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INTRODUCTION

Chimeric antigen receptor (CAR) T-cell therapy has dramatically expanded the success rate of
cancer immunotherapy, especially in CD19-expressing blood cancers. Yet, it has also given rise to
new complications, notably cytokine release syndrome, neurotoxicity, and, sometimes, fatal cerebral
edema. The exact mechanisms of such toxicities across different CD19 CAR T-cell products,
however, remain hotly debated. It was recently demonstrated that CARs containing a CD28
transmembrane domain (TMD) can heterodimerize with the endogenous CD28 receptor. Here, we
hypothesize that, upon on-target activation, this heterodimerization is responsible for the increased
sensitivity of CD19 CAR to CD19low brain mural cells, resulting in increased risk of developing
severe neurotoxicity. This hypothesis may only be confirmed with a clinical trial comparing two
CD19-CD28-TMD CARs differing only by targeted amino-acid mutations in the CD28
transmembrane domain.

T lymphocytes engineered with anti-CD19 chimeric antigen receptors (CAR) are emerging as
powerful treatments for leukemia and lymphoma. The US Food and Drug Administration (FDA)
approved two CD19 CAR T-cell products in 2017, which have shown clinical efficacy in the
treatment of relapsed/refractory (r/r) acute lymphoblastic leukemia (ALL) and r/r non-Hodgkin
lymphoma (NHL). The first CAR product, tisagenlecleucel (KYMRIAH/Novartis Pharmaceuticals
Corp., thereafter referred to as CTL019), originally developed by CAR T-cell pioneer Carl June and
colleagues, is currently approved for patients up to 25 years of age with r/r ALL and, since 2018, for
adults with r/r NHL. In 2017, axicabtagene ciloleucel (YESCARTA/Kite Pharma, Inc., a Gilead
Sciences Company, thereafter referred to as KTE-C19), is approved for adult patients with r/r NHL.
Since then, two other CD19-CAR T-cell products have been FDA-approved: brexucabtagene
autoleucel in 2020 (KTE-C19/TECARTUS/Kite Pharma, Inc., thereafter referred to as KTE-X19,
a product differing only from KTE-C19 by an extra-step in the manufacturing process to exclude
malignant circulating cells) for adult patients with r/r mantle cell lymphoma, and in 2021
lisocabtagene maraleucel (BREYANZI/Juno Therapeutics, Inc., a Bristol-Myers Squibb Company,
thereafter referred to as JCAR-17, a product with the same CAR design as its previous generation
JCAR-14) for adult patients with r/r large B-cell lymphoma. Notably, these CAR-T have the same
single chain variable fragment (scFv), but different hinge (HD), transmembrane (TMD), and
intracellular signaling domains (ICD) (Figure 1A).
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SAFETY CONCERNS OF CAR
T-CELL THERAPY

Although CAR T-cell therapy can induce spectacular clinical
remission, safety remains an important concern with up to one-
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third of the patients developing significant toxicities, namely
cytokine release syndrome (CRS) and immune effector cell-
associated neurotoxicity syndrome (ICANS) (1, 2). By 2018,
eighteen patients died after receiving CD19-CAR T-cells (3).
CRS is the most commonly observed cause of toxicity coinciding
A

B

C

D

E

FIGURE 1 | Retrospective analysis of the proportion of severe neurotoxicity of selected CD19 CAR T-cell products and proposed model for CAR T cell-mediated
neurotoxicity. (A) Construct designs of 5 selected CD19 CAR T-cell products, namely tisagenlecleucel (CTL019), Hu19, JCAR-14/-17, axicabtagene ciluleucel (KTE-C19),
JCAR-15, and SenI-B19, differing by their hinge (HD) and transmembrane (TMD) domain. (B) Forest plot representing untransformed proportions of severe neurotoxicities
(SN, grade 3 or higher) among patients treated with CAR T-cell products. Confidence intervals (95%) were calculated using binary random effect and DerSimonian-Laird
methods with OpenMeta (http://www.cebm.brown.edu/openmeta/index.html). (C) The odds ratios of grade 3 or higher severe neurotoxicity comparing Hu19, JCAR14-
/17, KTE-C19, JCAR15, and Senl B19 CAR-T products with CTL019 (set as reference) are shown. Calculations were made on SPSS Statistics (IBM, New York, NY) and
based on a Pearson Chi-Square test and logistic regression tests assuming that clinical monitoring among the different studies and CD19 CAR-T-cell product is
comparable. (D) Forest plot representing untransformed proportions of severe neurotoxicities comparing CARs with no CD28-CAR heterodimers (Hu19, CTL019),
inefficiently formed CD28-CAR heterodimers (JCAR-14/17), and efficiently formed CD28-CAR heterodimers (SenIB19, JCAR-15, KTE C19). (E) CAR T cells, following on-
target activation (I.), undergo several rounds of proliferation in the absence of antigen. This proliferation, fueled by CD40L-CD40 and B7-CD28 interactions with
monocytes and/or dendritic cells (II.), ultimately results in cytokine release syndrome (CRS) (III.). In turn, CRS compromises the blood-brain barrier (IV.), allowing CAR T
cells to penetrate the central nervous system (CNS). If CAR-CD28 heterodimers assemble on the cell surface, CAR T cells in the CNS interact with mural cells expressing
low levels of CD19 (V.), as well as with microglia expressing co-stimulatory receptors (VI.), triggering immune effector cell-associated neurotoxicity syndrome (ICANS).
HeDi, heterodimerization; SN, severe neurotoxicity; HD, hinge domain; TMD, transmembrane domain; ICD, intracellular domain.
November 2021 | Volume 12 | Article 766220

http://www.cebm.brown.edu/openmeta/index.html
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ferreira and Muller CAR-CD28 Heterodimerization and Neurotoxicity
with the peak of CAR T-cell expansion (4), manifesting as fever,
life-threatening hemodynamic instability with multi-organ
failure, and, in some cases, fulminant hemophagocytic
lymphohistiocytosis. ICANS is the second most common
adverse event in CAR T-cell therapy ranging from mild
cognitive impairment to an encephalopathic state characterized
by confusion, delirium, seizures, and cerebral edema. ICANS can
happen concurrently with or independently of CRS, a feature
distinct from other organ-specific toxicities (1). The
management of CRS and ICANS is currently based on
administering anti-IL-6 monoclonal antibodies, sometimes
together with corticosteroids. The latter are, however, avoided
whenever possible to prevent inhibition of the infused CAR T
cells (3). Importantly, ICANS normally resolves within 2-3 weeks
after CAR T-cell infusion, although later recurrences are
possible (3).

Notably, some CD19-CAR T cells products are more
frequently associated with the development of severe ICANS
(Figure 1 and Supplementary Table 1 and references therein).
To address the rate of neurotoxicity among selected CD19 CAR-
T cells products, we performed a linear regression analysis of
reported severe neurotoxicity observed among 1004 patients
treated with CTL019, Hu19, JCAR-14, JCAR-17, KTE-C19,
KTE-X19, JCAR-15, and Senl-B19 (Supplementary Table 1
and Figures 1B, C). The odds ratio of having grade 3 or
higher severe neurotoxicity was significantly higher for KTE-
C19 (3.5, 95% confidence interval (CI), 2.2-5.5) and JCAR-15
(8.0, 95% CI, 4.5-14.4) than with CTL019 (set to 1), JCAR-14/-17
(1.4 95%CI 0.9-2.3), Hu19 (0.3, 95% CI 0.05-2.9) and SenI-B19
(3.1, 0.8-12.5) (Figures 1B, C). These results are consistent with
a recent meta-analysis (1). Additionally, they were also observed in
a single clinical trial comparing side by side CAR T cells produced
in the same conditions but engineered with a CAR design
matching either CTL019 or KTE-C19 (5). Infusion with the
KTE-C19-like product had to be suspended due to the high rate
of neurotoxicity events (5). These data echo the unexpectedly high
rate of severe ICANS 18/32, 56%) experienced during a phase 2
clinical trial, the ROCKET study, testing CD19-CAR T engineered
with a CD28-HD, TMD and ICD (JCAR-15). This trial had to be
terminated after the death of five patients from cerebral edema.
IDENTIFYING CAR FEATURES
ASSOCIATED WITH TOXICITY

The mechanism behind the observed differences in CAR T-cell
toxicity profiles between different products remains hotly debated.
First, all main CAR T-cell products (accounting for >80% of
infusions) share the same scFv, clone FMC63, ruling out major
differences in CAR antigen affinity. Second, severe neurotoxicity
was observed with CAR-T cells engineered with a CD28-z or 4-
1BB-z ICD using lentiviral or retroviral transduction protocols (2,
6). Finally, no study found a link between the CD4/CD8 T cell
ratio in the final CAR T-cell infusion product and neurotoxicity
occurrence, even though the starting cell populations (PBMCs vs.
enriched CD4 and CD8 T cells) and the expansion protocols (anti-
Frontiers in Immunology | www.frontiersin.org 3
CD3/CD28 beads vs. anti-CD3 alone) differed between them. Data
from clinical studies show that tumor burden is a risk factor for
developing CRS and ICANS (2). Recent preclinical studies showed
that recipient’s monocytes can be transactivated via the CD40-
CD40L pathway and responsible for the bulk of IL-1 and IL-6
production during CRS, excluding models based solely on the
direct interplay between CAR T cells and tumor cells. Indeed,
blocking IL-6 receptor with tocilizumab or using IL-1 receptor
antagonist prevents CRS in mouse models, providing a rationale
for using these monoclonal antibodies for the treatment of CRS
after CAR T cell therapy (7). Another comprehensive analysis
found a significant association between elevated pre-treatment
disease burden and high peak CAR T-cell expansion,
concomitantly with blood brain barrier disruption and central
nervous system-specific production of IL-6, IL-8, MCP1, and IP10
(6). There was, however, no significant correlation between severe
neurotoxicity and transfused CAR T-cell number or tumor cell
presence in the brain. More recently, single-cell RNA sequencing
surveys revealed the existence of rare (0.2% of brain cells) CD19-
expressing cells in the brain: mural cells, including pericytes and
vascular smooth muscle cells, which support vasculature and are
critical for the integrity of the blood-brain barrier. This suggests
that lysis of brain mural cells by CD19-CAR T cells may be partly
responsible for ICANS (8).

Yet, those results do not explain why there is an increased risk
of developing ICANS when infusing KTE-C19/KTE-X19 or
JCAR-15 as compared to CTL019 (Figures 1B, C). Importantly,
KTE-C19/KTE-X19 and JCAR-15 share the same hinge,
transmembrane, and signaling domain, all derived from the
CD28 molecule. It is known that CD28 signaling, as compared
to 4-1BB, results in faster and larger magnitude changes in protein
phosphorylation, influencing the response and differentiation of
effector T cells (9). However, in a recent phase 1 clinical trial,
Brudno et al. showed that a humanized CD19 CD28-zeta CAR
containing a CD28 signaling domain but a CD8-derived hinge
(HD) and transmembrane (TMD) domain resulted in much
reduced severe neurotoxicity: only 5% of patients who received
Hu19-CD8-CD28-zeta T cells (Hu19) experienced it versus 50%
of patients who received KTE-C19 (10). On the other hand, Li and
colleagues tested a CD19-CAR with a CD28-TMD/HD but a 4-
1BB intracellular costimulatory domain (Senl-B19) and reported
30% of ICANS (11). While it must be acknowledged that both
studies included only a limited number of patients, these results
suggest that the CD28 signaling domain is not sufficient to
provoke neurotoxicity and, more importantly, that the roles of
the HD and TMD in CAR T-cell-mediated neurotoxicity are
currently underestimated.
THE IMPACT OF THE CAR
TRANSMEMBRANE DOMAIN IN CAR
T-CELL TOXICITY

Several lines of evidence suggest that the CAR’s HD and TMD are
not inert and can modulate CAR-T cell activation. Carl June and
colleagues first showed that tonic signaling via CARs bearing a
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CD28-TMD, but not a CD8-TMD, sustained in vitro T-cell
proliferation up to 3 months in the absence of exogenous IL-2
and following a single TCR stimulation (12). Alabanza et al. found
that CD19-CAR T cells produced significant higher levels of
inflammatory cytokines upon CD19 recognition if featuring a
CD28-TMD/HD instead of a CD8-TMD/HD (13). Crystal
Mackall and co-workers demonstrated that swapping the CD8-
TMD/HD in a CD19 4-1BB-z CAR for a CD28-TMD-HD
lowered the antigen density threshold for CAR T-cell activation
(14). Finally, we have recently demonstrated that CD28 TMD-
containing CARs can recruit and dimerize with endogenous CD28,
which normally exists as a homodimer on the cell surface, via a
four amino acid motif in the TMD (15, 16). Consistent with this,
in-depth analysis of the CAR interactome and signalosome
revealed that the top interacting partner of a CAR bearing a
CD28-TMD/HD is endogenous CD28, and CAR mediated-
signaling is associated with phosphorylation of endogenous
CD28 (9, 17). This association, through heterodimerization of
the CAR with endogenous CD28 receptor via the CD28-TMD
(15), may result in stronger signal transduction, facilitating CAR
T-cell activation in the context of low levels of CAR antigen, such
as in low-CD19 mural cells. It is interesting to note that CD28-
CAR heterodimerizes inefficiently if the CAR is built with an IgG4-
HD. In silico modeling of the hinge-hinge interactions suggested
that the membrane proximity of the IgG4 hinge is too short to
form CAR-CD28 inter-molecular disulfide bonds for stabilizing
the CAR-CD28 heterodimerization, leading to preferential CAR-
homodimerization (15). This observation may explain why JCAR-
14/-17, engineered with a CD28-TMD and IgG4-HD, caused less
ICANS than KTE-C19/KTE-X19 or JCAR-15 (Figures 1B, C).
The risk of developing ICANS may thus be directly linked to the
capacity to form CD28-CAR heterodimers (Figure 1D).
DISCUSSION

In conclusion, we hypothesize that, while CAR T cells are
specifically activated on-target, they will undergo several rounds
of proliferation in the absence of antigen. This proliferation may be
fueled by CD40L-CD40 and possibly also by CD28-B7 trans-
interactions with monocytes and/or dendritic cells, ultimately
resulting in CRS. This process may compromise the blood-brain
barrier, facilitating the trafficking of CD19-CAR T cells into the
Frontiers in Immunology | www.frontiersin.org 4
central nervous system. Depending on whether CAR-CD28
heterodimers are efficiently formed and present on the cell
surface, CAR T cells could interact with low-CD19 mural cells
and with microglia, known to express co-stimulatory receptors,
ultimately initiating ICANS (Figure 1E). The fitness of the cells as
well as the level of CAR expression could directly influence the
severity of neurotoxicity. It will be extremely challenging to validate
this hypothesis based solely on preclinical mouse models. In our
opinion, its best demonstration will come from a clinical trial
comparing side by side CD19-CAR T cells differing only by select
amino acid mutations in their TMD. Such results may have an
important impact on the future design and choice of CD19-CAR T
cells for hematological but also autoimmune disease treatment.
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