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ABSTRACT Despite tight biosecurity measures, an outbreak of respiratory disease
rapidly spread across the Icelandic equine population in 2010. Horse transportation
was brought to a halt in order to contain the spread of the infectious agent. In a re-
cent article, Björnsdóttir and colleagues (S. Björnsdóttir et al., mBio 8:e00826-17,
2017, https://doi.org/10.1128/mBio.00826-17) employ the power and resolution of
“genomic epidemiology,” the combination of whole genomic sequencing and epide-
miological approaches, to examine the source and spread of the outbreak. Intriguingly,
the outbreak was not viral in origin, but linked to a bacterial “commensal” Streptococcus
equi subsp. zooepidemicus infection. A national sampling strategy coupled with popu-
lation genomics revealed that the outbreak was most likely driven by a S. equi subsp.
zooepidemicus sequence type 209 (ST209) infection that spread nationally from a single
source. This retrospective study demonstrates the power of genomics applied on a
national scale to unravel the cause of a significant biosecurity threat.
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Reports of respiratory outbreaks in livestock elicit national and global concerns of
potential pandemics, such as those associated with influenza infections (reviewed

in reference 1; also see reference 2). Such scenarios can have devastating, industry-wide
consequences. Some geographical regions of the world maintain strict biosecurity
practices to prevent the importation and spread of infectious agents in key primary
industries, such as the practices of the Icelandic equine industry, where the importation
of horses has been banned since 1882. However, in early April 2010, an epidemic of
respiratory disease spread across the 77,000-member Icelandic equine population. Such
outbreaks can have substantial economic effects for a country that relies on livestock
transfers and export. Immediate biosecurity measures were implemented by health
authorities, who imposed a ban on the export of horses. Yet by the time the alarm was
raised, disease symptoms, recorded through electronic questionnaires sent to hundreds
of equine breeding farms and professional training centers, were already widespread.

Such rapid spread of a respiratory infection within a large geographical context is
typical of a viral agent; however, PCR-driven analyses of clinical samples did not support
carriage of known equine viral respiratory pathogens from infected horses. In a recent
article by Björnsdóttir et al., the scientific team analyzed nasal swabs from 100 horses
at 31 different geographical sites to identify the bacterium Streptococcus equi subsp.
zooepidemicus as a common link (3). Primarily considered a commensal organism of
equine upper airways, S. equi subsp. zooepidemicus is an opportunistic pathogen in a
wide variety of mammalian hosts, including horses, and is capable of causing zoonotic
infection in humans (4). Notably, no S. equi subsp. equi, the classic respiratory equine
pathogen and the causative agent of strangles, was isolated from clinical samples,
suggesting an underlying role for S. equi subsp. zooepidemicus in the epidemic. This is
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not the first time S. zooepidemicus has been linked to a veterinary outbreak. Equine
outbreaks of S. equi subsp. zooepidemicus have previously been documented within
New Caledonia (5) and Scandinavia (6) and also within other hosts, such as dogs (7, 8)
and pigs (9), but not at the national scale as documented by Björnsdóttir and col-
leagues in Iceland (3).

With advancements in the speed, throughput, and cost of genome sequencing,
population analyses of infectious disease outbreaks in the public health sector (primar-
ily foodborne) are routinely driven by whole-genome sequencing (10). Such method-
ologies offer unprecedented resolution in determining outbreak sources and transmis-
sion pathways when quality sampling and epidemiological data are integrated in the
study design (11). The dissection of the veterinary outbreak by Björnsdóttir and
colleagues is a prime example of informed study design examining the genetic
relationship of isolates from clinical outbreak cases, as well as historical, nonequine, and
contemporary S. equi subsp. zooepidemicus isolates for context. Sampling was spread
across 31 geographical sites represented in a national survey. A total of 305 S. equi
subsp. zooepidemicus isolates were whole-genome sequenced, of which 257 were
isolated during the 2010 equine outbreak period. The well-designed study, including
the large sample number and several control sequences, coupled with high-resolution
population genomics, allowed the team to draw their epidemiological conclusions.

Key findings from this study identified that S. zooepidemicus sequence type 209
(ST209) was present in half of the disease isolates from the majority of infected farms.
Three other S. zooepidemicus sequence types were also variably present within some
clinical samples, albeit, less frequently and more geographically constrained; the au-
thors suggest that these may represent resident endemic strains. Interestingly, the
authors found examples of multiple S. zooepidemicus sequence types residing within 15
of the infected horses. Such multiclonality has been observed from horses who carried
S. equi subsp. zooepidemicus asymptomatically, defined as the “commensal” state (12),
which raises some interesting questions around the topic of multiclonality within
clinical cases. Such coinfection by different strains is understudied in clinical microbi-
ology and highlights the need for interrogation of multiple isolates per sample to
address the possible role of multiclonality during infection. This is particularly relevant
to the Icelandic outbreak, where it appears both endemic (non-ST209) and outbreak
pandemic (ST209) strains are circulating within the population concurrently, leading to
challenges in disease causation inferences. Furthermore, the transient nature of bac-
terial colonization suggests that the disease causative agent may not be captured
within a nasal swab at the time a diagnostic test is undertaken. One possible way of
addressing multiclonality within clinical samples is to implement metagenomics-based
approaches in diagnostic microbiology, where samples are sequenced straight from a
clinical sample, such as those used in the 2011 Shiga-toxigenic Escherichia coli outbreak
in Germany (13). Such culture-independent methodologies have the added benefit of
amplifying sequences from novel or potential nonculturable microorganisms as well as
defining microbial communities to a strain resolution as undertaken in human micro-
biome studies (14).

Various genomic signatures investigated by the authors support S. equi subsp.
zooepidemicus ST209 as the causative agent of the outbreak. One hallmark of a classic
bacterial outbreak strain is low levels of genome-wide sequence variation between
isolates from infected individuals. Indeed, the authors identified that the ST209 lineage
exhibited a significantly lower divergence in sequence variation than the other “en-
demic” sequence types in circulation. However, this generalization can potentially be an
oversimplification of reality, as demonstrated in human streptococcal outbreaks, such
as the ongoing Streptococcus pyogenes scarlet fever outbreak in Hong Kong, where the
outbreak has been associated with multiple genetically distinct lineages of the same
sequence type despite a rapid clinical outbreak of disease (15). Additionally, ST209 was
shown to be actively transmitted during the outbreak to uninfected horses within an
infected farm. Despite the technical and time constraints associated with such exper-
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imentation during an outbreak situation, these results highlight the high transmissibil-
ity of S. equi subsp. zooepidemicus at the time of the outbreak.

One objective from a public health perspective is to identify the possible point
source of the outbreak. By applying Bayesian modeling estimates to the sequenced
S. equi subsp. zooepidemicus population, the authors estimated the introduction of the
ST209 progenitor to be ca. 2008, suggesting a single introduction of the “new”
genotype within a proposed immunologically naive population. Furthermore, through
integrating population structure with GPS (Global Positioning System) coordinates of
the isolates from infected animals, the authors were able to propose an outbreak
transmission pathway. These data led the authors to suggest an equine water treadmill
at a single location as a potential point source, yet no isolates were identified from the
environmental source in question in order to confirm the link.

Another alarming finding from the study is the ST209 outbreak genotype within a
human zoonotic infection during the outbreak period. Notably, two other S. equi subsp.
zooepidemicus samples isolated from humans during the outbreak were non-ST209
strains. This in itself is not unheralded, given that S. zooepidemicus is a known oppor-
tunistic pathogen of humans, but the presence of the outbreak clone in multiple hosts
introduces the possibility that the source of infection may have been transmitted from
another host, such as human. In further support of this possibility, one additional
human ST209 isolate from Finland appeared to have diverged from a common ancestor
with the Icelandic outbreak lineage; however, directionality cannot be inferred with the
sample strategy employed. The outbreak itself did not lead to a reported surge in
human cases, but the role of a human (or other) reservoir is possible with this outbreak.
Such interhost transmission pathways have been proposed in other animal infections,
such as Staphylococcus aureus (16, 17) and Salmonella enterica serovar Typhimurium
(18). Irrespective of this point, what this study highlights is that no matter how strict the
biosecurity regulations are regarding restricting the importation of “foreign” animals,
carriage by an intermediate host is near impossible to safeguard against. This scenario
does reiterate the need for high sanitary standards within animal practices. Importantly,
this study also highlights the importance of banking isolates from both symptomatic
and healthy animals, as without context, the ability to draw sound conclusions from
constantly evolving bacterial populations is restricted.

Whether S. zooepidemicus ST209 is a globally disseminated clone and what genetic
factors within the genome of ST209 isolates may account for the severity of disease
remain unknown. Bacterial factors carried by mobile genetic elements may drive a
common fitness advantage across different bacterial genetic backbones, irrespective of
sequence type, as has been reported in recent Streptococcus pyogenes outbreaks (15,
19), and as such, comparative analyses may yield important insight into intersequence-
type bacterial outbreaks. Such targeted analyses can be applied to advance diagnostics
and surveillance of key clones, as has been applied to Mycobacterium chimaera (20). The
authors of this research speculate that the infected equine population lacked protective
immunity to the outbreak strain, and this remains an interesting hypothesis. What
drives an opportunistic commensal pathogen to cause disease is likely to be an intricate
balance between host immune status, the genetics of the microorganism itself, and the
environment (for example, microflora or coinfection). A community-wide shift in any of
these elements could be enough to kick a commensal into gear. Elucidating these
factors is key to understanding the drivers of outbreaks that in turn can be used in
pathogen surveillance and diagnostics.

Collectively, the work by Björnsdóttir and colleagues highlights the power and utility
of genomic epidemiology to investigate microbial forensics within a nationwide vet-
erinary outbreak (3). Challenges remain in linking disease outbreaks with commensal-
associated pathogens, yet this study highlights the value of a national reporting system
and the benefit of an informed sampling strategy in identifying patterns of pathogen
emergence and dissemination. Moving forward, the integration of public health
genomics within both veterinary and human communities is key to unravelling the
drivers of infectious disease outbreaks, as is being implemented in foodborne infectious
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disease outbreaks. Such management of infectious diseases at both the national and
international levels relies on coordination and knowledge sharing across animal and
human health agencies under the auspices of a “one-health” approach to address the
intertwined relationship between veterinary, human, and zoonotic disease.
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