 15 distinct subtypes 5HTR1-7 and
serotonin transporter (SERT) [256]. The 5-HT receptors
1A, 1B, 2B, and 7 are expressed in HCC [257-260], in
which 5-HTR1B and 5-HTR2B induce cancer cell prolif-
eration and drug resistance through Notch signaling and
autophagy [261]. In prostate cancer, 5-HTR 1A, 2B, and
4 have been observed, and antagonists of these recep-
tors inhibit the proliferation of cancer cells [262, 263].
Subtypes of the 5-HTRs has been found in breast cancer
[264], colon cancer [265, 266], pancreatic cancer [267],
gastric cancer [268], ovary cancer [269],and lung cancer
[270, 271]. Activated downstream pathways, including
the adenylyl cyclase, MAPK, and PI3K/Akt pathways,
promote cancer cell proliferation and inhibit apoptosis
[252]. Notably, 5-HTRs play multiple roles in regulat-
ing immune responses. For instance, serotonylation of
GAPDH Q262 induces CD8* T cell glycolytic metabo-
lism, which activates antitumor immunity [272]. Addi-
tionally, 8-OH-DPAT functions as a 5-HTR;, agonist
that increases NK cells cytotoxicity [273]. The 5-HTR, ,
antagonist (+), WAY 100135, inhibited B cell prolifera-
tion effect [274]. In summary, agonists and antagonists
of 5-HTRs that participate in the regulation of immune
cells provide new information on immune therapy [252]
(Fig. 3, Table 3).

Gamma-aminobutyric acid

GABA, a non-proteinogenic amino acid, is produced
from the excitatory neurotransmitter glutamate through
the action of glutamic acid decarboxylase and is found
in the brain, spinal cord, and tumors [275-277]. As a
major inhibitory neurotransmitter, GABA regulates neu-
ronal development, synaptic transmission, prevention of
depression, and pain sensation through the ionotropic
GABA, and GABA( receptors and the G protein-cou-
pled GABAj receptor [278].
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Irregular GABA levels have been associated with poor
prognosis, as the GABAj receptor, activated by GABA,
fosters B-catenin signaling, which in turn boosts tumor
growth and curbs the infiltration of CD8" T cells within
tumors. Targeting glutamate decarboxylase 1 or GABA,
receptors can increase sensitivity to anti-PD-1 (pro-
gramed death-1) immune checkpoint blockade therapy
[276]. In PDAC, the expression of the GABA type A
receptor pi subunit (GABRP) increases in tumor tis-
sues. GABRP promoted Ca®* entry by interacting with
KCNN4, which activated nuclear factor kB signaling,
leading to macrophage infiltration in a GABA-inde-
pendent manner [279]. GABA inhibits electrical activ-
ity in melanoma and keratinocyte coculture systems.
Blocking GABA synthesis decreased melanoma ini-
tiation [280]. Bao et al. reported that sleep deprivation
increases peripheral blood GABA levels, which induces
colon cancer cell proliferation and migration [281].
The delta subunit of the GABAA receptor is activated
by overexpression of glutamic pyruvate transaminase
(GPT2), which increases the GABA content. Moreover,
activation of GABA,-R-PKC-CREB signaling leads to
the upregulation of PODXL, MMP3, and MMP9, which
accelerates breast cancer metastasis [22]. GABA-targeted
treatments have gained attention in cancer co-adjuvant
therapy [282]. Baclofen, which functions as a GABA-R
agonist, has been approved for clinical use [283, 284] and
increases p-ERK1/2 levels in cerebellar neurons [285]. It
can also induce chondrosarcoma cell metastasis, while
the GABAj-R antagonist CGP inhibits the G1/S cell cycle
checkpoint and induces apoptotic pathways by inhibit-
ing the MAPK and PI3K/AKT/mTOR signaling path-
way [286]. GABA is also synthesized and secreted by
activated B and plasma cells, which inhibit CD8" T cell
killer function. Furthermore, the lack of glutamate decar-
boxylase 67, the GABA-generating enzyme, improves the
antitumor response [287] (Fig. 3, Table 3).

Neurotrophins

Neurotrophins, such as nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), and neuro-
trophin 3 (N'T3), play a vital role in nervous system devel-
opment, as well as in learning, memory, and behavioral
processes [288, 289]. The tropomyosin receptor kinase
(Trk) family includes TrkA, TrkB, and TrkC, which have
high affinities for NGF, BDNF, and NT3, respectively
[290, 291]. In addition, paracrine and autocrine neuro-
trophins bind directly to Trks and activate downstream
signaling pathways, including PI3K/AKT, MAPK, PLCy/
PKC pathways associated with cancer proliferation, angi-
ogenesis, metastasis, and chemoresistance [291, 292].
Trks are recognized as oncogenes in tumors, and TrkB
and TrkC regulate apoptosis in tumor cells [293, 294].
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Autocrine NGF-activated TrkA on melanoma cells
decreased interferon y signaling, leading to T and NK cell
exclusion. The TrkA inhibitor larotrectinib can reverse
the suppression of the tumor immune microenviron-
ment, thereby suppressing tumor progression [295]. In
bone metastatic prostate cancer, Fbxo22 ubiquitinates
Krueppel-like factor 4, which affects the NGF/TrkA axis
by repressing NGF transcription, leading to downregula-
tion of bone metastases and macrophage M2 polarization
[296]. Moreover, mice with myocardial infarction exhib-
ited increased tumor progression caused by elevated lev-
els of NGF, which phosphorylated TrkA and activated the
PI3K/AKT signaling pathway. The inhibitor GW441756,
which blocks TrkA, inhibits downstream signaling and
tumor progression [297]. In colorectal cancer, noradren-
aline and NGF formed a positive loop and accelerated
cancer progression through ADRA2A/Gi-mediated acti-
vation of YAP and PI3K/AKT pathway [298].

The BDNEF/TrkB pathway enhances cancer prolif-
eration, invasion, and migration and may be a potential
therapeutic target in HCC and ovarian cancer [293, 299,
300]. Research by Jin et al. showed that lactate secreted
by gastric cancer (GC) cells leads to the induction of can-
cer-associated fibroblasts (CAFs). They also discovered
that an increase in BDNF from CAFs strengthens the
TrkB-Nrf2 pathway in GC cells, which in turn reduces
the apoptosis and reactive oxygen species caused by anlo-
tinib, contributing to GC cells’ acquired resistance to
anlotinib [301]. Conversely, BDNF-expressing neurons in
the hypothalamus decreased leptin levels through sym-
pathoneural P-adrenergic signaling, thereby inhibiting
melanoma and colon cancer model tumor growth and
promoting remission [302].

In summary, neurotransmitters and neurotrophins play
significant roles in cancer progression. Dopamine recep-
tors influence tumor growth and immune responses,
with receptor agonists and antagonists showing potential
therapeutic effects. Glutamate receptors are involved in
various cancers, with some acting as tumor promoters.
Serotonin receptors are expressed in multiple cancers
and modulate immune responses. GABA affects tumor
proliferation and immune cell function, with potential for
adjuvant therapy. Neurotrophins and their receptors are
linked to cancer development, offering therapeutic tar-
gets (Table 3).

The impact of the nervous system in the tumor
immune microenvironment

Sensory fibers and the tumor immune microenvironment
The calcitonin gene-related peptide (CGRP) and sub-
stance P, which are released from peripheral nerve
fibers [303], have been shown to be associated with
the sensing and regulation of the immune response
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[304-306]. CGRP is a significant neurotransmit-
ter involved in inflammation via the RAMP1 signal-
ing pathway [307]. In addition, CGRP-knockout mice
showed a significant reduction in tumor volume com-
pared to WT mice. CGRP-knockout mice have a higher
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content of tumor-infiltrating CD4* T cells, CD8" T
cells, and NK1.17 NK cells [308, 309]. These results
demonstrate that CGRP modulates tumor progression
in the immune microenvironment and may be a thera-
peutic target in cancer (Fig. 4, Table 4).
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Table 4 External stimulus induced tumor immune microenvironment

Cancer Type Immune Cell Type External stimulus Mechanism of Impacton Tumor  References
Microenvironment

Colorectal cancer Memory T cells Viagus nerve modulates memory Vagal nerve mediates splenic secre-  [180]

T cells

Oral squamous cell carcinoma CD4* T cells, CD8* T cells,

CGRP-knockout; Chronic adrenergic

tion of TFF2, suppressing MDSCs
expansion

Reduction in tumor volume; Sup- [308, 309, 318]

NK cells stress pressed CD8* T cells stimulation
Pan-cancer MDSCs Stress induced 32-adrenergic recep-  (2-adrenergic signaling suppresses  [312]
tor signaling T cell proliferation via STAT3 phos-
phorylation and Fas-FasL interaction
Pan-cancer MDSCs, Stress from temperature High temperature reduces MDSCs, [314,315]
DCs, enhances CD11b* myeloid cell
CD8* T cells and plasmacytoid DCs, improving
CD8* T cell activation
Pan-cancer NK cells Surgery induced stress Stress conditions mediate NK cell [316]
suppression
Lung metastasis T cells, Chronic stress Reduction of T cell infiltration [320]
neutrophil and increasing NET formation led
to lung metastasis
Colorectal cancer T cell, Propranolol blocked B2-adrenergic  Increased T cell infiltration [322]
MDSCs receptor signaling and reduced MDSCs infiltration
which enhanced anti-CTLA4
therapy
Breast cancer Myeloid Cells Vagus nerve activation regulates Increased the abundant of CD8* [324]
myeloid cells T cells and NK cells and inhibited
the accumulation of MDSCs
Pancreatic cancer Myeloid Cells Parasympathetic signaling Muscarinic signaling via CHRM1 [325]
regulates CD11b* myeloid cells,
TNFa level, and cancer stem cells
Non-small-cell lung cancer CD8* T Cells Emotional distress impacts CD8* Emotional distress is associated [327]
T cells with lower objective response rate
in immune checkpoint inhibitors
therapy
Pan-cancer CD4*T Cells, Circadian rhythm Circadian differences affected [333,334]
CD8* T Cells, CD4" and CD8* T cells, NK1.1* cells,
NK cells CD11b* LyeC* cells, CD11ct MHCII

and CD19* cells which controlled
by endothelial cells which affected
CAR-T and anti-PD 1 therapy

Sympathetic nervous system in the tumor immune
microenvironment

Stress activates the SNS and HPA axes, resulting in the
activation of adrenergic and glucocorticoid receptors
[310, 311]. However, the crosstalk between - adren-
ergic signaling and tumor immune microenvironment
(TIME) remains debatable. The 2-adrenergic receptor
signaling affected MDSCs frequency in tumors and the
expression of arginase-I and PD-L1, which suppressed
the proliferation of T cells through STAT3 phospho-
rylation and Fas-FasL interaction [312]. f2-adrenergic
receptor stress pathway also performed its immune
suppressive role in modulating MDSCs metabolism.
The P2-adrenergic receptor signaling downregulated
glycolysis and upregulated oxidative phosphorylation
and FAO, which impeded antitumor immunity [313].

Kokolus et al. observed that tumors exhibited reduced
volume and weight at room temperature (22 °C) as
opposed to thermoneutral conditions (30 °C), a reduction
attributed to a decrease in MDSCs and CD11b™ myeloid
cells, and an increase in plasmacytoid DCs at standard
temperature. Consequently, the group maintained at
thermoneutral temperature displayed a higher frequency
of activated CD8*T cells and a lower presence of immu-
nosuppressive MDSCs within the TIME [314, 315]..

Surgery can cause stress and mediate NK cells sup-
pression [316]. Moreover, in postoperative F344 rats
harboring mammary adenocarcinoma and C57BL/6 rats
bearing melanoma, there was a modification in the cyto-
toxic function of NK cells, along with a reduction in the
secretion from Th1 cells [317]..

Chronic adrenergic stress of f2-adrenergic receptor
signaling activation also suppressed immunotherapies
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efficacy by decreasing IFNy production and the cytolytic
killing capacity of antigen-specific CD8" T cells. This
alters DCs function and suppressed CD8" T cells stimu-
lation [318]. Blocking B2-adrenergic receptor signaling
reduces tumor progression by increasing cytokine pro-
duction, which is accomplished by upregulating glyco-
lysis and oxidative phosphorylation in tumor-infiltrating
lymphocytes [319]. Moreover, T cell receptors could be
suppressed by stress-induced [B-adrenergic receptor sign-
aling activation [319]. Furthermore, He et al. reported
that chronic stress alters the lung environment by reduc-
ing T-cell infiltration and fibronectin accumulation and
increasing neutrophil infiltration. Significantly, the for-
mation of neutrophil extracellular traps (NETs) promotes
lung metastasis, and this effect can be attenuated by dele-
tion the glucocorticoid receptor specific to neutrophils
[320]. Collectively, the p-adrenergic receptor antagonist
propranolol is garnering more interest in the field of
immunotherapy. In the context of metastatic melanoma,
propranolol has been shown to enhance the effective-
ness of anti-PD-1 immune checkpoint inhibitor therapy
[321]. Additionally, propranolol has been found to boost
the infiltration of T-cells and decrease the infiltration of
MDSCs, thereby enhanced the efficacy of anti-CTLA4
therapy [322] (Fig. 4, Table 4).

Parasympathetic nervous system in the tumor immune
microenvironment

To date, investigations of parasympathetic modulation
and the immune system have focused mainly on crucial
components of the vagus nerve [12, 146, 323]. Proinflam-
matory cytokines IL-1p and TNF-a in serum were regu-
lated by electroacupuncture activation of the vagus nerve
in breast tumor-bearing mice, which increased the abun-
dance of CD8" T cells and NK cells along with inhibit-
ing the accumulation of MDSCs [324]. In the orthotopic
murine PDAC model, subdiaphragmatic vagotomy was
observed to accelerate tumor growth, which was modu-
lated by TAM secreting TNFa [179]. Another study in
spontaneous formation of PDAC, subdiaphragmatic
vagotomy or knockout of the muscarinic type 1 recep-
tor (CHRM1) accelerated PDAC progression. Muscarinic
signaling activated MAPK/EGFR and PI3K/AKT path-
ways via CHRMI, and cholinergic signaling regulated
CD11b* myeloid cells, TNFa level, and cancer stem
cells, therefore the systemic muscarinic agonist bethane-
chol suppressed tumorigenesis [325] (Fig. 4, Table 4).
The vagal nerve also modulates memory T cells to sup-
press MDSC expansion by mediating the secretion of the
splenic protein trefoil factor 2 (TFF2), an anti-inflamma-
tory peptide. Furthermore, transgenic overexpression of
TFF2, adenoviral transfer of TFF2, or transplantation of
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TFF2 expression into the bone marrow could attenuate
colorectal tumorigenesis [180] (Fig. 2).

Neurological function in the tumor immune
microenvironment

Emotional distress (ED), including depression or anxi-
ety [326], is closely associated with NSCLC, hemato-
logic malignancies, and ovarian tumors, and its impact
on TIME has been evaluated [327-329]. Pre-diagnosis
depression was observed in women with an increasing
abundance of activated cytotoxic (CD3tCD8*CD69™)
and exhausted T cells (CD3"Lag3™) in the tumors. In
high-grade serous carcinomas, depression is associ-
ated with naive and memory B cells (CD20%) [328]. In
NSCLC, patients with ED, assessed using the Patient
Health Questionnaire-9 and Generalized Anxiety Disor-
der 7-item scale, had a shorter median progression-free
survival. In addition, ED is associated with a lower objec-
tive response rate in immune checkpoint inhibitor ther-
apy [327].

The immune system is regulated by the circadian
clock [52, 330-332]. DCs and CD8" T cells exert circa-
dian antitumor functions through tumor draining lymph
nodes (dLN) [333]. Wang et al. found that leukocyte infil-
tration of tumors performed a circadian pattern [334].
Specifically, circadian differences affect CD4* and CD8*
T cells, NK1.1" cells, CD11b" Ly6C* cells, CD11c*t
MHCII? cells, and CD197 cells, which are controlled by
endothelial cells [334]. Notably, human Chimeric antigen
receptor (CAR) T cells demonstrated better therapeutic
efficacy when the time of injection was adjusted to the
evening. In CD8" T cells, both mRNA and protein levels
of Pdcdl (encoding PD-1) peaked in the morning, indi-
cating that the administration of anti-PD-1 in the evening
caused better activation in tumor [334]. Fortin et al. used
an intestine-specific knockout Bmall (disrupting the cir-
cadian clock) and heterozygous deletion of Apc (initiating
CRC) in a genetically engineered mouse model to iden-
tify circadian clock changes in the immune landscape via
single-cell RNA sequencing. Cytotoxic CD8' T cells and
PD-L1-expressing MDSCs showed a peak in abundance
in a time-of-day manner [335]. Collectively, the efficacy
of immune checkpoint inhibitors (ICIs) is affected by the
circadian clock, demonstrating the optimal timing of ICI
therapy.

In conclusion, the nervous system significantly impacts
the TIME. Sensory fibers like CGRP and substance P reg-
ulate immune responses, with CGRP influencing tumor
progression and potentially serving as a therapeutic tar-
get. The sympathetic nervous system (SNS), activated
by stress, can suppress antitumor immunity through
B-adrenergic signaling, affecting MDSCs and T cell pro-
liferation. Parasympathetic activity, particularly via the
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vagus nerve, modulates cytokines and immune cell popu-
lations, impacting tumor growth. Emotional distress and
circadian rhythms also play roles in TIME, with impli-
cations for the timing and efficacy of immunotherapies
(Fig. 4, Table 4).

Cancer neuroscience in cancer therapy

Optogenetic in cancer therapy

Light-sensitive proteins are employed to the optoge-
netic tools to cancer treatment which effector proteins
to reversibly activate fundamental cellular functions
without causing lasting effects [336—338]. Specific wave-
lengths of light can non-invasively stimulate the immune
response, enhance oncolytic activity, and regulate cell
signaling within tumor cells [339, 340]. Similarly, insert-
ing an optogenetic probe rectally in mice that express
channelrhodopsin-2 (ChR2) in tyrosine hydroxylase-con-
taining cells stimulated colonic sympathetic nerve fibers.
Local activation of sympathetic fibers reduces CD45%
cell abundance and regulates immune cell extravasation,
attenuating colonic inflammation [341]. The unique con-
trol of local sympathetic fibers and immune microenvi-
ronment may provide a new treatment strategy for cancer
therapy. CAR T cell-based immunotherapies continue to
face with safety issues stemming from complications like
cytokine release syndrome and “on-target, oft-tumor tox-
icity” [342, 343]. Nano-optogenetic engineering of CAR
T cells are designed to remotely phototune T cell activa-
tion to accurately trigger the destruction of tumor cells
which establish the safe limits of anti-cancer immunity to
prevent the occurrence of harmful side effects [344, 345].

Neuromodulatory drugs in cancer therapy

Cancer neuroscience, which explores the use of nervous
system-related drugs in cancer treatment, has emerged
as a novel area of research and garnered increasing atten-
tion in recent years [26, 346]. Anti-NGF therapy, tan-
ezumab, has been tested to reduce pain caused by bone
metastases (NCT02609828) [347]. Moreover, the epilep-
tic disorders drug valproate was used in RAS-mutated
metastatic CRC (NCT04310176) [348].

In the realm of neuromodulation drugs, the antagonist
or agonist for dopamine receptor 2/3, glutamate recep-
tors, and B-adrenergic receptors has attracted increased
attention [11, 26]. ONC201, also known as Dordaviprone,
has been identified as an antagonist for the dopamine
receptors DRD2 and DRD3. It is capable of penetrating
the blood-brain barrier and inhibiting the pro-survival
signaling pathways AKT-ERK [349-352]. It has been used
in clinical trials for a variety of tumor types, including H3
K27M-mutant diffuse midline glioma (NCT02525692)
[353, 354], neuroendocrine tumors (NCT03034200)
[355] and endometrial cancer (NCT03394027) [356,
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357]. In a Phase II study of ONC201 in patients with
metastatic breast cancer and advanced endometrial car-
cinoma, ONC201 upregulated naive cells and decreased
subsets of effector memory cells among total peripheral
CD4™ T cells [357].

Therapeutic strategies using neuropsychiatric drugs
have been developed based on the high levels of gluta-
mate released into the synaptic cleft. AMPAR antago-
nists perampanel and talampanel (NCT00943826,
NCT00689221, NCTO00813943, and NCT00884741)
decreased calcium-related cell division and increased
cancer cell death by counteracting high levels of gluta-
mate [125, 129]. Imipramine Blue (IB) inhibits the inva-
sion of GBM, and the combination of nano-IB therapy
with doxorubicin in chemotherapy can prolong sur-
vival [358]. Mechanistically, IB suppresses ROS gen-
eration mediated by the reduced form of nicotinamide
adenine dinucleotide phosphate oxidase and modifies
the expression of actin regulatory components [358].
Another study demonstrated that IB inhibited breast
cancer growth by interacting with and inhibiting the
proto-oncogene FoxM1, which affects homologous
recombination-mediated DNA repair [359]. In the model
causing anxiety and stress, glutamate release is triggered
by the depolarization of synaptosomes in the PFC, while
drugs for mood/anxiety disorders (fluoxetine, desip-
ramine, venlafaxine, and agomelatine) can prevent the
upregulation of glutamate release [360]. Moreover, tri-
cyclic antidepressants, such as imipramine and desipra-
mine, recognized for their ability to inhibit the reuptake
of serotonin, might also eliminate excitatory postsyn-
aptic potentials by inhibiting glutamate release in the
PEC [361]. The p-adrenergic antagonist propranolol or
carvedilol could reduce the pro-metastatic and invasive
markers, enhancing the efficacy of cancer treatment and
increasing the survival time in PDAC (NCT02944201),
glioblastoma (NCTO03861598), melanoma, breast can-
cer (NCT03861598 NCT02944201), and prostate cancer
[321, 362—365]. The combination of propranolol and the
anti-PD-1 checkpoint inhibitor pembrolizumab in meta-
static melanoma showed promising antitumor activity
in a Phase II trial (NCT03384836) [366]. The Phase III
trial (NCT02362594) suggested [-adrenergic blockers
improved the efficacy of pembrolizumab treatment, but
did not have a prognostic effect [367]. Collectively, neu-
romodulatory drug combination therapies have broad
prospects but still require further research (Table 5).

Conclusion and future perspectives

The interface between neuroscience and cancer progres-
sion has emerged as a burgeoning and complex field of
scientific investigation with substantial implications for
therapeutic development. We systematically reviewed
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the role of neuroscience in the regulation of tumor initia-
tion, progression, and metastasis in different malignan-
cies. We observed that cerebral regions which regulate
various neurological functions are involved in tumor
progression in multiple ways. The hypothalamus, with its
subdivisions, such as the PVN, which governs the stress
response, particularly regulates the downstream of the
HPA axis and the SAS and has been shown to play a key
role in mediating the impact of stress on tumorigenesis
and the functionality of the immune system [35, 42]. The
circadian rhythm modulated by the SCN located in the
anterior and lateral hypothalamus regulates wakefulness
and plays a significant role in tumorigenesis, progression,
and metastasis [60, 66]. Furthermore, the hippocampus,
PFC, amygdala, and VTA have been studied for their
contributions to neurobehavioral sequelae associated
with cancer [112, 113]. Synapse input and neurotransmit-
ters, including dopamine, glutamate, serotonin, GABA,
and neurotrophins, have been recognized for their sig-
nificant influence on the behavior of tumor cells and the
function of immune cells, and their dysregulation within
the tumor microenvironment has been implicated in
modulating immune responses and promoting tumor
growth [23, 241, 272, 287, 302]. Sensory fibers, the auto-
nomic nervous system (SNS and PNS), and neurological
functions, such as ED and dysregulation of the circadian
clock, have been examined for their dual influences on
cancer onset and progression, and modulating the TIME
presents a significant opportunity for the discovery of
novel therapeutic targets [312, 327, 333].

Although medications that alter abnormal neuro-
logical functions and psychoactive drugs that interfere
with neural signal transmission have been widely used
in clinical practice, the challenge is to uncover the pre-
cise neuroimmune-tumor interactions that promote
or impede tumor progression. A more profound under-
standing of the mechanisms by which neurotransmitters
and neurotrophic factors contribute to the tumor micro-
environment will be essential. The role of the autonomic
nervous system in modulating the immune response to
cancer presents a significant opportunity for the dis-
covery of novel therapeutic targets. The development of
novel neuromodulatory drugs and their integration into
immunotherapeutic strategies will be a critical focus
for future research. Currently, preclinical studies have
investigated the DRD2/3 antagonist: ONC201, AMPAR
antagonist: perampanel or talampanel, p-adrenergic
antagonist: propranolol or carvedilol [353, 357, 365].
Both of these inhibitors hamper tumor development and
promotes antitumor immune response effects. Addition-
ally, the combination of neuromodulation drugs and ICls
improves the efficacy of immunotherapy [366]. There-
fore, it is imperative to identify compounds capable of
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specifically targeting neural pathways that contribute to
cancer progression without altering physiological home-
ostasis. Moreover, the prospect of personalized medicine
in neuro-oncology, based on an individual’s unique neu-
roimmune profile, introduces precision medicine for can-
cer therapy.

In summary, the integration of neuroscience and
oncology requires concerted efforts across multiple disci-
plines, including neurobiology, immunology, and cancer
research. With sustained research and clinical innova-
tion, the future of cancer neuroscience holds promise
for delivering more effective and personalized cancer
treatments, thereby enhancing patient outcomes and
ultimately redefining our approach to combating cancer.
Therefore, this field of investigation will refine our under-
standing of the pathophysiological relationship between
the CNS, ANS, TIME, and cancer development and pave
the way for transformative therapeutics that harness
neuroscience mechanisms to combat tumorigenesis and
metastasis.
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NT3 Neurotrophin 3
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PD-L1 Programed death ligand-1
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PNS Parasympathetic nervous system
PRICKLET Planar cell polarity protein 1
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REST RE1 silencing transcription factor
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SCN Suprachiasmatic nucleus
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