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Abstract: The electrical characteristics of Zinc oxide (ZnO) thin-film transistors are analyzed to
apprehend the effects of oxygen vacancies after vacuum treatment. The energy level of the oxygen
vacancies was found to be located near the conduction band of ZnO, which contributed to the increase
in drain current (ID) via trap-assisted tunneling when the gate voltage (VG) is lower than the specific
voltage associated with the trap level. The oxygen vacancies were successfully passivated after the
annealing of ZnO in oxygen ambient. We determined that the trap-induced Schottky barrier lowering
reduced a drain barrier when the drain was subjected to negative bias stress. Consequentially, the field
effect mobility increased from 8.5 m2 V−1

·s−1 to 8.9 m2 V−1
·s−1 and on-current increased by ~13%.

Keywords: ZnO thin-film transistors; oxygen vacancy; vacuum treatment; oxygen annealing;
trap-induced Schottky barrier lowering

1. Introduction

Zinc oxide (ZnO) is an amorphous oxide semiconductor that can be economically patterned
via simple wet chemical etching at low temperatures. ZnO has several favorable properties such as
nontoxicity, flexibility and transparency [1–4]. Owing to these benefits, ZnO was extensively studied
for applications in various thin-film devices such as nanogenerators, thermal and pressure sensors,
flexible devices, memory devices and logical circuits.

In particular, ZnO was investigated as a promising alternative to the polysilicon channel materials
used in backplane thin-film transistors (TFTs) because of its high mobility ~20 cm2 V−1

·s−1 [5,6].
Various composite materials containing ZnO such as InGaZnO and InSnZnO have also been studied
for this application [7–9]. In general, the electrical characteristics of TFTs, having an amorphous oxide
semiconductor channel including ZnO, show a strong ambient dependence during the fabrication
process [10] and electrical operation [11,12], which were attributed to the various oxygen vacancies
such as VO, VO

+ and VO
2+. These oxygen vacancies can exist at different energy levels: VO at

0.4 eV from the valence band, VO
+ at 2.56 eV from the valence band and VO

2+ at 3.2 eV from the
valence band [13,14]. These oxygen vacancies serve as active trap sites and cause various reliability
problems [15–17]. Although several countermeasures for this problem have been developed using
passivation layers such as SiO2 and HfO2 [18,19], the detailed mechanisms of device degradation and
recovery related with the oxygen vacancies have not been systematically investigated.
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In this study, the non-passivated ZnO TFTs were fabricated using atomic layer deposition (ALD)
and the influences of various oxygen treatments and field stress were investigated to determine
the correlation between the electrical characteristics and the oxygen vacancies. The energy level
of reversible oxygen vacancies in ZnO was found to be near the conduction band. Furthermore,
we observed that the field–effect mobility and on-current were increased by a trap-induced Schottky
barrier lowering after the drain was subjected to negative bias stress [20].

2. Materials and Methods

For back gate device fabrication, SiO2 (90 nm)/highly p-doped silicon substrate
(resistivity < 0.005 Ω cm) was first cleaned in SC1 solution (NH4OH:H2O2:H2O = 1:1:5 at 80 ◦C
for 10 min). Then, 50-nm-thick ZnO was deposited using ALD with 300 cycles of DEZ (0.2 s)/N2 purge
(10 s)/H2O (0.6 s)/N2 purge (10 s) at 120 ◦C. ZnO channel was then patterned using photolithography
and diluted HCl etchant. Finally, Au source and drain electrodes were deposited by an e-beam
evaporator that was 100-nm-thick and patterned via photolithography and metal wet etching process.
The SEM image of ZnO TFTs and the schematic of the device structure are shown in Figure 1a.
The quality of ZnO was verified by Raman spectroscopy (514 nm) and a typical Raman peak of ZnO
was observed at ~433 cm−1 [21] as shown in Figure 1b.
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Figure 1. (a) SEM image of back gate ZnO thin-film transistors (TFT) and the schematic of the device
structure. Channel width and length are 25 µm and 30 µm, respectively; (b) Raman spectrum of ZnO
channel showing ZnO related peak at ~433 cm−1; (c) representative transfer curves before (black) and
after (red) the vacuum treatment at ~10−3 Torr for 24 h; (d) transfer curves after different treatments:
Black circle line denotes the effect of low vacuum treatment; the red square, the sample exposed to
oxygen atmosphere at 1 bar pressure and room temperature (25 ◦C) for 24 h; blue triangle, the effect of
a rapid thermal annealing (RTA) system at 150 ◦C for 30 min, where the oxygen flow was maintained at
500 sccm.
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In order to analyze the effect of oxygen vacancies, three different treatments were used. First,
three samples were stored in a vacuum chamber (~10−3 Torr, 24 h) to intentionally create oxygen
vacancies. One of them was then exposed to oxygen for 24 h (1 bar, 30 ◦C) to reduce the oxygen
vacancies. The next sample was annealed in oxygen atmosphere using rapid thermal annealing (RTA)
process (30 min, 150 ◦C, 500 sccm) to accelerate the reduction of oxygen vacancies. The annealing
temperature, 150 ◦C, was deliberately selected to be slightly above the deposition temperature to make
this process compatible with flexible electronics (<200 ◦C).

The electrical characteristics were measured at 30 ◦C in ambient air. For detailed device
characterization, the following assessments were performed: (i) Reliability assessments to determine
the effect of the increased oxygen vacancies after vacuum treatment on the Schottky barrier; (ii) The ZnO
TFTs stored in vacuum were subjected to a negative drain bias stress, to investigate the degradation of
the Schottky barrier (VD.stress = −2.5 V, VG.stress = 0 V); (iii) The effect of stress on the channel/drain
junction was investigated by measuring the ID–VG transfer curve and the capacitance between the
source and the drain.

The ID–VG measurement and stress application were performed using stress and measurement
method of Keithley 4200-SCS parameter analyzer and the delay between the stress and measurement
was less than a few tens of a millisecond. Capacitance–voltage curves were measured using an Agilent
4294A impedance analyzer.

3. Results and Discussions

ZnO TFTs with an Au electrode showed n-type device characteristics as shown in Figure 1c.
The field-effect mobility extracted from the as fabricated device shown in Figure 1c was approximately
10 cm2/V·s, which is similar to the values reported in the literature [22,23]. Field-effect mobility was
calculated using µFE = (L/W · Cox · VD) (∂ID/∂VG). After the vacuum treatment, a “hump” (red line)
was observed at the low field region of ID and the Ioff increased by three orders of magnitude from
3.1 × 10−12 A to 2.8 × 10−9 A at VG = −40 V. When the ZnO TFTs were exposed to the oxygen ambient
at 1 bar for 24 h at 30 ◦C, the hump was reduced primarily at the subthreshold region as shown in
Figure 1d. When the ZnO TFTs were annealed at 150 ◦C for 10 min in oxygen ambient, the hump
at the subthreshold region almost disappeared, indicating that the hump at the subthreshold region
is due to the oxygen vacancies, which can be reversibly controlled by oxygen treatment. Moreover,
the electrical properties of the ZnO TFTs (Ion/Ioff, VT, Subthreshold Slope) were deteriorated after the
vacuum treatment and improved again after O2 exposure or O2 RTA as shown in Table 1.

Table 1. Electrical properties of the ZnO TFT with different condition.

Properties As Fabricated Vacuum Treatment O2 Exposure O2 RTA

Ion/Ioff 3.1 × 106 2.8 × 103 9.2 × 105 1.5 × 107

VT (V) −9.6 −11.1 −9.8 −4.1
SS (V/dec.) 6.3 10.4 7.5 2.8

After identifying the various oxygen treatment methods to obtain devices having different levels
of oxygen vacancies, their electrical characteristics were investigated in detail. First, the transfer curves
(ID–VG) of devices stored in vacuum and annealed in oxygen ambient (annealed at 150 ◦C for 30 min)
were further examined as shown in Figure 2a,b, respectively. Figure 2a shows the gradual ID increase
as a function of VD, which shows a gradual saturation and much significant increase at the low gate
bias region. After the oxygen annealing, this device showed weaker VD dependence compared with
the device stored in a vacuum.

The difference between the two groups becomes more evident with the normalized ID–VG curves
as shown in Figure 2c,d. When the drain current curves measured at various VD are normalized
with maximum Id value at the VG = 40 V, all I–V curves overlap each other. This result indicates
that the relative difference in the drain current was due to the difference in the effective drain bias,
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i.e., series resistance component. In contrast, in a low field region, apparent drain current increase as a
function of VD was observed in the devices stored in vacuum, which implies that the oxygen vacancies
primarily contribute to the drain current increase at the low field region. These results also confirm
that the oxygen vacancies generate shallow trap sites that contribute to the trap-assisted tunneling
(TAT) from the source to the channel as schematically shown in Figure 2e [24,25]. At a high field
region, these shallow traps do not directly contribute to the drain current because the carrier tunnel
through the Schottky barrier becomes dominant as shown in Figure 2f. This model explains the gate
bias dependence of oxygen vacancy induced hump and why they do not appear at the gate bias region
above the specific bias marked in Figure 2c as a critical voltage, VTr. These results match those of the
previous study on the impact of oxygen vacancy in ZnO particles [26,27].Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 8 
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Figure 2. ID–VG transfer curves measured at different VD (a) after low vacuum treatment (b) after
RTA in oxygen ambient (150 ◦C for 30 min); (c,d) ID–VG transfer curves of (a) and (b), respectively,
normalized with respect to ID at VG = 40 V; (e) Schematic band diagram for the case having VG below
the transition voltage (VTr). Trap-assisted tunneling (TAT) current (green arrow) increased via an
oxygen vacancy level near the conduction band of ZnO; (f) Schematic band diagram for the case having
VG above VTr. The current (green arrow) flows through the Schottky barrier at source/channel and
channel/drain without being affected by oxygen vacancies. The small red circles denote the expected
energy level of oxygen vacancy.

Next, to estimate the effects of oxygen vacancies on the Schottky barrier at the channel/drain
junction, constant voltage stress was performed as shown in Figure 3. In this process, negative drain
bias stress was applied to the drain side (VD.stress = −2.5 V, VG.stress = 0 V) to probe the degradations in
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the channel/drain junction region. As the stress time increased, ID gradually changed from the red to
the blue line as shown in Figure 3a. The ID drastically decreased at the VG region below VTr and this
trend is reversed at the VG higher than VTr. This drastic decrease can be explained by the migrated
positive charges at the drain side as illustrated in Figure 4a, which increases the TAT distance at the
source side.

Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 8 

 

Next, to estimate the effects of oxygen vacancies on the Schottky barrier at the channel/drain 
junction, constant voltage stress was performed as shown in Figure 3. In this process, negative drain 
bias stress was applied to the drain side (VD.stress = −2.5 V, VG.stress = 0 V) to probe the degradations in 
the channel/drain junction region. As the stress time increased, ID gradually changed from the red to 
the blue line as shown in Figure 3a. The ID drastically decreased at the VG region below VTr and this 
trend is reversed at the VG higher than VTr. This drastic decrease can be explained by the migrated 
positive charges at the drain side as illustrated in Figure 4a, which increases the TAT distance at the 
source side. 

 
Figure 3. (a) ID–VG transfer curves after negative bias stress. VD.stress = −2.5 V and stress time = 1000 s. 
Curves were shifted from the red to the blue line as indicated by the arrows; (b) gradual change in 
the source to drain capacitance as a function of drain voltage during the constant voltage stress. 
Capacitance was measured at VG = 0 V. 

As shown in Figure 3b, the source to drain capacitance decreased from the red to the blue line 
as the stress time increased. At a higher VD, the decrease was more pronounced and the capacitance 
was decreased from 6.66 pF to 6.60 pF at VD = 6 V. Although the change in the junction capacitance is 
relatively small, it is apparent that the barrier profile of Schottky junction is indeed affected by the 
charge trapping as reported in the prior works on trap-induced Schottky barrier lowering [28,29] and 
illustrated in Figure 4b. Even though we cannot identify the band profile accurately from the 
capacitance measurement, the drain bias dependence and stress dependence indicates that the band 
profile shown in Figure 4 matches with the experimental results because the smaller capacitance 
means the smaller band bending by charge trapping. 

 
Figure 4. (a) Energy band diagram when the VG is lower than the VTr with the enlarged region at the 
source/channel side. The tunneling distance of TAT (red arrow) increases due to the change in the 
potential barrier by positive charge traps near the channel/drain side; (b) Schottky barrier is lowered 
due to the charge traps when the VG is larger than the VTr near the channel/drain side after stress. 

Figure 3. (a) ID–VG transfer curves after negative bias stress. VD.stress = −2.5 V and stress time = 1000 s.
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Capacitance was measured at VG = 0 V.
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Figure 4. (a) Energy band diagram when the VG is lower than the VTr with the enlarged region at the
source/channel side. The tunneling distance of TAT (red arrow) increases due to the change in the
potential barrier by positive charge traps near the channel/drain side; (b) Schottky barrier is lowered
due to the charge traps when the VG is larger than the VTr near the channel/drain side after stress.

As shown in Figure 3b, the source to drain capacitance decreased from the red to the blue line
as the stress time increased. At a higher VD, the decrease was more pronounced and the capacitance
was decreased from 6.66 pF to 6.60 pF at VD = 6 V. Although the change in the junction capacitance
is relatively small, it is apparent that the barrier profile of Schottky junction is indeed affected by
the charge trapping as reported in the prior works on trap-induced Schottky barrier lowering [28,29]
and illustrated in Figure 4b. Even though we cannot identify the band profile accurately from the
capacitance measurement, the drain bias dependence and stress dependence indicates that the band
profile shown in Figure 4 matches with the experimental results because the smaller capacitance means
the smaller band bending by charge trapping.

Finally, the impact of constant voltage stress on the field effect mobility and on–current is
investigated as shown in Figure 5. Interestingly, the field effect mobility increased after the stress,
from 8.5 m2 V−1

·s−1 to 8.9 m2 V−1
·s−1, because the swing of ID–VG curve actually improved as shown
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in Figure 3a. This result is due to the suppression of subthreshold leakage current caused by the
tunneling distance increase at the low gate bias region which can be explained with the band diagram
shown in Figure 4a, which in turn improves the swing. The on-current values in the high field region
were also enhanced after the stress by ~13% as shown in Figure 5b. This result can be explained by the
band diagram shown in Figure 4b. After the negative drain bias stress, the traps accumulated in the
drain side improve the channel conductivity due to the trap-induced Schottky barrier lowering effect.
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