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Objective: Fatigue is commonly thought to worsen with age, but the literature is mixed:
some studies show that older individuals experience more fatigue, others report the
reverse. Some inconsistencies in the literature may be related to gender differences in
fatigue while others may be due to differences in the instruments used to study fatigue,
since the correlation between state (in the moment) and trait (over an extended period of
time) measures of fatigue has been shown to be weak. The purpose of the current study
was to examine both state and trait fatigue across age and gender using neuroimaging
and self-report data.

Methods: We investigated the effects of age and gender in 43 healthy individuals on
self-reported fatigue using the Modified Fatigue Impact Scale (MFIS), a measure of
trait fatigue. We also conducted fMRI scans on these individuals and collected self-
reported measures of state fatigue using the visual analog scale of fatigue (VAS-F) during
a fatiguing task.

Results: There was no correlation between age and total MFIS score (trait fatigue)
(r = –0.029, p = 0.873), nor was there an effect of gender [F(1,31) < 1]. However, for
state fatigue, increasing age was associated with less fatigue [F(1,35) = 9.19, p < 0.01,
coefficient = –0.4]. In the neuroimaging data, age interacted with VAS-F in the middle
frontal gyrus. In younger individuals (20–32), more activation was associated with less
fatigue, for individuals aged 33–48 there was no relationship, and for older individuals
(55+) more activation was associated with more fatigue. Gender also interacted with
VAS-F in several areas including the orbital, middle, and inferior frontal gyri. For women,
more activation was associated with less fatigue while for men, more activation was
associated with more fatigue.

Conclusion: Older individuals reported less fatigue during task performance (state
measures). The neuroimaging data indicate that the role of middle frontal areas change
across age: younger individuals may use these areas to combat fatigue, but this is not
the case with older individuals. Moreover, these results may suggest greater resilience
in females than males when faced with a fatiguing task.
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INTRODUCTION

While some qualities improve as we grow older (e.g., wisdom),
other physical and mental abilities tend to decline later in life.
For example, physical strength and processing speed both begin
to wane as we pass middle age. Because sleep quality is another
factor that commonly deteriorates with age (Åkerstedt et al.,
2018), it might seem intuitive to expect fatigue to increase as
age advances past middle age, but surprisingly the literature
is mixed. Some studies have reported a greater prevalence of
fatigue in the aged than in the young (Soyeur and Senol, 2011),
while others have shown a decrease in fatigue with greater age
(Åkerstedt et al., 2018).

While there is no clear, universally accepted definition of
fatigue, it is widely agreed that fatigue is a state that is caused by
exertion that results in changes in strategy or resource use (Kluger
et al., 2013; Phillips, 2015). Fatigue also has several different
subtypes, including cognitive or mental fatigue, psychological
fatigue, and physical fatigue. The study described here is aimed at
better understanding cognitive fatigue. Additionally, fatigue can
be thought of as a trait—conceptualized as the extent to which
one is prone to fatigue—or a state—the instantaneous experience
of fatigue. While terms such as “fatigability” have been proposed
to describe one’s propensity to become fatigued (Zijdewind et al.,
2016), we prefer the state vs. trait distinction, given the long
history of state and trait measures in the neuropsychological
literature [e.g., Spielberger et al. (1970), Endler and Parker (1990),
and Chiappelli et al. (2014)].

Fatigue is a troubling symptom in neurological disorders such
as Multiple Sclerosis, but it is also widespread in the general
population, with a prevalence of up to 45% in healthy individuals
(Junghaenel et al., 2011; Galland-Decker et al., 2019). Much of
the existing literature on fatigue points to fatigue differentially
affecting younger vs. older populations, as well as males vs.
females. Sleep problems and fatigue are often linked, such that
those who get less sleep experience greater fatigue (Avlund,
2010). Several studies point to quality of sleep decreasing with
age (Sivertsen et al., 2009; Mander et al., 2017), which suggests
that fatigue may increase with age. However, fatigue and sleep
are distinct constructs, and fatigue has not been found to
consistently increase with age in the literature. One potential
explanation for mixed findings in the literature examining age
and fatigue is that different studies have used different fatigue
assessments. For instance, Åkerstedt et al. (2018) used a “state”
measure of fatigue (assessing subjects’ instantaneous experience
of fatigue at the time of testing) and found that fatigue declined
with age, even despite age-related increases in sleep problems.
Conversely, Soyeur and Senol (2011) used a “trait” measure of
fatigue (assessing subjects’ assessment of how much fatigue they
had experienced over the previous four weeks) and discovered
a high prevalence of fatigue in elderly people living in a rest
home. Furthermore, in a study looking at fatigue in both cancer
survivors and general populations using a trait fatigue measure,
older participants (>64) reported greater fatigue than younger
participants (Butt et al., 2010).

Another potential source of variance in the literature is gender.
A few studies have found women to report greater trait levels

of fatigue than men (Butt et al., 2010; Engberg et al., 2017).
Biological factors, including menstruation and pregnancy,
compounded with social context (e.g., taking care of young
children), may result in elevated fatigue in females as opposed to
males (Bensing et al., 1999). Avlund (2010) used trait measures
to show that women reported more fatigue than men, but
only when they were 70 years old or older. This suggests
that age may interact with gender such that men and women
show different propensities to trait fatigue across the lifespan.
However, whether this also is found with state fatigue measures is
currently unknown.

Here, we investigated the effects of age on both state and
trait measures of fatigue, while also looking at the effects of
gender. To study state fatigue, we induced cognitive fatigue
by asking participants to repeatedly perform a demanding
working memory paradigm (the 2-back condition of the N-back
paradigm). We have used this approach to induce fatigue in
healthy and clinical populations in previous work (Wylie et al.,
2017a, 2019; Chen et al., 2020b). We also included neuroimaging
metrics—acquired during the fatigue induction task—because
we have found these metrics to be important indexes of fatigue
in other work (Wylie et al., 2017b, 2020, 2021). Based on pre-
existing literature, we hypothesized that trait measures of fatigue
would show increased fatigue with age, while state measures
would result in decreasing fatigue with age. We also hypothesized
that women would report more fatigue than men on both state
and trait fatigue measures. While there is evidence to suggest
that older adults and younger adults may rely on different brain
regions when performing a cognitive task (Crowell et al., 2020),
there are no neuroimaging studies to our knowledge that have
looked at the relationship between cognitive fatigue and brain
activity across different ages. The ventromedial prefrontal cortex,
the dorsal anterior cingulate cortex, the dorsolateral prefrontal
cortex, and the anterior insula are regions that have been linked
to cognitive fatigue [e.g., Wylie et al. (2019, 2020) and Chen
et al. (2020a,b)], so we expected differences in activation in these
areas between younger and older individuals, as well as between
males and females. In order to better understand the neural
substrates of age and gender on fatigue, we investigated where
in the brain increasing levels of fatigue correlated with brain
activation, accounting for age and gender.

MATERIALS AND METHODS

Subjects
This study included 43 subjects. They ranged in age from 20
to 63, and 19 (44%) of them were women. The subjects were
matched on age, education and gender distribution (see Table 1).
Ten participants were aged 20–35, 21 participants were aged 36-
50, and twelve participants were aged 51–63 (see Supplementary
Figure 1 for the distribution of age across the sample). In order
to be included in the study, participants were: aged 18–65; right
handed; had normal or corrected-to-normal visual acuity; were
native English speakers. Exclusion criteria were: a history head
injury, stroke, seizures, or any other significant neurological
history; a history of drug or alcohol abuse; clinically significant
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TABLE 1 | The demographics of the sample.

Female (N = 19) Male (N = 24) Overall (N = 43)

Age

Mean (SD) 40.1 (12.7) 44.6 (10.5) 42.6 (11.6)

Median [Min, Max] 37.0 [24.0, 59.0] 43.5 [20.0, 63.0] 42.0 [20.0, 63.0]

Education

Mean (SD) 15.9 (2.17) 15.3 (2.36) 15.6 (2.28)

Median [Min, Max] 16.0 [12.0, 20.0] 16.0 [11.0, 21.0] 16.0 [11.0, 21.0]

MFIS.total

Mean (SD) 11.4 (9.10) 10.9 (13.6) 11.2 (11.5)

Median [Min, Max] 11.0 [0, 28.0] 5.00 [0, 40.0] 8.00 [0, 40.0]

Mean values are shown along with the associated standard deviation (SD);
median values are also shown along with the corresponding minimum
and maximum scores.

psychiatric history (such as schizophrenia or bipolar disorder);
MRI contraindications; psychoactive medication use. All subjects
provided informed consent to participate, in accordance with the
Institutional Review Boards of Rutgers University and Kessler
Foundation, and all were paid $100 for their participation.

Trait Fatigue Measure
We used the MFIS (Modified Fatigue Impact Scale) to assess
trait fatigue, and in all cases the MFIS was acquired prior to the
induction of state fatigue. The MFIS is a self-report instrument
consisting of 21 items that evaluate how fatigue has impacted
the lives of participants during the past 4 weeks. The MFIS
total score ranges from 0 to 84 and is broken down into three
subscales: physical (0–36), cognitive (0–40), and psychosocial (0–
8) (Larson, 2013). Answers fall on a 5-point Likert scale ranging
from “never” to “always.”

Visual Analog Scale of Fatigue
To evaluate the level of state fatigue, participants were presented
with a visual analogue scale (VAS) before and after each block of
the 2-back task. Participants were asked: “How mentally fatigued
are you right now?” and were asked to indicate their level of
fatigue using the response box on a scale from 0 to 100, with
0 being not at all fatigued and 100 being extremely fatigued.
In order to mask the purpose of the study, six VASs were
administered, in randomized order, before and after each task
block: fatigue, happiness, sadness, pain, tension and anger.

Neuroimaging Acquisition
Neuroimaging data collection began on a 3-Tesla Siemens Allegra
scanner (28 subjects) and was completed on a 3-Tesla Siemens
Skyra scanner (15 subjects). For this reason, a regressor for
scanner was included in all group-level analyses, as has been
done in previous research utilizing more than one scanner
(Stonnington et al., 2008; Biswal et al., 2010; Wylie et al.,
2018). A T2∗-weighted Echo Planar sequence was used to
collect functional images during four blocks of task-related
data collection, with 140 brain volume acquisitions per block
(Allegra: echo time = 30 ms; repetition time = 2,000 ms; field of
view = 22 cm; flip angle = 80◦; slice thickness = 4 mm, 32 slices,
matrix = 64 × 64, in-plane resolution = 3.438 × 3.438 mm2;

Skyra: echo time = 30 ms; repetition time = 2000 ms; field of
view = 22 cm; flip angle = 90◦; slice thickness = 4 mm, 32 slices,
matrix = 92 × 92, in-plane resolution = 2.391 × 2.391 mm2).
A high-resolution magnetization prepared rapid gradient echo
(MPRAGE) image was also acquired (Allegra: TE = 4.38 ms;
TR = 2000 ms, FOV = 220 mm; flip angle = 8◦; slice
thickness = 1 mm, NEX = 1, matrix = 256 × 256, in-
plane resolution = 0.859 × 0.859 mm2; Skyra: TE = 3.43 ms;
TR = 2100 ms, FOV = 256 mm; flip angle = 9◦; slice
thickness = 1 mm, NEX = 1, matrix = 256 × 256, in-plane
resolution = 1 × 1 mm2), and was used to register the functional
data into standard MNI space for group analysis.

Behavioral Paradigm and Data
E-Prime software (Schneider et al., 2002) was used for behavioral
data acquisition and stimulus presentation. During the four fMRI
scans, participants were presented with the 2-back condition
of the N-back working memory task—a demanding working
memory task (Meule, 2017). Prior to scanning, all subjects
practiced the task to criterion (80% correct) to ensure a
comparable level of proficiency. In all cases, subjects reached
criterion in a single block of 65 trials of the task. The sequence
used for practice was not repeated during the fatigue induction
session in the scanner. In each of the four blocks of the 2-back
task used to induce fatigue inside the scanner there were 65
trials. On each trial a single letter was presented on the screen
and participants were asked to respond by pressing a button
on a response box every time the letter was the same as the
letter presented two trials before (e.g., R N Q N. . .). Letters were
presented in white (Arial 72 point font) on a black background.
Of the 26 letters in the English alphabet, the following were used
with equal frequency: A B C D F H J K M N P Q R S T V Z.
The other letters were excluded to enhance the discriminability
of the letters used. The letter stimuli remained on the screen
for 1.5 s, followed by a 500 ms inter-trial interval (ITI), and
the time between successive trials was jittered to allow for the
data to be deconvolved as an event related design. The jittering
was optimized using the Optseq2 program,1 and was achieved
by inserting between zero and six null events between successive
trials. The duration of each null event was a multiple of the length
of the trial (2 s), drawn from a distribution following a power
function. The majority of inter-trial intervals were 500 ms (zero
null events), followed by 2 s (one null event) and so on. The
average ITI was 1587.87 ms (±1769.7).

In order to ensure comparable stimulation across subjects, the
stimuli remained on the screen for the full 1.5 s on each trial
and were not removed when subjects responded. Each run lasted
the same amount of time (280 s). The average amount of time
between successive blocks was 2 min 04 s (S.D. = 2 min 17 s).

The outcome variables from the behavioral task were response
time (RT) and accuracy. Trials were considered correct when the
subject withheld a response on trials when a non-target letter was
presented or when s/he responded with a latency longer than
150 ms on trials when a target was presented. For the analysis

1https://surfer.nmr.mgh.harvard.edu/optseq/
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of the fMRI data, only trials on which a correct response (or
correctly withheld response) were included.

Analyses
Modified Fatigue Impact Scale
For the MFIS data, a bivariate correlation was run in SPSS to
determine the association between age and total MFIS score, and
between age and each MFIS subtype using Pearson’s r. One-
way ANOVAs were run to analyze whether MFIS total, MFIS
physical, MFIS cognitive, and MFIS psychological scores differed
by gender (male vs. female).

Visual Analog Scale of Fatigue
For the analysis of the visual analog scale of fatigue (VAS-
F) scores, a Linear Mixed Effects analysis (LME; using the R
statistical package [version 3.4.3]) was used. Gender (male vs.
female) was a between-subjects factor, and Rating (ratings 1–5)
was a fixed effect. Age was a quantitative variable, and subject was
included as a random factor.

Because VAS-F scores were obtained before and after each task
block, the amount of fatigue during each block was estimated by
using the mean of the scores before and after the relevant block;
this value was used in the correlational analyses. Furthermore,
because the VAS-F scores were skewed, they were transformed
using the Box-Cox method to ensure that assumptions of
normality were not violated (Box and Cox, 1964). The Box-Cox
method is a power transformation in which a range of power
transformations are considered and the one that best transforms
the data into a normal distribution is selected.

Response Time and Accuracy
Response time and accuracy were analyzed with an LME that
included the factors of Gender (female vs. male) and Run (runs
1–4); the VAS-F scores and age were included as quantitative
variables; subject was included as a random factor.

Neuroimaging
Results included in this manuscript come from preprocessing
performed using fMRIPrep 1.4.1 [Esteban et al. (2019);
RRID:SCR_016216], which is based on Nipype 1.2.0 [Gorgolewski
et al. (2011); RRID:SCR_002502].

For anatomical preprocessing, the T1-weighted (T1w)
image from each subject was corrected for intensity non-
uniformity (INU) with N4BiasFieldCorrection (Tustison et al.,
2010), distributed with ANTs 2.2.0 [Avants et al. (2008);
RRID:SCR_004757], and used as T1w-reference throughout
the workflow. The T1w-reference was then skull-stripped
with a Nipype implementation of the antsBrainExtraction.sh
workflow (from ANTs), using OASIS30ANTs as target template.
Brain tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM), and gray-matter (GM) was performed on the
brain-extracted T1w using fast [FSL 5.0.9, RRID:SCR_002823,
Zhang et al. (2001)]. Volume-based spatial normalization to
one standard space (MNI152NLin2009cAsym) was performed
through non-linear registration with antsRegistration (ANTs
2.2.0), using brain-extracted versions of both T1w reference
and the T1w template. The following template was selected

for spatial normalization: ICBM 152 Non-linear Asymmetrical
template version 2009c [Fonov et al. (2009), RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym].

For functional data preprocessing each of the 8 BOLD
runs found per subject (across all tasks and sessions), the
following preprocessing was performed. First, a reference
volume and its skull-stripped version were generated using
a custom methodology of fMRIPrep. The BOLD reference
was then co-registered to the T1w reference using flirt
[FSL 5.0.9, Jenkinson and Smith (2001)] with the boundary-
based registration (Greve and Fischl, 2009) cost-function. Co-
registration was configured with nine degrees of freedom to
account for distortions remaining in the BOLD reference.
Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal
filtering using mcflirt [FSL 5.0.9, Jenkinson et al. (2002)].
BOLD runs were slice-time corrected using 3dTshift from
AFNI 20160207 [Cox and Hyde (1997), RRID:SCR_005927].
The BOLD time-series (including slice-timing correction when
applied) were resampled onto their original, native space by
applying a single, composite transform to correct for head-
motion and susceptibility distortions. These resampled BOLD
time-series will be referred to as preprocessed BOLD in original
space, or just preprocessed BOLD. The BOLD time-series were
resampled into standard space, generating a preprocessed BOLD
run in [“MNI152NLin2009cAsym”] space. First, a reference
volume and its skull-stripped version were generated using
a custom methodology of fMRIPrep. Several confounding
time-series were calculated based on the preprocessed BOLD:
framewise displacement (FD), DVARS and three region-wise
global signals. FD and DVARS are calculated for each functional
run, both using their implementations in Nipype [following
the definitions by Power et al. (2014)]. The three global
signals are extracted within the CSF, the WM, and the whole-
brain masks. Additionally, a set of physiological regressors
were extracted to allow for component-based noise correction
[CompCor, Behzadi et al. (2007)]. Principal components are
estimated after high-pass filtering the preprocessed BOLD time-
series (using a discrete cosine filter with 128s cut-off) for the
two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from
the top 5% variable voxels within a mask covering the subcortical
regions. This subcortical mask is obtained by heavily eroding
the brain mask, which ensures it does not include cortical
GM regions. For aCompCor, components are calculated within
the intersection of the aforementioned mask and the union
of CSF and WM masks calculated in T1w space, after their
projection to the native space of each functional run (using
the inverse BOLD-to-T1w transformation). Components are
also calculated separately within the WM and CSF masks.
For each CompCor decomposition, the k components with
the largest singular values are retained, such that the retained
components’ time series are sufficient to explain 50 percent
of variance across the nuisance mask (CSF, WM, combined,
or temporal). The remaining components are dropped from
consideration. The head-motion estimates calculated in the
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correction step were also placed within the corresponding
confounds file. The confound time series derived from head
motion estimates and global signals were expanded with the
inclusion of temporal derivatives and quadratic terms for each
(Satterthwaite et al., 2013). Frames that exceeded a threshold
of 0.5 mm FD or 1.5 standardized DVARS were annotated as
motion outliers. All resamplings can be performed with a single
interpolation step by composing all the pertinent transformations
(i.e., head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were
performed using antsApplyTransforms (ANTs), configured with
Lanczos interpolation to minimize the smoothing effects of other
kernels (Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

The resulting data were then deconvolved. In the
deconvolution, signal drift was modeled with a set of basis
functions; the motion parameters were used as regressors of
no interest. The regressors of interest were the correct trials
of each block. Each block was deconvolved separately, and
the coefficient of fit of the correct trials was entered into the
group-level analysis.

In all cases, an LME was used (3dLME from the AFNI suite of
processing tools) with Gender (male vs. female) and Run (runs
1–4) as a factors; the VAS-F scores and age were included as
quantitative variables; subject was included as a random factor.

The results of these analyses were corrected for multiple
comparisons by using an individual voxel probability threshold
of p < 0.005 and a cluster threshold of 28 voxels (voxel
dimension = 2.4 mm × 2.4 mm × 4 mm). Monte Carlo
simulations, using 3dClustSim (version AFNI_17.2.16, compile
date: September 19, 2017) showed this combination to result in a
corrected alpha level of p < 0.05.

RESULTS

Trait Fatigue: Modified Fatigue Impact
Scale
There was no correlation found between age and total MFIS
score (r = –0.029, p = 0.873), nor was there a correlation found
between age and any of the MFIS subscales (physical r = 0.072,
p = 0.689, cognitive r = –0.075, p = 0.678, psychological r = –
0.176, p = 0.327). The difference in total MFIS scores between
males (x̄= 10.94) and females (x̄= 11.38) was not significant
[F(1,31) < 1] (see Table 1). Males and females did not differ in
the physical [F(1,32) < 1], cognitive [F(1,32) < 1], or psychological
[F(1,32) < 1] fatigue subfields.

State Fatigue: Visual Analog Scale of
Fatigue
The analysis of state fatigue (VAS-F scores) showed a significant
main effect of Age [F(1,35) = 9.19, p < 0.01, η2

partial = 0.21], with
a correlation of r = –0.20 and a negative coefficient of –0.401,
meaning that for each year of increased age subjects reported
0.401 less fatigue on the VAS-F scale (see Figure 1). No other

effects or interactions were significant. However, because prior
research using this task has shown an effect of Rating (Wylie
et al., 2019, 2020; Chen et al., 2020b), we computed the pairwise
differences between ratings 2–5 relative to rating 1. The VAS-F
scores reported for rating 5 (19.6) differed from rating 1 (18.4)
[t(152) = 2.07, p < 0.05, η2

partial = 0.03].
For all subsequent analyses, we analyzed only data from

blocks/runs on which subjects reported at least some fatigue—
that is, the fatigue reported was greater than zero. This resulted in
the exclusion of runs from seven men (age range 29–57) and six
women (age range 38–59). Subjects reported experiencing fatigue
on 72% of the experimental runs, or on 145 out of 185 runs.

Response Time and Accuracy
The analysis of the response time (RT) data showed a significant
main effect of Gender [F(1,25.7) = 9.47, p < 0.01, η2

partial = 0.27]
which was due to women responding more quickly than men
(703 vs. 765 ms, respectively). Gender also interacted with Age
[F(1,28.6) = 12.77, p < 0.01, η2

partial = 0.31], and there was
also a Gender x Age x VAS-F interaction [F(1,53.2) = 4.87,
p < 0.05, η2

partial = 0.08]. This is shown in Figure 2 and
was due to a positive relationship between age and RT in men
(older individuals responded with longer latencies) and a negative
relationship between age and RT for women (older individuals
responded with shorter latencies). As Figure 2 shows, these
relationships were exacerbated as fatigue increased. No other
effects or interactions were significant in the RT data.

For the accuracy data, the only significant effect was the
interaction between Gender and Age [F(1,23.2) = 5.55, p < 0.05,
η2

partial = 0.19] which was due to a positive relationship between
accuracy and age for women (coefficient = 0.0009) and a negative
relationship between accuracy and age for men (coefficient = –
0.0048). That is, women tended to respond with greater accuracy

FIGURE 1 | The negative relationship between visual analog scale of fatigue
(VAS-F) and age is shown. The data from men and women are shown
separately to demonstrate the similarity of the effect of age in the two groups.
The blue line represents the best fitting linear relationship between VAS-F and
age. The 95% confidence interval around this line is plotted in lighter blue. The
data are represented by gray circles.
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FIGURE 2 | The interaction between age, gender, and visual analog scale of fatigue (VAS-F) on Response Time (RT). Age is plotted in years and RT is plotted in
milliseconds. The top three panels show the positive relationship between RT and age for men and the bottom three panels show the negative relationship between
RT and age for women across increasing values of VAS-F, indicated at the top of each panel. For the plot, the VAS-F data was divided into three bins for expository
purposes only. In the analysis, the VAS-F data was continuous. The lines represents the best fitting linear relationship between RT and age.

as they aged while men tended to respond with less accuracy as
they aged. No other main effects or interactions were significant.

Neuroimaging Results
In the neuroimaging results, we focus on effects involving VAS-
F, since this study was undertaken to better understand fatigue.
Results involving Gender and Age are also reported for the sake
of completeness.

As Table 2 shows, there was a main effect of VAS-F in the
inferior frontal gyrus and the fusiform gyrus. This was due to a
negative relationship between VAS-F and brain activation in the
Inferior Frontal Gyrus [η2

partial = 0.10, coefficient (i.e., slope of
regression) = –0.01], and a positive relationship between VAS-
F and brain activation in the Fusiform Gyrus (η2

partial = 0.06,
coefficient = 0.005).

Moreover, VAS-F interacted with Age in the middle frontal
gyrus (η2

partial = 0.12, see Figure 3). This was due to younger
individuals showing a negative relationship between VAS-F and
brain activation, individuals aged 33–48 showing essentially no
relationship between VAS-F and brain activation, and older

individuals showing a positive relationship between VAS-F and
brain activation. That is, in this cross-sectional sample, the
relationship between self-reported fatigue and brain activation
changed from negative to positive as age increased.

Brain activation was also modulated by the interaction of VAS-
F and Gender in orbital frontal areas, middle frontal areas and
inferior frontal areas, as well as in the cerebellum (see Table 2).
Figure 4 shows this interaction in the middle orbitofrontal
gyrus (η2

partial = 0.28). For women, the relationship between
brain activation and VAS-F was negative (coefficient = –0.004);
for men, the relationship was positive (coefficient = 0.001).
This pattern was comparable in the other regions showing
this interaction.

Finally, there was an interaction between Gender, Age and
VAS-F in the parahippocampal gyrus (η2

partial = 0.21, see
Table 2). This interaction similar to the interaction between
VAS-F and age in the middle frontal gyrus (see above), except
that in the case of the parahippocampal gyrus, the effect of
age was only evident in women: younger women showed
a positive relationship between VAS-F and brain activation
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(coefficient = 0.020) whereas older women showed a negative
relationship (coefficient = –0.077). For men, the coefficient was
essentially unchanged by age (young: 0.001; old: 0.003).

DISCUSSION

The current study examined cognitive fatigue across age using
both state and trait measures. In addition to collecting self-report
measures, we conducted fMRI scans to see how activation in
different brain regions related to fatigue ratings across ages 20–
63. We did not find trait fatigue ratings (MFIS) to be correlated
with age, however we found a negative correlation between
state fatigue ratings (VAS-F) and age. We also found differences
in brain activation between young adults and older adults,
as well as between male and female participants at different
levels of fatigue.

Our aim in using both state and trait measures in this
study was to investigate whether these different dependent
measures would help to explain some of the inconsistencies
in the literature examining fatigue across the lifespan. While
older adults reported themselves to have the same fatigue
“burden” (trait fatigue) as younger adults, they nevertheless
reported experiencing less fatigue while they were performing
a task (state fatigue). That is, even within the same dataset,
the relationship between age and fatigue was dependent upon
whether state or trait fatigue measures were used, strongly
suggesting that these instruments do not measure the same
thing. A prior study looking at the relationship between state
and trait fatigue in university students, faculty, and staff found

TABLE 2 | The brain areas associated with the main effects of VAS-F and Gender,
and with the interactions of Gender × VAS-F, Gender × Age, and
Gender × Age × VAS-F.

Condition/Location X Y Z Vox F statistic

VAS-F

Inferior frontal gyrus −43.4 40.2 −22.1 130 22.15

Fusiform gyrus 42.7 −22.0 −22.1 47 24.67

Gender

Middle temporal gyrus −57.7 −10.1 −10.2 29 18.89

Postcentral gyrus −55.4 −10.1 17.8 29 23.38

Gender × VAS-F

Superior orbital gyrus 21.2 56.9 −10.2 32 17.35

Middle orbitofrontal gyrus −29.1 47.3 −10.2 92 34.03

Middle frontal gyrus −53.0 13.9 45.7 38 19.89

Inferior frontal gyrus 30.7 35.4 −14.2 35 16.95

Cerebellum (Crus 1) −29.1 −89.0 −26.1 28 19.89

Age × VAS-F

Middle frontal gyrus −17.1 47.3 25.7 29 21.87

Gender × Age

Parahippocampal gyrus 18.8 −0.5 −34.1 49 26.24

Gender × Age × VAS-F

Parahippocampal gyrus 16.4 −0.5 −34.1 57 26.50

X Y Z = the location of the voxel with peak intensity in each cluster; Vox refers
to the number of voxels in the cluster; F-statistic refers to the maximal F-statistic
in each cluster.

FIGURE 3 | The relationship between visual analog scale of fatigue (VAS-F)
and Age in the middle frontal gyrus is shown. For this plot, the age range was
divided into three sections: 20–32, 33–48, 49+. This division is for exposition
only and does not reflect subgrouping in the analyses of the data (age was a
continuous variable in all analyses). The blue line represents the best fitting
linear relationship between VAS-F and age. The 95% confidence interval
around this line is plotted in lighter blue. The data are represented by gray
circles.

a strong link between the two, such that greater trait fatigue
predicted increased state fatigue (Manierre et al., 2020). However,
this study also reported that this relationship was complicated
when factors such as gender and sleep quality were introduced.
The relationship between these two types of fatigue may be
strongly susceptible to demographic influences, age being one
such factor. It is further possible that a person’s perception of
their own fatigue is clearer in the moment than when they are
prompted to recall their fatigue levels over the course of a month,
which could also account for some of the conflicting results
in the literature.

There are several possible reasons why older individuals
reported less fatigue in this study than their younger
counterparts. One possibility is that older individuals had
different sociodemographic characteristics than the younger
participants. For example, a positive correlation has been shown
between the number of children one has and one’s self-reported
“tiredness” (Dolan and Kudrna, 2013). Tiredness and fatigue
are different constructs, but it may nevertheless be the case that
older individuals have fewer sociodemographic demands and are
therefore less prone to report fatigue during task performance. It
could also be the case that because older individuals will have had
more experience with letter stimuli than younger individuals,
the tasks used to induce fatigue were less effective in the older
individuals. This hypothesis could be tested by using tasks and
stimuli that were equally novel to all participants.

To our knowledge, this was the first study to explore the
association between state fatigue and brain activity across age.
Our results show that the relationship between VAS-F and
brain activation changed across age in the middle frontal gyrus.
For younger adults, brain activation in the middle frontal
gyrus was negatively correlated with fatigue ratings, and as age

Frontiers in Human Neuroscience | www.frontiersin.org 7 May 2022 | Volume 16 | Article 790006

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-790006 May 3, 2022 Time: 18:55 # 8

Wylie et al. Fatigue: Aging and Gender

FIGURE 4 | The relationship between visual analog scale of fatigue (VAS-F)
and Gender in the orbito-frontal gyrus is shown. For women (left) the
relationship between VAS-F and activation was negative; for men (right) it
was positive. The blue line represents the best fitting linear relationship
between VAS-F and age. The 95% confidence interval around this line is
plotted in lighter blue.

increased this relationship changed such that for older adults
the correlation was positive (greater activation was associated
with higher VAS-F ratings). In a prior study comparing cognitive
fatigue in multiple sclerosis and healthy control participants,
a negative association was found between state fatigue ratings
and activation in this region within the healthy control group,
but not the MS group (Genova et al., 2013). Because healthy
individuals also reported less cognitive fatigue than individuals
in the MS group, this finding was consistent with the idea
that the middle frontal gyrus has a moderating effect on
cognitive fatigue. However, while the same effect is shown
here in the younger subjects, the opposite is evident in the
older individuals despite the fact that the older individuals
reported less fatigue. This may suggest that the role of the
middle frontal gyrus, and/or its connectivity (Wylie et al., 2020),
changes over the lifespan. Future work will be required to
understand this relationship; however, the results shown here
strongly suggest that fatigue related brain activation changes
over the lifespan and that age needs to be accounted for when
investigating fatigue.

It is important to note that our sample for this paper was
healthy individuals within the age range of 20–63. Cognitive
fatigue is a widely reported symptom in many medical conditions
and diseases that are more likely to affect older adults than
younger adults (e.g., cancer, Parkinson’s Disease, stroke). For the
purpose of the current study and ruling out certain potential
confounding variables, we focused on healthy individuals free of
neurological disease. Had we included all individuals, regardless
of medical history, it is possible that we may have seen a different
effect of age on fatigue due to the increased prevalence of brain
injury and disease in older individuals.

We did not find a difference in trait fatigue ratings between
males and females. This was surprising, given the general
consensus in the literature suggesting a greater prevalence

of fatigue in women than in men (Bensing et al., 1999;
Avlund, 2010). One factor that may have contributed to the
difference in our results relative to Bensing’s is recent societal
changes. For instance, taking care of young children was a
factor that influenced fatigue in women but not men in a
study conducted by Bensing et al. (1999). Meanwhile, birth
rates in the US have been declining since 2008 (United States
Census Bureau, 2021). Furthermore, in the intervening years,
there may have been a shift in gender roles toward a more
equitable allocation of child care responsibilities, as evidenced
by the growing number of “stay-at-home” fathers (Pew Research
Center, 2014). It is uncertain whether these slight shifts are
significant enough to close the apparent trait fatigue gap between
genders, but factors such as childcare responsibilities should
be taken into account for future studies examining fatigue
between genders.

The neuroimaging data revealed differences in state fatigue-
related brain activation between genders. For women, we found
greater activation in the orbitofrontal gyrus to be associated with
lower fatigue ratings, while for men we found greater activation
to be associated with more fatigue. This raises the possibility
that the orbito-frontal region, as well as the other areas of the
fatigue network (Wylie et al., 2020), may respond differently to
fatigue in men and women, or may have differential connectivity
in men and women. For example, it is possible that this region
could play a role in combatting fatigue in women, but not in
men. Past studies looking at gender differences and fatigue have
concentrated primarily on self-report measures (Butt et al., 2010;
Engberg et al., 2017). Incorporating neuroimaging into such
studies could help explain some of the differences observed.
Furthermore, the differences shown here suggest that fatigue
in men and women may differ, or may rely on different brain
mechanisms, which suggests that treatments designed to combat
fatigue after brain injury or disease may be more effective if
gender is taken into account.

There were a few limitations to the current study. A cross-
sectional design was used, so it was not possible to determine a
change in fatigue ratings within subjects over time. Out of the 43
total subjects, ten were missing MFIS data and 11 were missing
fMRI data. Furthermore, the fatigue induction paradigm used
resulted in only a modest increase in fatigue over the four blocks
of the task. A task that induces more fatigue should be considered
for future work. Our sample size was also relatively small (n = 43),
with a somewhat limited age range (20–63 years), so we cannot
determine whether the trends found in these data continue as
age increases past 63 years. Future research should explore the
relationship between cognitive fatigue and brain activation in a
sample of individuals with a wider range of ages. Finally, we did
not consider potentially confounding variables such as quality
of sleep, daytime physical activity, or caffeine intake, which may
impact fatigue levels.

In conclusion, this study is the first to report the effects of
gender and age on both state and trait fatigue, and also the first
to report fatigue-related differences in brain activation across the
lifespan and across gender during a cognitively fatiguing task.
These results help to explain some of the differences reported in
the literature by showing that state and trait measures of fatigue
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appear to measure different aspects of fatigue, and also that age
and gender both appear to affect the relationship between state
fatigue and brain activation.
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