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In the past decade, cancer immunotherapy has achieved great success owing to the
unravelling of unknown molecular forces in cancer immunity. However, it is critical that we
address the limitations of current immunotherapy, including immune-related adverse
events and drug resistance, and further enhance current immunotherapy. Lipids are
reported to play important roles in modulating immune responses in cancer. Cancer cells
use lipids to support their aggressive behaviour and allow immune evasion. Metabolic
reprogramming of cancer cells destroys the equilibrium between lipid anabolism and
catabolism, resulting in lipid accumulation within the tumour microenvironment (TME).
Consequently, ubiquitous lipids, mainly fatty acids, within the TME can impact the function
and phenotype of infiltrating immune cells. Determining the complex roles of lipids and
their interactions with the TME will provide new insight for improving anti-tumour immune
responses by targeting lipids. Herein, we present a review of recent literature that has
demonstrated how lipid metabolism reprogramming occurs in cancer cells and influences
cancer immunity. We also summarise the potential for lipid-based clinical translation to
modify immune treatment.

Keywords: lipids, fatty acids, tumour microenvironment, immunotherapy, immune evasion
1. INTRODUCTION

Since current immunotherapy has shown dramatic effects in controlling cancer, research into
immune responses in cancer has attracted great interest. The limitations of current immunotherapy
include a small beneficial population and unavoidable disease relapse. The rationale or foundation
of immunotherapy is to design a strategy that promotes immune responses to tumour antigens.

Lipids are a complex group of biomolecules with various compositions and functions,
including fatty acids (FAs), glycerolipids, phospholipids, sphingolipids, glycolipids, sterol
lipids, and lipoprotein. A simple method for biological lipid classification, with the
representative structures, is shown in Figure 1. Many lipids are derived from FAs that are
composed of long hydrocarbon chains with different lengths and saturation. Although most FAs
(nonessential FAs) can be synthesised in the body, some must be obtained from diet (i.e., so-called
essential FAs and including omega-3 and omega-6). Lipids play a central role in many normal
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cellular processes, and maintaining the physiological levels of
lipids contributes to homeostasis throughout the body.
Specifically, glycerophospholipids are the main structural
components of the biological membranes that physically
separate the intracellular components from the extracellular
environment. Lipids are also a major form of energy storage,
which is stored in the form of triglycerides in adipose tissue, and
lipases catalyse the hydrolysis of triglycerides to produce FAs to
fuel cell activity through b oxidation. In addition, lipids in
the body are important signalling molecules and cellular
messengers, such as sphingosine-1-phosphate, eicosanoids, and
Abbreviations: ACAT1, acetyl-CoA acetyltransferase 1; ACC, acetyl-CoA
carboxylase; ACLY, ATP citrate lyase; ATX, autotaxin; BMI, body mass index;
CAR-T, chimeric antigen receptor T cell; cDC1, conventional type 1 dendritic
cells; CPT1a, carnitine palmitoyl transferase 1a; DCs, dendritic cells; FABPs, fatty
acid-binding proteins; FAO, fatty acid oxidation; FAs, fatty acids; FASN, fatty acid
synthase; FATPs, fatty acid transport proteins; FATP2, FATP 2; GPCR: G protein-
coupled receptor receptors; LDs, lipid droplets; LDLR, low-density lipoprotein
receptor; LPA, lysophosphatidic acid; LPAR: LPA receptors; LPC,
lysophosphatidylcholine; MDSCs, myeloid-derived suppressor cells; M-MDSCs,
monocytic-MDSCs; Msr1: macrophage scavenger receptor type 1; NK cells,
natural killer cells; PGE2, prostaglandin-E2; PCSK9: proprotein convertase
subtilisin/kexin type 9; PMN-MDSCs, polymorphonuclear-MDSCs; PPAR,
peroxisome proliferator-activated receptor; PUFA: polyunsaturated fatty acid;
SCD, stearoyl-CoA desaturase (D9); SCFAs, short-chain fatty acids; SREBPs:
sterol regulatory element-binding proteins; TAM, tumour-associated
macrophages; Th1, T-helper 1; Th17, T-helper 17; Th2, T-helper 2; TME,
tumour microenvironment; Tregs, immune regulatory T cells; TSCM, stem cell
memory T; VLCFAs, very long-chain fatty acids; VLDL, very low-
density lipoproteins.
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prostaglandins, via activation of G protein-coupled or nuclear
receptors (1–3). Under tumour conditions, however, cancer cells
hijack lipids to aid in their development and progress by
promoting proliferation and invasion of cancer cells (4–9).
Changes in lipid metabolism and related signalling have been
recognised as hallmarks of cancer. In addition, lipids present
within the tumour microenvironment (TME) play an important
role in eliciting immune responses against cancer. A negative
relationship between the function of lipids and anti-tumour
responses has been widely reported (10–13). Therefore,
understanding how cancer cells contribute to changes in lipid
metabolism in the TME and are influenced in return, as well as
how lipids take part in the interplay with cancer immunity, is of
great significance for developing more effective interventions.

In this review, we discuss recent advances in the role of lipids
in remodelling immune responses in cancer. At the same time,
we also explore the potential clinical application of lipids as a
new therapeutic approach or as biomarkers for cancer based on
their immunoregulatory role. The search strategy for literatures
of interest can be seen in the Supplementary Material.
2. INTERACTION BETWEEN LIPIDS AND
TUMOUR CELLS

Lipids can act as substrates for the synthesis of cell membranes
and organelles for cancer cell proliferation and are an important
source for cancer cells to obtain ATP. In addition, lipids play an
important role beyond the metabolic requirements, such as the
role of mediator in signal transduction. In general, lipids in
cancer cells are altered in density, composition, distribution, and
mode of action. This significantly contributes to the development
and progression of cancer. Next, we discuss how the metabolism
and utilisation of lipids change in cancer cells and how these
changes can aid in their malignant phenotypes.

2.1. Lipid Metabolism Reprogramming in
Tumour Cells
Highly proliferative cancer cells demonstrate or have a
significant dependence on lipids, such as phospholipids in
synthesis of cell membranes and FAs in generation of ATP.
Thus, cancer cells, unlike normal tissue cells, have special lipid
metabolic features, known as lipid metabolism reprogramming.
Cancer cells modify lipid metabolism to meet their survival needs
by increasing the exogenous uptake of lipids or de novo
lipogenesis (Figure 2).

CD36, a membrane-bound glycoprotein, plays an important
role in delivering exogenous lipids into the cytoplasm of cells
(14). CD36 was overexpressed on the cell membrane of several
cancer cells and was associated with the aggressive behaviours of
these cancers, including oesophageal and gastric cancer, breast
cancer, cervical cancer, and renal cancer (15–19). In addition,
other proteins such as FA transport proteins (FATPs) and FA-
binding proteins (FABPs) also contribute to the uptake of
exogenous lipids by cancer cells (20, 21). One source of
exogenous lipids is FAs, which are released by adipocytes.
FIGURE 1 | Categories of main lipids involved in cellular processes and
representative structures from each category.
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Many studies have reported an interaction between cancer cells
and the surrounding adipocytes. The coculture of breast cancer
cells and adipocytes can activate lipolysis within adipocytes, and
the released FAs are taken up and utilised by breast cancer cells
(22). Both activated adipocytes and cancer cells secrete IL-6,
which is considered a strong lipolytic factor that induces the
release of FAs from adipocyte triglyceride stores (23–26). IL-6
delivers signals through the STAT3 pathway, and recent studies
have reported that CD36 is a downstream target of activated
STAT3, suggesting that upregulation of IL-6 expression would
further increase the uptake of FAs by cancer cells (27, 28).
Dietary sources are another way for cancer cells to acquire
exogenous FAs. Triglycerides present in circulating very low-
density lipoproteins (VLDL) can be hydrolysed by lipoprotein
lipase (LPL), which is highly expressed in several types of cancer
(29–32). In addition, receptor-mediated endocytosis of intact
VLDL has recently been reported as a newly identified means for
lipid uptake by cancer cells (33). In general, FAs are taken up by
cancer cells via CD36, FATPs, or FABPs, whereas complex lipids
are taken up via the low-density lipoprotein receptor (LDLR).

Apart from the exogenous uptake of lipids, de novo
lipogenesis is a common feature of cancer cells (34). Somatic
Frontiers in Oncology | www.frontiersin.org 3
cells normally obtain FAs from exogenous sources, including diet
or liver-synthesised lipids. In contrast, cancer cells also activate
de novo lipogenesis pathways, which remove their reliance on
externally derived lipids (34). FAs are synthesised from acetyl-
CoA. Several key lipogenic enzymes, such as acetyl-CoA
carboxylase (ACC), FA synthase (FASN), and stearoyl-CoA
desaturase (D9) (SCD), participate in this process, and in
cancer cells they are upregulated to increase de novo FA
synthesis (35, 36). Increased expression of these enzymes was
induced by the activation of sterol regulatory element-binding
proteins (SREBPs), which are key transcription factors involved
in lipid metabolism (37). SREBPs were mostly regulated by the
PI3K/Akt/mTORC1 signalling axis (37). This axis increases the
expression of enzyme need for FA synthesis therewith and
activates the ATP-citrate lyase (ACLY) that catalyses the
generation of acetyl-CoA from citrate. Therefore, it was earlier
widely accepted that de novo lipogenesis was a universal
phenotypic alteration for cancer cells irrespective of the
surrounding levels of circulating lipids. The synthesised FAs
are ultimately used for production of phospholipids for
membranes and lipid rafts by cancer cells. However, some
studies have challenged this perspective, as they have found
FIGURE 2 | Lipid metabolism reprogramming in cancer cells. To satisfy the requirements for cancer cell survival and proliferation, cancer cells have an increased
uptake of exogenous lipids and a high level of de novo synthesis. Exogenous uptake of lipids is increased in cancer cells through upregulating multiple transporters,
including CD36, FATPs, and FABPs. De novo FA synthesis is activated in cancer cells. This is achieved through the overexpression of lipogenic enzymes, induced by
the activation of SREBPs. Abundant lipids can support the malignant proliferation of cancer cells by providing necessary substrates for membrane synthesis and
metabolic fuels via b-oxidation. Increased FAO can also help reduce cell apoptosis by eliminating reactive oxygen species. In addition, balance between saturated
and unsaturated FAS was achieved by lipid reprogramming to enhance the capacity of invasion and migration in cancer cells. The excess lipids are stored into LDs.
The figure was created with BioRender.com. ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; ACS, acyl-CoA synthetase; CAT, carnitine translocase; CD36,
cluster of differentiation 36; CPT, carnitine palmitoyltransferase; ELOVL, fatty acid elongase; FA, fatty acid; FABPs, fatty acid-binding proteins; FA-CoA, fatty acyl-
CoA; FADS, fatty acid desaturase (D5 or D6); FAO, fatty acid oxidation; FASN, fatty acid synthase; FATPs, transport proteins; LD, lipid droplet; LDLR, low-density
lipoprotein receptor; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SCD, stearoyl-CoA desaturase (D9); SREPs, sterol regulatory element
binding proteins; TCA cycle, tricarboxylic acid cycle.
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that these newly synthesised FAs are beyond the requirements of
membrane synthesis in cancer cells (38, 39). De novo lipogenesis
changes the cellular lipid composition in cancer cells compared
with normal tissues (40), which can be used as a marker to detect
cancer; it also adjusts the saturation of membrane lipids, which is
an important factor in influencing cell dynamics and the
susceptibility to peroxidation. In vitro and in vivo evidence has
shown that increase of de novo lipogenesis can increase the level
of saturated and mono-unsaturated phospholipid species but
decrease the relative amount of polyunsaturated FAs (PUFAs),
which are obtained through exogenous uptake (41). Because
saturated lipids pack more densely and PUFAs are more
susceptible to peroxidation, this change of increased saturation
assists the maintenance of cancer cell shape and motility and
protects cancer cells from lipid peroxidation in the presence of
reactive oxygen species. Reversely, the inhibition of de novo
lipogenesis via lipogenesis inhibitors or by targeting lipogenic
enzymes with small interfering RNA can dramatically alter the
membrane dynamics and render cancer cells more susceptible to
oxidative stress-induced cell death (41).

Taken together, cancer cells have an increased level of
intracellular lipids through either or both excessive exogenous
uptake and de novo synthesis. The choice of the FA source for cell
biosynthesis likely depends on the conditions within the TME.
For example, in a hypoxic TME, cancer cells may bypass lipid
synthesis pathways and increase the uptake of exogenous
unsaturated FAs (42). Cancer cells can utilise these synthesised
or extraneous FAs through multiple mechanisms to achieve their
growth and gain a survival advantage. Naturally, an increased
amount of FAs can aid in membrane synthesis and energy supply
in the life cycle of cancer cells (4–6), promoting the proliferation
of cancer cells as a result. Beyond the biosynthesis requirements,
increased FAs can support a more aggressive phenotype in
cancer cells (43). It was reported that FA oxidation (FAO)
contributed to reduction of reactive oxygen species and cell
apoptosis in acute monocytic leukaemia cells (44). In addition,
as mentioned above, the balance between saturated and
unsaturated FAs is critical in maintaining the cell shape and
capacity of motility, which are directly related to the invasion and
migration of cancer cells. In summary, lipid metabolic
reprogramming, as a common feature in cancer cells,
significantly contributes to the maintenance of malignant
biological behaviour in cancer cells.
2.2. Cancer Cell Pathways Driven
by Lipid Metabolites
2.2.1 Regulation of Oncogenic Signalling
In addition to being utilised as substrates for membrane
synthesis or energy production, lipids are also important in
signal transduction platforms and their metabolites are
implicated in several pathways within the TME. In this section,
we first discuss the lysophosphatidylcholine (LPC)-autotaxin
(ATX)-lysophosphatidic acid (LPA) axis that plays a critical
role in tumourigenesis and cancer cell invasion.

In the TME, the tumourigenic role of this axis was initiated by
ATX, as it served as a plasma lysophospholipase D producing
Frontiers in Oncology | www.frontiersin.org 4
LPA by hydrolysing LPC. Increased expression of ATX was
reported in various cancer tissues, including thyroid (45), lung
(46), breast (47), hepatic (48), pancreatic (8, 49), renal (50),
bladder (50), prostate (51), ovarian (52), and endometrial (53,
54) cancer. The underlying mechanism of an elevated ATX level
in cancer has not been completely elucidated. However, in vitro
studies have reported that an increased ATX was related to the
activation of STAT3 in both breast cancer (55) and pancreatic
neuroendocrine neoplasms (56). Consequently, the LPC/ATX/
LPA axis was overactivated within the TME and subsequently
utilised to stimulate tumour progression and metastasis by
binding LPA with the G protein-coupled receptor (GPCR)
(Figure 3). Although a complex network is implicated after the
binding of LPA and its receptor, it is well recognised that the pro-
tumour process involves activation of the PI3K, MAPK, and Rho
signal cascades and Ca2+ mobilisation (57–60). Recently,
attention has been paid to the variant roles of different LPA
receptors (LPAR) in influencing cancer cell migration,
proliferation, and metastasis (61). LPA transfers signals
through at least six GPCRs (LPAR1–6) (61–63). The different
members of the LPAR family show differentiated effects for
cancer cells. In addition, the effects signalled by the same
LPAR can also vary across different cancer types. Proliferation
and/or motility of cancer cells were promoted after LPA
signalling through the LPAR1 in colon, gastric, and breast
cancer (64–67), LPAR2 in colon and renal cancer (68–70),
LPAR3 in colon, pancreatic, and breast cancer (71–73), LPAR4
in fibrosarcoma (74), and LPAR6 in hepatic and pancreatic
cancer (75, 76). Reversely, proliferation and/or motility of
cancer cells also showed a decrease after LPA signalling
through LPAR2 in melanoma (77), LPAR4 in pancreatic,
colon, and head and neck cancer (75, 78, 79), LPAR5 in
pancreatic cancer and melanoma (75, 80), and LPAR6 in colon
cancer (78, 81). These suggested that the role of the LPC/ATX/
LPA axis depends on the types of LPAR and cancer. Thus, there
is a need to distinguish the expression patterns and function
features of LAPR in further work by applying high-throughput
molecular biological techniques aimed at understanding how to
improve current therapeutic modalities by targeting the LPC/
ATX/LPA axis.

2.2.2 Influence of Immune-Regulated Signalling
Numerous immunotherapy strategies have been developed
against cancer, and, among those, inhibition of immune
checkpoints holds the greatest promise. The PD-1/PD-L1 axis
is one of the most important and well-studied checkpoint
pathways in cancer immunity. In recent years, a special role of
lipids was revealed in regulation of the PD-1/PD-L1 axis.

PD-1 is a cell surface receptor encoded by the PDCD1 gene.
PD-L1, also known as B7-H1 or CD274, is the ligand of PD-1.
The PD-1/PD-L1 axis plays a role in halting or limiting the
development of the adaptive immune response (82). It is hijacked
by cancer cells to promote T cell exhaustion and the acquisition
of immune evasion. PD-L1 is expressed on cancer cells, immune
cells, and other TME cells, whereas PD-1 is mainly expressed on
T cells and B cells (83, 84). Modification of PD-L1 on cancer cells
can greatly influence the immune-regulated function of this axis.
October 2021 | Volume 11 | Article 751086
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Palmitoylation of PD-L1 is now recognised as one of these
important modifications. Palmitoylation is a reversible lipid
modification of proteins, in which FAs, such as palmitic acid,
are attached to a cysteine (S-palmitoylation) residue as a vast
majority via a thioester linkage (85). This posttranslational
modification regulates the localisation and function of proteins
(86). Palmitoylation of PD-L1 in cancer cells has demonstrated a
contribution to the maintenance of PD-L1 stability and immune
evasion of cancer (87, 88). Yang et al. revealed a single
palmitoylation site at Cys272 of PD-L1 located in the cytosolic
domain, and ZDHHC9 was demonstrated to be responsible for
PD-L1 palmitoylation. In breast cells, knockdown of ZDHHC9
decreased PD-L1 palmitoylation following reduction of the PD-
L1 protein level and sensitised the T-cell killing function both in
vitro and in vivo (88). These were also demonstrated by Yao et al.
(87). Different from the results in breast cancer, they identified
that palmitoyltransferase ZDHHC3 was the main acyltransferase
for PD-L1 palmitoylation in colorectal cancer cells. Similarly,
inhibition of palmitoylation by 2-bromopalmitate and a
synthetic peptide successfully induced decrease of PD-L1
expression and enhanced T-cell immunity against tumours in
vitro and in vivo (87). These recent studies indicated a possible
strategy to restore the anti-tumour immune response by
targeting palmitoylation of PD-L1. As different acyltransferases
were identified in different cancer types, further work is needed
to verify the unique role of acyltransferases in multiple cancers.
In addition, it is also of interest to uncover whether
palmitoylation operates similarly in the immune cells under
the TME.
Frontiers in Oncology | www.frontiersin.org 5
3. LIPIDS AND IMMUNE RESPONSES
IN CANCER

Immune cells are an important part of the TME, and they work
in tandem to clear cancer cells (anti-tumour response) or to
promote cancer progression (immunosuppressive response) by
identifying related immune signals. During the anti-tumour
response for effective killing of cancer cells, stepwise events
have to be initiated and allowed (89). First, neoantigens
generated by oncogenesis are released and captured by
dendritic cells (DCs) for processing. Then, the captured
antigens on MHCI and MHCII molecules were present by DCs
to T cells. This results in priming and activation of effector T cell
responses against cancer-specific antigens. Finally, effector T cells
are recruited and infiltrate into the tumour bed, leading to
targeted killing of cancer cells through recognising the cognate
antigen bound to MCHI by TCR. However, this process is also
characterised by overcoming inhibitory factors that can switch
off or limit the anti-tumour response (90). Although the roles of
various immune cells in cancer are being revealed, lipids appear
to complicate matters. As mentioned in Interaction Between
Lipids and Tumour Cells, excessive uptake of exogenous lipids
and de novo synthesis in cancer cells lead to lipid accumulation in
the TME, although cancer cells themselves utilise these lipids in
various mechanisms (91). To adapt to this increase in lipids,
immune cells in the TME have to adjust their metabolic status
and the use of lipids, allowing an alteration of their functions. In
this chapter, we discussed how lipids interact with various
immune cells and change their functions. These impacts on
FIGURE 3 | Overview of the LPC/ATX/LPA signalling axis in cancer. LPA is produced via ATX-mediated hydrolysis of LPC. LPA-LPAR signalling is magnified and utilised by
cancer cells to support their growth and metastasis through increasing the level ATX and LPAR within the TME. When LPA binds with LPAR1-6, it can generate various effects
on cancer cells. This process involves the induction of several signalling cascades, including PI3K, MAPK, Rho, and Ca2+ mobilisation-related signalling. T cells under the
TME can also be promoted or impaired through binding with different LPARs by LPA. The figure was created with BioRender.com. ATX, autotaxin; LPA, lysophosphatidic
acid; LPAR, LPA receptors; LPC, lysophosphatidylcholine; TME, tumour microenvironment.
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each immune cell are summarised in Table 1. Although lipids
can have individual consequences on differing or individual
immune cell subsets, they mostly act deleteriously against
immune cells in their actions against tumours.

3.1. T Cells
CD8+ and CD4+ T cells are two important lymphocyte subtypes
in the TME. CD8+T cells, also known as CTL, can kill and
eliminate cancer cells by releasing perforin, granzymes, and other
effector molecules. CD4+T cells include T-helper 1 (Th1) cells,
T-helper 2 (Th2) cells, T-helper 17 (Th17) cells, and immune
regulatory T cells (Tregs). Tregs are the cell types most
commonly associated with immunosuppression among the
CD4+T cell subtypes.

The effector function of CD8+T cells is predominantly
maintained by aerobic glycolysis. However, if both oxygen and
glucose are lacking in the TME, CD8+T cells will increase FA
uptake and catabolism (92), and FAO may be initiated and utilised.
Regarding the impact of lipid metabolism on CD8+T cells,
conflicting results have been reported across different studies.
Some studies have shown an immunosuppressive effect of lipid
metabolism in CD8+T cells. The immune checkpoint, PD-1, was
found to mediate the blockade of T-effector cell differentiation by
inhibiting glycolysis and promoting FAO (93). In breast cancer,
obesity-driven leptin/STAT3 signalling promoted FAO and reduced
glycolysis in CD8+ T-effector cells, consequently leading to the
inhibition of effector functions and facilitation of tumour growth
(94). It was also reported by experimental studies that pretreatment
with tumour-derived free FA can significantly reduce the effector
activity of CD8+ cells (95, 96). In contrast, mouse model studies by
Chowdhury et al. (97) and Saibil et al. (98) showed that FAO in T
cells can be increased via upregulation of carnitine palmitoyl
transferase 1a (CPT1a, the rate-limiting enzyme of FAO) induced
by peroxisome proliferator-activated receptor (PPAR) activation,
and an increase of FAO promoted proliferation of CD8+ T cells,
Frontiers in Oncology | www.frontiersin.org 6
reduced their apoptosis, and enhanced the effector function against
tumours; however, it was noted that this may not be fully
attributable to FAO, as glycolysis is also upregulated (97). Similar
contradictions can also be found in the role of cholesterol in CD8+
T cell function. The cholesterol level in CD8+T cells contributes to
its exhaustion by upregulating immune checkpoints induced by
endoplasmic reticulum stress (99). However, another study assessed
the association between the cholesterol level in membranes and the
effector function of CD8+T cells and showed that increasing the
cholesterol level in the membranes of CD8+T cells by inhibiting
cholesterol esterification caused an enhanced anti-tumour effect in
melanoma (100). Lipid metabolites, as signalling molecules, play
multiple roles in adjusting T cell effector function. The LPC-ATX-
LPA axis is intimately implicated in lipid-related signalling. Signals
of LPA through LPAR2 have been reported to have pro-T cell
function, which suggests that LPA signalling may improve the
immune response against tumours (101). However, LPA signals
through LPAR5 in T cells are associated with impaired T cell
cytotoxicity (102, 103). The prostaglandin-mediated signalling
pathway has also been examined. Prostaglandins are a group of
lipid compounds that are enzymatically derived from arachidonic
acid. It was found that overproduction of prostaglandin-E2 (PGE2)
by metastatic murine renal carcinoma (Renca) cells blocked the
priming of tumour-special CTLs in vivo by abrogating IFNg-
dependent costimulatory signalling between ICAM-1 and the
lymphocyte receptor LFA-1 (104). In summary, the effects of
lipids on CD8+T cells are multiple, and the roles of facilitating or
inhibiting CD8+ T cell effector functions may depend on the
categories, location, and sources of lipids and patterns of cross
talk and reactions between lipids and the CD8+ T cells.

Tregs express FoxP3, a regulatory molecule that enhances Treg
resistance to lipotoxic environments (105).Within the TME, Tregs
have enhanced glycolytic rates and lipid biosynthesis and rely on
FAO for expansion (106, 107). Compared to CD8+T cells, Tregs
have critical advantages for survival and proliferation in the
TABLE 1 | Impact of lipid metabolism and signalling on the tumour immune microenvironment.

Cell types Lipid abnormality Impact on cell differentiation
and function

Impact on anti-
tumour response

CD8+T cells Increased lipid uptake and FAO; triggering the LPC-ATX-LPA axis, PPAR, and tumour-
derived PGE2 signalling

Inhibition or enhancement of
effector function depending on
condition

Unsure

Tregs Increased lipid biosynthesis and FAO; upregulation of CD36; triggering the PPAR
signalling

Obtaining metabolic adaptations
and advantages to survive and
proliferate

Immunosuppressive
effects

Macrophages Lipid accumulation and increased FAO; cholesterol efflux Polarisation to an M2 phenotype Immunosuppressive
effects

Neutrophils Increased FAO Maintaining ROS production
and T cell suppression

Immunosuppressive
effects

MDSC Upregulation of FATP2; increased uptake of arachidonic acid and synthesis of PGE2;
increased FAO; triggering tumour-derived PGE2 signalling

Promoting T cell suppression by
MDSC

Immunosuppressive
effects

DC Increased LD accumulation and FAO; triggering tumour-derived PGE2 signalling Limiting the recruitment of DCs
and leading to dysfunction

Immunosuppressive
effects

NK Increased uptake and accumulation of exogenous lipids; triggering tumour-derived PGE2
signalling

Impairing cell viability and blunt
function

Immunosuppressive
effects
October 2021 | Volu
ATX, autotaxin; DCs, dendritic cells; FAO, fatty acid oxidation; FATP2, fatty acid transport protein 2; LDs, lipid droplets; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine;
MDSC, myeloid-derived suppressor cells; NK, natural killer; PGE2: prostaglandin-E2; PPAR, peroxisome proliferator-activated receptors; ROS, reactive oxygen species; Tregs,
immune regulatory T cells.
me 11 | Article 751086

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. Lipids’ Role in Cancer Immunotherapy
absence of oxygen or glucose because of their special metabolism
profile, including increased FAO (12, 108). In this process, PPAR
signalling plays a crucial role in mediating the metabolic
adaptation of Tregs in the TME. It was demonstrated that
intratumoural Tregs from patients with cancer or mouse models
highly expressed CD36 (109). Further experiments revealed that
CD36 promoted mitochondrial fitness in intratumoural Treg cells
via enhancing lipid uptake and activating the PPAR-b pathways,
leading to support for Treg persistence in the TME and
maintenance of their suppressive function. With the help of the
aforementioned metabolic adaptation, Tregs within the TME play
an important role in the immune evasion of tumour cells.
Modulation of Treg number and function through disrupting
their lipids metabolism may be a viable strategy to elicit the anti-
tumour response and enhance immunotherapy.

3.2. Macrophages
Macrophages account for the largest fraction of immune cells in
some cancers and exhibit phenotypic plasticity under different
conditions (110). According to their functional characteristics,
surface markers, and secreted cytokines, macrophages are usually
classified into two types: M1 (pro-inflammatory) and M2 (anti-
inflammatory), although many new subclasses of macrophages
are now being reported. In the TME, tumour-associated
macrophages (TAMs) generally polarise to the M2 phenotype
and enable the immune evasion of cancer cells by suppressing T
cell activation and inducing Treg recruitment (111).

M2-like TAMs are prone to increase FAO because the TME is
an FA-rich environment (112, 113). Several studies have
determined that lipid accumulation and FAO are important in
maintaining the immunosuppressive phenotype of TAMs (11,
114, 115). Cholesterol metabolism can also influence TAM
function. It has been reported in a mouse model of metastatic
ovarian cancer that cholesterol efflux in TAMs supports IL-4
signalling and promotes tumour progression (116). Besides,
PGE2-mediated signalling may contribute to the M2
polarisation of macrophages. Wang et al. reported that treating
macrophages with PGE2, a lipid mediator that can be highly
produced by cancer, inhibited the expression of miR-21 that was
a helpful microRNA for polarisation of macrophages to M1 types
(117). However, the types of lipids or metabolic mechanisms that
are critical for TAM differentiation and polarisation remain
poorly understood (118–125). Further studies are expected to
clarify the complex cross talk between macrophages and lipids.

3.3. Neutrophils and Myeloid-Derived
Suppressor Cells
Neutrophils are the most abundant type of granulocytes.
Neutrophils in the TME generally facilitate tumour
progression, during which metabolism plays an important role.
Since the TME has low glucose but high lipid levels, neutrophils
can utilise FAO to maintain immune suppression (126),
consequently leading to tumour progression.

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous
population of pathologically activated myeloid precursors and
relatively immature myeloid cells (127, 128). They can be divided
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into two types: polymorphonuclear (PMN)—MDSCsandmonocytic
(M)—MDSCs. PMN-MDSCs account for most MDSC populations
in humans and mice. PMN-MDSCs are similar to neutrophils in
many morphological and phenotypic features. In the TME, PMN-
MDSCs prefer FAO as a primary source of energy and act as
immunosuppressive cells (129). FAO may help in the T cell
suppression of PMC-MDSCs through ROS-peroxynitrite
generation (130). It was recently demonstrated that FA metabolites
contribute to PMN-MDSC-mediated immunosuppression (10). FA
transport protein 2 (FATP2, encoded by the Slc27a2 gene)was found
to be upregulated exclusively in PMN-MDSCs of tumour-bearing
mice and increased lipid accumulation in PMN-MDSCs. Knocking
out of FATP2 abrogated the suppression of CD8+ T cells by PMN-
MDSCs, thereby delaying tumour growth (10). It was further
demonstrated that FATP2-mediated immune suppression was
achieved through increasing the uptake of arachidonic acid and the
synthesis of PGE2 inPMN-MDSCs (10). In another study, itwas also
found that tumour-derived PGE2 greatly contributed to the
activation of MDSCs (131). This study demonstrated in both in
vitro and in vivomodels that drug-resistant breast cancer cells used
secreted PGE2 to promote MDSC expansion and polarisation by
upregulation of miR-10 and consequent triggering of
AMPK signalling.

3.4. Others
Other important immune cells involved in anti-tumour
immunity include dendritic cells (DCs) and natural killer (NK)
cells. DCs are the most powerful antigen-presenting cells and
play an important role in the activation of T cells. NK cells are
important cells in the innate immune system. In the TME, NK
cells induce cancer cell death by releasing perforin and
granzymes or through death receptor-ligand engagement. NK
cells can also regulate the function of other immune cells by
secreting cytokines and chemokines. Lipid metabolism has a
significant influence on the activation and function of both DC
and NK cells.

DCs increase glycolysis and FA synthesis after activation by
toll-like receptor stimulation (132). Increased lipid deposition
was observed in tumour-associated DCs, and this alteration of
the lipid level was caused by increased lipid uptake due to
upregulation of class A macrophage scavenger receptor type 1
(Msr1) (133). The accumulation of lipid droplets (LDs) in
tumour-associated DCs contributes to DC dysfunction by
reducing antigen presentation and attenuating T cell activation
(133–137). In addition to lipid storage in DCs, FAO was
considered to have an active role in driving DCs towards a
tolerogenic phenotype (138) possibly because the increased lipid
storages in tumour-associated DCs can serve to fuel the FAO
process by the stimulation of PPAR signalling (139). NK cells can
be negatively affected by exogenous lipids, especially in the
context of obesity (140–142). It was reported that obesity was
associated with robust PPAR-driven lipid uptake and
accumulation in NK cells (13). The lipid accumulation forced
NK cells to express more lipids transporters and enzymes
involved in FAO to avoid lipotoxicity, which could limit the
mTOR-mediated glycolysis increase (13). As mTOR-dependent
metabolic reprogramming is a prerequisite for NK cell effector
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function; it led to loss of cytotoxicity production by NK cells,
such as granzyme B and IFN-g, and a consequent failure to attack
tumours under conditions of obesity (13, 143).

In addition, tumour-derived prostaglandin signalling also has
an effect on both these cells. Park et al. showed that thyroid cancer-
derived PGE2 suppressed NK cell maturation and their cytolytic
activity by inhibiting the expression of NK receptors, such as
NK44, NK30, TRAIL, and NKG2D (144). Inhibition of PGE2
signalling by targeting the PGE2 receptor EP4 could restore the
activation of NK cells in tumour-bearing mice (145). Another
study by Böttcher et al. revealed an interaction between NK cells
and DCs (146). They found in a mouse model that the
accumulation of conventional type 1 dendritic cells (cDC1) in
the TME relies on the chemoattractants CCL5 and XCL1
produced by NK cells. Tumour-derived PGE2 impairs NK cell
viability and chemokine production and downregulates
chemokine receptor expression in cDC1, consequently resulting
in the evasion of the anti-tumour immune response (146).
4. LIPIDS AND THEIR POTENTIAL
APPLICATIONS

A continuous in-depth understanding of the contribution of lipid
metabolism and signalling to cancer immunity will provide
insight into the clinical translation of lipid substances. It may
be difficult to acquire the desired results based on a single
strategy because of the complex interaction between lipids and
cancer immunity. However, lipids have shown tremendous
potential for development as biomarkers and therapeutic
targets (Figure 4). In this chapter, we review the current
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potential directions of lipid application based on their cross
talk with cancer immunity and highlight what has been achieved
and what should be overcome in the future.

4.1. New Immunotherapeutic Strategies by
Targeting Lipid Reprogramming
Chimeric antigen receptor T cell (CAR-T) therapy is a promising
new approach to fight cancer using T cells engineered with CARs
that provide these cells with the ability to target specific antigens
on the cancer cell surface. CAR-T therapy has been
demonstrated to be successful in the treatment of haematologic
cancers (147, 148); however, its application in solid tumours is
still challenging (149). GD2, a disialoganglioside glycolipid, is a
promising target in solid tumour CAR-T therapy. GD2 is
normally present in peripheral neurons and parts of the central
nervous system but can be overexpressed in some tumours, such
as neuroblastoma and melanoma (150). Several phase I trials
have demonstrated that GD2-specific CAR T cell therapy is safe
and effective for treating neuroblastoma (151–153). The major
challenge of CAR-T therapy is the difficulty in maintaining
strong and persistent tumour remission. A novel strategy that
is based on targeting lipid metabolism has been designed to
address this problem. As Notch signalling can promote
mitochondrial biogenesis and FA synthesis, a recent study
showed that activation of Notch and overexpression of its
downstream gene FOXM1 converted conventional human
CAR-T cells into TSCM(stem cell memory T)-like CAR-T cells
and enhanced the anti-tumour effects of CAR-T therapy in an in
vivo model of leukaemia (154).

An increase in lipid metabolism in the TME leads to
intracellular lipid accumulation and promotes FAO in immune
cells. The immunosuppressive phenotypes generally rely on FAO
FIGURE 4 | Potential applications of the lipids according to their various roles in cancer immunity. Three directions presented (yellow, blue, and purple nodes) for
potential applications as summarized in the network diagram. The grey nodes in the last level indicate evidence types supporting each application. The adjacently
spread nodes next to the last nodes represent lipids-related therapeutic targets or biomarkers. ACC, acetyl-CoA carboxylase; ACAT, acetyl-CoA acetyltransferase;
BMI, body mass index; CAR-T, chimeric antigen receptor T cell; CPT1, carnitine palmitoyltransferase 1; FA, fatty acid; FAO, fatty acid oxidation; FASN, fatty acid
synthase; FATP, transport protein; GD2, a disialoganglioside glycolipid; LMRG, lipid metabolism-related genes; PCSK9, proprotein convertase subtilisin/kexin type 9;
PPAR, peroxisome proliferator-activated receptor; SCFAs, short-chain fatty acids; VLCFAs, very long-chain fatty acids.
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for energy support. Thus, changing the suppressive phenotypes
to responsive phenotypes by ameliorating lipid abundance is a
theoretically practical approach to attacking cancer. Anti-
tumour strategies targeting both FA synthesis and FAO are
beneficial. Inhibition of FASN, the key metabolic enzyme of de
novo lipogenesis, using its small molecule inhibitor cerulenin,
partly restored the function of DC cells and resulted in extended
tumour control in a mouse model of ovarian cancer (155).
According to another study on FA metabolism and apoptosis
sensitivity of human T cells, inhibition of FASN by treatment
with a compound C75 could protect T cells in the TME, caused
by repeated TCR activation, from apoptosis (156). This can also
enhance anti-tumour immunity in addition to directly affecting
the function of cancer cells. Alternatively, pharmacological
inhibition of FAO using the inhibitor of CPT1, the rate-
limiting enzyme in FAO cycle, can restore the function of
tumour effector T cells but block the production of inhibitory
cytokines from MDSC, consequently leading to a delay of
tumour growth in vivo in tumour-bearing mice (94, 130). In
addition, cholesterol modulation is a new strategy for cancer
immunotherapy. A study showed that inhibition of ACAT1, a
key cholesterol esterification enzyme, significantly enhanced the
effector function of CD8+ T cells by increasing the plasma
membrane cholesterol level. Avasimibe, a small-molecule
inhibitor of ACAT, was used to treat melanoma in mice and
was observed to have a beneficial anti-tumour effect (100).

In summary, targeting lipid reprogramming shows great
promise in the treatment of cancer with great potential to
bring cancer immunotherapy into a new era. However, the
evidence of these new immunotherapeutic strategies is still
based on results from preclinical and phase I trials. In
addition, it is also necessary to note that targeting lipid
metabolism may affect multiple immune populations, and thus
the linked outcomes could be unpredictable. The translational
potential and clinical significance of this strategy warrants
further study.

4.2. Combination Therapy Based
on Lipid Regulation
Beyond playing lead roles in cancer immunotherapy, lipid
regulation can be used as an adjuvant to other therapeutic
measures such as radiotherapy, chemotherapy, and immune
checkpoint inhibitors. This is based on the fact that lipid
modification will help to improve the TME.

Bezafibrate, an agonist of PPAR, has a proven synergistic
effect with a PD-1-blocking monoclonal antibody in mice model
(97, 157). The underlying mechanism was a sustained increase in
the number of functional CD8 + T cells through inducing
intracellular FAO. Inhibition of FA transport also enhanced
the therapeutic benefit of several immunomodulatory
therapies, including anti-PD-1, anti-CTLA-4, and anti-CSF-1R
treatments (10). In addition, combined treatment of cholesterol
metabolism-targeted drugs and immunotherapy has also been
widely evaluated in both preclinical and clinical studies. For
example, preclinical data showed that inhibition of PCSK9
(proprotein convertase subtilisin/kexin type 9) (158) or
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ACAT1 (Acetyl-CoA acetyltransferase 1) (100) can improve
the anti-tumour effect of the anti-PD-1 antibody in multiple
cancers. Similarly, clinical data confirmed an increased objective
response rate and improved survival when combined with statins
in PD-1/PD-L1 checkpoint inhibitors-treated patients (159–
161). Apart from the combined strategy for immunotherapy,
there is also evidence regarding the enhanced anti-tumour effects
of lipid modulation by activated immune function in other
cancer treatments. For example, using TOFA, an ACC
inhibitor that participates in FAS, normalised lipid levels in
DCs. As a result, TOFA restored the activity of DCs and
enhanced the anti-tumour potency of cancer vaccination in
both tumour-bearing mice of melanoma and lymphoma (133).
Etomoxir, an inhibitor of CPT1, in combination with adoptive
cellular therapy, showed a significantly better anti-tumour effect
in vivo compared to adoptive cellular therapy alone. This benefit
was related to the increased infiltration of adoptively transferred
T cells in the TME and increased production of IFN-g (130).
Similarly, FAO inhibition by etomoxir can significantly increase
the anti-tumour effect of chemotherapy in vivo by targeting
MDSC-associated immunosuppressive effects (130).

Based on the understanding of the association between lipid
reprogramming and immune cell phenotypes, lipid modulation
could offer new opportunities for strengthening cancer therapy.
Although substantial evidence has demonstrated the enormous
capacity of the reprogramming of lipid metabolism in improving
the tumour response, the functional mechanism of combination
treatment may be complicated, and much remains to be done
before it can be applied to clinical practice. Most current studies
have used preclinical models or were based on retrospective
populations, and clinical-trial evidence is lacking. Therefore,
prospective trials are needed to verify the effectiveness of lipid
regulation in cancer treatment under real-world conditions.

4.3. Lipids as Biomarkers of
Anti-Tumour Immunity
The cross talk between lipids and cancer immunity provides us
with an opportunity to use lipids as biomarkers in evaluating
the immune response of cancer. This possibility relies on
the development of technologies for the qualitative and
quantitative analyses of metabolites, such as next-generation
sequencing and liquid biopsy. Based on the understanding of
the immune profile of cancer, lipids have been identified as
predictors of discrimination prognosis, immune phenotypes, and
treatment response.

Immune checkpoint inhibitors have shown great success
because of their powerful anti-tumour ability; however, only a
small population can benefit from immunotherapy. Thus, it is of
great interest to discover potential biomarkers that can predict
the response to immune checkpoint inhibitors. A recent study
observed that serum concentrations of very long-chain FAs
(VLCFAs) could predict the treatment response in patients
with urological cancer treated with immune checkpoint
inhibitors (nivolumab or atezolizumab) (162). The rationale
for this biomarker may be related to lipid metabolism in
immune cells. At present, emerging evidence has shown that
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the gut microbiota is closely related to the response to
immunotherapy (163–166). Short-chain FAs (SCFAs) such as
acetate, propionate, and butyrate are the major end products
derived from the gut microbiota. Studies have shown that high
concentrations of SCFAs are significantly associated with better
outcomes in patients receiving anti-PD-1 therapy (167, 168). The
ability of SCFAs to regulate immune function may explain the
prediction of treatment outcomes. Obesity or body mass index
(BMI), as a surrogate of lipid levels, was also identified as a
predictor of immunotherapy. Several studies have determined
that a high BMI or obesity was predictive of improved overall
survival or progression-free survival in patients with cancer
treated with immune checkpoint inhibitors (169, 170). In
addition, some bioinformatics analyses based on ovarian
cancer and gliomas indicated that lipid metabolism-related
genes could be used as prognostic factors and are associated
with the immune phenotypes of patients with cancer (171, 172).

Although several lipid molecules or derivatives have been
identified as good biomarkers of the anti-tumour response, the
interaction between a characteristic lipid profile and cancer
immunity is still poorly understood. With an increasing
number of lipid-related components being explored to identify
immune responses to cancer, we should pay more attention to
the availability of their predictive ability in a wider population
based on the complicated roles of lipids in immune regulation.
5. CONCLUSIONS

Remodelling of cancer immunity is now demonstrated to be an
effective approach to treat cancer. A systematic understanding of the
variables that disturb the immune response to cancer will help us
overcome the limitations of current immunotherapeutic strategies.
Substantial evidence indicates that lipids have an important role in
cancer immunity. Both lipid uptake and de novo lipogenesis are
increased in cancer cells, providing materials and energy for cell
proliferation. Cancer cells can also exhibit aggressive behaviour to
avoid elimination by the immune system through lipid metabolic
reprogramming. In addition, biomolecules from lipid metabolism
contribute to the transduction of immune inhibition and oncogenic
signals in cancer cells. Conversely, lipids within the TME are
involved in cancer immunity by affecting the survival,
differentiation, and action of immune cells. The results of
disturbance by lipids depend on the condition of the TME, but
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generally lead to an immunosuppressive effect. Determining how
lipid metabolism impacts cancer immunity and mediates crosstalk
between different cells can provide insight into treatment strategies
against cancer. Targeting lipid reprogramming may create a new
path in the field of immunotherapy. Another easy strategy is to
strengthen other treatment measures by activating anti-tumour
immunity through lipid regulation. Based on the close
relationship between lipids and cancer immunity, lipids can also
be used as biomarkers for the selection of advantaged populations,
surveillance of immune conditions, and evaluation of treatment
response. However, the complicated roles of lipids in the TME may
lead to unexpected outcomes when translating them into the clinical
environment. Continuing to unravel the interaction between lipids
and cancer immunity will bring cancer management into a new era.
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