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Machine Learning Predicts Prolonged Acute 
Hypoxemic Respiratory Failure in Pediatric 
Severe Influenza
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Background: Influenza virus is a major cause of acute hypoxemic 
respiratory failure. Early identification of patients who will suffer 
severe complications can help stratify patients for clinical trials and 
plan for resource use in case of pandemic.
Objective: We aimed to identify which clinical variables best predict 
prolonged acute hypoxemic respiratory failure in influenza-infected 
critically ill children. Acute hypoxemic respiratory failure was defined 
using hypoxemia cutoffs from international consensus definitions of 
acute respiratory distress syndrome in patients with ventilatory sup-
port. Prolonged acute hypoxemic respiratory failure was defined by 
acute hypoxemic respiratory failure criteria still present at PICU day 7.
Derivation Cohort: In this prospective multicenter study across 34 
PICUs from November 2009 to April 2018, we included children  
(< 18 yr) without comorbid risk factors for severe disease.
Validation Cohort: We used a Monte Carlo cross validation method 
with N2 random train-test splits at a 70–30% proportion per model.
Prediction Model: Using clinical data at admission (day 1) and closest 
to 8 am on PICU day 2, we calculated the area under the receiver oper-
ating characteristic curve using random forests machine learning algo-
rithms and logistic regression.

Results: We included 258 children (median age = 6.5 yr) and 11 
(4.2%) died. By day 2, 65% (n = 165) had acute hypoxemic respira-
tory failure dropping to 26% (n = 67) with prolonged acute hypoxemic 
respiratory failure by day 7. Those with prolonged acute hypoxemic 
respiratory failure had a longer ICU stay (16.5 vs 4.0 d; p < 0.001) 
and higher mortality (13.4% vs 1.0%). A multivariable model using 
random forests with 10 admission and eight day 2 variables per-
formed best (0.93 area under the receiver operating characteristic 
curve; 95 CI%: 0.90–0.95) where respiratory rate, Fio2, and pH on 
day 2 were the most important factors.
Conclusions: In this prospective multicentric study, most children with 
influenza virus–related respiratory failure with prolonged acute hypox-
emic respiratory failure can be identified early in their hospital course 
applying machine learning onto routine clinical data. Further valida-
tion is needed prior to bedside implementation.
Key Words: acute respiratory distress syndrome; automatic data 
processing; children; clinical decision support systems; critical care; 
machine learning

About one in 10 children for influenza virus infection 
require admission to a PICU for acute hypoxemic respi-
ratory failure (AHRF), and up to 9% of the critically ill 

children will not survive (1–4). In the event of an outbreak of a 
novel influenza A virus, PICUs are at risk to be overwhelmed by 
the number of patients who require mechanical ventilation and 
advanced rescue therapies (5, 6). Acute respiratory distress syn-
drome (ARDS) is a major subgroup of AHRF. Using consensus 
definitions, ARDS is stratified into a mild, moderate, or severe dis-
ease essentially based on the level of hypoxemia and its relation-
ship to mortality (6, 7).

Predictive models have been designed to predict ARDS (8) or 
its mortality (9–13). Nearly all published ARDS predictive models 
used logistic regression (LR), which is fairly easy to understand, 
but must follows several assumptions and has limited abilities to 
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exploit nonlinear data. However, more recent machine learning 
models do not have those restrictions in finding the best pathway 
to a prespecified outcome and has been shown to be superior to 
simple LR for some clinical cohorts (13, 14) and may help with 
treatment response interpretation (15, 16).

Initial hypoxemia severity has been associated with a longer 
ventilation duration (17), and multivariable scores have been 
developed to predict prolonged mechanical ventilation (18, 19). 
However, none were specifically built to predict prolonged AHRF 
in influenza infected patients. We hypothesized that in a group 
of children with minimal risk factors for developing AHRF from 
influenza infection, using commonly available clinical and labo-
ratory data available early on in their hospital course, we could 
develop a model that would accurately predict children with a 
prolonged AHRF. Such model would be helpful for future clinical 
trials that would aim to target the sickest patients early in their 
clinical course.

MATERIALS AND METHODS
Data were prospectively collected by the PALISI Pediatric Intensive 
Care Influenza Investigators across 34 international PICUs from 
November 2009 to April 2018. Detailed methods have been pre-
viously reported (20, 21). Children (< 18 yr) were admitted to 
a PICU with severe acute respiratory infection symptoms and 
microbiologically confirmed influenza virus infection. Children 
with underlying heart, lung, immune, and other disorders that 
would predispose them to influenza-related complications were 
excluded. For example, children with mild asthma not on daily 
controller medications, mild eczema, and those with other con-
ditions who did not impair respiratory function were eligible. 
We also excluded children suffering a prehospital cardiac arrest 
with early death from neurologic complications and those where 
hypoxemia was thought to be due to left atrial hypertension (6). 
This study was approved by the respective Institutional Review 
Boards of the participating centers.

Data were collected closest to the PICU admission time and 
daily closest to 8 am to reflect the time periods of admission and 
daily clinical rounds when intensive clinical assessments were 
common. Hypoxemia cutoffs used for classification were strati-
fied according to Figure 1 using primarily the pediatric acute lung 
injury consensus conference (PALICC) cutoffs and secondarily 
the Berlin ARDS definition cutoffs (Fig. 1) when PALICC cutoffs 
could not be calculated due to missing data (6, 7). Only patients 
with ventilatory support (invasive or noninvasive) could be con-
sidered to have AHRF. Following PALICC recommendations, if 
noninvasive ventilation was used, hypoxemia was defined by a 
Pao2/Fio2 (PF) ratio less than or equal to 300 mm Hg or by pulse 
oximetric saturation (Spo2)/Fio2 (SF) less than or equal to 264 mm 
Hg if no arterial samples were available. In case of invasive ven-
tilation, hypoxemia was defined by an oxygenation index (OI) 
greater than or equal to 4 or by an oxygenation saturation index 
(OSI) greater than or equal to 5 if no arterial sample was available. 
OSI and SF were analyzed using only measurements where Spo2 
less than or equal to 97% as PALICC recommends and using all 
recorded Spo2 values.

Patients supported by extracorporeal membrane oxygenation 
(ECMO) were considered to have severe AHRF, regardless of 
their oxygenation measurement, and patients supported by non-
invasive ventilation were classified as mild or no AHRF, even if a 
more severe hypoxemia was assessed. The main outcome was the 
presence of AHRF 7 days after the PICU admission (prolonged 
AHRF) while still in the PICU.

Missing Data Imputation and Statistical Analysis
Descriptive statistics included medians and interquartile ranges 
(IQRs) for continuous variables and frequencies with percentages 
for categorical variables. Wilcoxon and Fisher exact tests were 
used for continuous and discrete variable comparisons, respec-
tively. Missing values were inferred when possible (e.g., ventila-
tion mode based on other available information). If inference was 
not possible, we assumed normality for pH (7.40), Pco2 (40 mm 
Hg), or respiratory rate using age reference (22), as frequently 
done in ICU studies (23–26). Because no normal value exists for 
mean airways pressure (MAwP), we used the median value of day 
1 and day 2, respectively. If no inference could be made (e.g., if no 
Pao2 was measured), we censored the observation. As noninvasive 
metrics (OSI and SF ratio) were directly tested, we did not use 
them to estimate OI or PF.

Data analyses were conducted using Python language, version 
3.7.6 (Python Software Foundation, Fredericksburg, VA) and R, 
version 3.6.2 (R Foundation for Statistical Computing, Vienna, 
Austria) with the packages “pROC” and “ggalluvial” (27, 28). We 
used a Monte Carlo cross validation method with N2 random 
train-test splits (i.e. 66,564 repetitions in our case) at a 70–30% 
proportion per model (29). The Monte Carlo methods is a boot-
strap-based method that provide a robust empirical distribution 
in order to compare different models (29). We validated the model 
by calculating the averaged area under the receiver operating 
characteristic curve (AUROC) on all test groups to estimate the 
model discrimination (23). This method is appropriate for small 
datasets and has the advantage to use all the observations, to be 
relatively robust against overfitting and is able to estimate 95% CIs 
and p values for model comparison (23). Calibration was assessed 
using the Hosmer-Lemeshow Goodness of Fit test (30); p value of 
greater than 0.05 suggested that the model was well calibrated. We 
followed the 2020 standards for prediction models in critical care 
(31) and the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis guidelines for devel-
opment and validation of predictive models (32).

Predictive Models
We chose the random forests (RF) algorithm, a method based on 
decision tree, for machine learning based on its prior performance 
and low risk of overfitting (33, 34). RF algorithm is an ensemble 
method, that is, it is based on multiple small decision subtrees 
(33). Each subtree is randomly built and is able to come up to a 
conclusion, but the final result is determined by the sum of all the 
subtrees in a similar way to a democratic process. Models were 
built using the R package “randomForest” set with 1,000 trees 
maximum depth (35). Results were compared with a multivariable 
LR. We compared common hypoxemia metrics (OI, PF, OSI, and 
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SF) to multivariable models that included respiratory and clinical 
variables. We used data recorded on day 1 (PICU admission day), 
day 2 (8 am the day after), and both days. In multivariable models, 
we estimated the importance of each predictor using the error-rate 
on classification after permutation (35).

RESULTS
Of the 260 eligible patients, we excluded two who died early after 
cardiac arrest and resulting neurologic sequelae. No patients were 
excluded due to suspected left atrial hypertension. Median age was 
6.2 years (IQR, 2.1–10.6 yr), female ratio 42% (n = 109), and hospital 
mortality 4.2% (n = 11). By day 2, 65% (n = 165) met the criteria for 
AHRF and 26% (n = 67) on day 7. Patients’ characteristics are sum-
marized in Table 1. About 51% (n = 132) were invasively ventilated 
on day 1, and 38% (n = 97) had an arterial sample. Hypoxemia met-
rics (OI, PF, OSI, and SF) were applicable to 29%, 38%, 33%, and 62% 
on day 1. The availability of the main components of each commonly 
used oxygenation assessment metrics is illustrated in Figure 2.

The evolution of respiratory modalities over PICU days 1–7 
(Fig. 3) showed that proportion of patients requiring invasive 
ventilation increased until PICU day 3, but the number of patients 
meeting AHRF criteria (Fig.  1) constantly decrease from PICU 
day 1 to 7. The hypoxemia severity evolution per patient was rep-
resented in an alluvial plot (Fig. 4), showing that although 48% of 
severe patients on PICU day 1 remained severe on PICU day 7,  
there were many patients undergoing changes of severity classifi-
cation over the first PICU week.

Predictive Models: Hypoxemia Markers
Many patients did not have an available MAwP to calculate OI and 
OSI, an arterial blood gas for OI and PF, or Spo2 less than or equal 
to 97% for OSI and SF (Fig. 2). However, common oxygenation 

markers (OI, PF, OSI, and SF) were found to be discriminant 
for prolonged AHRF in those patients with available data for 
calculation (Fig. 5). When using only admission data, SF pre-
dicted better than OSI (AUROC 0.79 vs 0.69; p = 0.04), but when 
both admission and day 2 were provided to the model (Fig.  5), 
the difference between OSI and SF was no longer significant  
(p = 0.65). Using both day 1 and day 2 values in the model 
improved the discrimination for OI, PF, and SF (p = 0.04, 0.009, 
and 0.002, respectively).

Predictive Models: Multivariable Models
Predictors included continuous age and Pediatric Risk of 
Mortality (PRISM) III score (36) at PICU admission and Spo2, 
Fio2, mean airway pressure, invasive ventilation, respiratory rate, 
pH, and Pco2 at admission and the day after. RF multivariable 
models outperformed all models using only oxygenation mark-
ers (all p < 0.001). Models using both days 1 and 2 achieved a 
0.93 AUROC (95% CI, 0.90–0.95) and were similar to model using 
only day 1 (AUROC 0.90; 95% CI, 0.85–0.93; p = 0.17) or day 2 
(AUROC 0.92; 95% CI, 0.90–0.95; p = 0.96) data (Fig. 5). Models 
using day 2 and both days had good calibration (p = 0.13 and 0.07, 
respectively), but the model using only day 1 data was borderline  
(p = 0.05). Using a probability threshold of 0.5, model based on 
both day 1 and day 2 had 71% sensitivity (95% CI, 60–82%), 
93% specificity (95% CI 88%—0.97%), 78% positive predictive 
value (95% CI, 67–88%), 91% negative predictive value (95% CI, 
87–94%), and 88% accuracy (95% CI, 85–91%) (Supplemental 
Digital Content [SDC] 1, http://links.lww.com/CCX/A239). The 
analysis of the predictors’ importance after adjusting for PRISM 
III score (SDC 2, http://links.lww.com/CCX/A239) revealed that 
respiratory rate, Fio2, and pH on day 2 were the most important 
factors for the model to predict prolonged AHRF.

Figure 1. Acute hypoxemia respiratory failure severity classification. If the arterial-based metrics are not available, they may be replaced by their noninvasive equivalent. 
ECMO = extracorporeal membrane oxygenation, OI = oxygenation index, OSI = oxygenation saturation index, PF = Pao2/Fio2, SF = pulse oximetric saturation/Fio2.
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Using a backward elimination method, a simpler model was 
found to include only age, pH, Spo2, and Pco2 on day 1, Fio2, inva-
sive ventilation, and respiratory rate on day 2, and MAwP on both 
days. This model achieved a similar performance (AUROC 0.91; 
95% CI, 0.87–0.94; p = 0.4) than the more complex models.

LR and RF Comparison
Multivariable RF models were superior (p < 0.001) to all LR models. 
The best LR model achieved an 0.86 AUROC (95% CI 0.83–0.88),  
but its calibration was low (p = 0.007).

Model Robustness to Time
In LR, admission year was not a significant coefficient (p > 0.6), 
either in univariate or multivariate analysis. In the RF’ models, 
the importance of the year was among the lowest values (SDC 2, 

http://links.lww.com/CCX/A239), suggesting that this variable 
does not contain discriminant information. When the year was 
removed from the multivariate model, the discrimination (AUC) 
was similar (p > 0.7) for both RF and LR.

DISCUSSION
Children who develop prolonged AHRF that is still present on or 
after PICU day 7 can be identified fairly accurately by the morn-
ing of PICU day 2 by applying machine learning to common 
respiratory variables collected clinically. These children have high 
morbidity and mortality and high use of ICU resources such as 
mechanical ventilation. Our final parsimonious model included 
age, pH, Spo2, and Pco2 on day 1, Fio2, invasive ventilation, and 
respiratory rate on day 2, and MAwP on both days, and it had 
an AUROC of 0.91. Although missing data due to rules related 

TABLE 1. Characteristics of 258 Children With Influenza Virus-Related Critical Illness and No 
Preexisting Risk Factors for Severe Disease

Variables
No AHRF at Day 7  

(n = 191)
Prolonged AHRF  

(n = 67) p

Age, yr, median (IQR) 5.5 (1.7–9.6) 8.6 (4.2–13.5) < 0.001

Gender, female, n (%) 84 (44) 25 (37.3) 0.39

ICU days, median (IQR) 4 (2.4–6.8) 16.5 (12.2–27.6) < 0.001

Pediatric Risk of Mortality III score, median (IQR) 4 (0–8) 14 (6.5–24.5) < 0.001

Hospital mortality, n (%) 2 (1) 9 (13.4) < 0.001

Highest hypoxemia severity (days 1 and 2), n (%)    

 None or minimal 90 (47.1) 3 (4.5) < 0.001

 Mild 58 (30.4) 11 (16.4) 0.036

 Moderate 29 (15.2) 11 (16.4) 0.85

 Severe 14 (7.3) 42 (62.7) < 0.001

Arterial blood sample availability, n (%)    

 Day 1 51 (26.7) 46 (68.7) < 0.001

 Day 2 65 (34) 58 (86.6) < 0.001

Lung infiltrates (day 1 or 2), n (%) 137 (71.7) 66 (98.5) < 0.001

Admission invasive ventilation, n (%) 82 (42.9) 50 (74.6) < 0.001

Admission mean airway pressure (cm H2O), median (IQR) 11 (9–14) 16.5 (13–20) < 0.001

Admission oxygenation markers, median (IQR)    

 Oxygenation index 7.6 (4–13.2) 22.7 (11.6–32.9) < 0.001

 Pao2/Fio2 170 (87–285) 87 (65–149) < 0.001

 Oxygenation saturation index 7.9 (4.2–12.6) 15.1 (10.1–21.7) < 0.001

 Pulse oximetric saturation/Fio2 190 (121–318) 97 (96–151) < 0.001

Mechanical ventilation hours, median (IQR) 88 (55–133) 274 (200–485) < 0.001

Ventilator free days, median (IQR) 25.6 (23.4–27.2) 14.6 (0–19) < 0.001

Extracorporeal membrane oxygenation support, n (%) 4 (2.1) 30 (44.8) < 0.001

Hours between admission and day 2, median (IQR) 17.7 (13.6–26.7) 16.5 (13.2–23.9) 0.36

AHRF = acute hypoxemic respiratory failure, IQR = interquartile range.

http://links.lww.com/CCX/A239
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to use of oxygenation values (e.g., Spo2 > 97%) were frequent, it 
could be overcome with either simple rules or decrease in the Spo2 
thresholds. Machine learning using RF outperformed LR for all 
multivariable models.

AHRF is a severe condition that includes ARDS, among other 
diagnoses. ARDS has a stricter definition (6), but this may not be 
applicable to all patients, especially in pediatrics where the arterial 
samples are infrequent and high Spo2 (> 97%) tolerated limiting its 
use (Fig. 2). The restriction on the Spo2 to be less than or equal to 
97% rely on its close relationship with oxyhemoglobin between 80% 
and 97% (37, 38). Due to inability to use Spo2 greater than 97% and 

because availability of Pao2 is infre-
quent and limited to the most severe 
cases, the PALICC and the Berlin 
definition of hypoxemia have a lim-
ited applicability in clinical research 
practice in children. As shown in our 
study, none of the common hypox-
emia markers were usable to the whole 
cohort to adequately classify patients. 
As other have suggested, it may be 
better to use the available Spo2 even if 
greater than 97% than censoring the 
observation (39), but how to do this 
requires further investigation. Our 
findings support that AHRF severity 
includes oxygenation and mean airway 
pressure as is in the PALICC but not 
the Berlin definition

In prior studies, data collected later 
after admission were slightly more dis-
criminant for mortality than those col-
lected at ICU presentation, although 
discrimination remained low (< 0.70) 
(11, 17). Our results do not support a 
significant benefit of using only day 2 
data instead of admission day data as 
other studies also found (12). However, 
our data support incorporating the 
temporal evolution of respiratory 
variables for optimal prognostication 
(Fig.  5). Coupling modern machine 
learning algorithms that do not rely 
on specific assumption like traditional 
statistical models (40) to high tempo-
ral resolution databases that store raw 
waveforms, future studies may be able 
to estimate to assess subtle changes in 
patients trajectories (41).

The presence of infiltrates was 
not predictive in either the machine 
learning or LR models. This is likely 
because a high proportion of chil-
dren without prolonged AHRF had 
infiltrates noted by PICU day 2 (72%) 
even though all children with pro-
longed AHRF had infiltrates by day 2 

(Table 1) (99%; p < 0.001). Similarly, although the PRISM III score 
was found to initially be informative, model discrimination was 
relatively unchanged once it was removed from the model likely 
because pH, hypoxemia, and age which were included in the final 
model are also part of the PRISM III score. We also showed that 
year was not an important predictor, suggesting that our model 
to predict severe influenza infection prediction is robust to time.

Death was uncommon in our cohort and most of them  
occurred 3–4 weeks after PICU admission (Fig. 3) with prolonged 
ventilatory support. Although this may offer a window of oppor-
tunity for new therapeutic strategies, early identification of the 

Figure 2. Availability of common oxygenation metrics. MAwP = mean airways pressure, OI = oxygenation index, 
OSI = oxygenation saturation index, PF = Pao2/Fio2, Resp rate = respiratory rate. Pulse oximetric saturation 
(Spo2)/, SF = Spo2/Fio2.

Figure 3. Daily ventilation modalities and acute hypoxic respiratory failure proportion over time.
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most severe patients may decrease death and hasten recovery. The 
PALICC definition does not specify how to categorize severity for 
noninvasive ventilation or ECMO. This is problematic in severe 
pediatric influenza infection, where ECMO use is frequent as seen 
in the literature (42), and in our cohort, where nearly 45% of the 
prolonged AHRF cohort had ECMO support. As ARDS severity 
definitions have in the past been based solely on their association 
with hospital mortality, we believe that ECMO should be classified 
as severe AHRF or ARDS.

Our study has strengths. First, it is one of the largest pediatric 
cohorts with AHRF related to influenza virus infection. Our model 
had low bias with good generalizability and excellent discrimination 
(AUROC > 0.90). Although we found no direct comparison in the 
literature for sustained PARDS prediction, the AUROC for ARDS 
mortality in the literature ranges from 0.60 to 0.84 (8–13, 17, 43).  
Second, because many clinical variables are missing that limit the 
ability to diagnose PARDS, our study provides a clinically useful 

definition of AHRF that can be done 
using the available variables in clini-
cal practice.

Our study also has limitations. 
First, we do not have an external 
validation cohort. This limitation is 
mitigated in part by the multicen-
tric design and use of Monte Carlo 
cross validation methods. Second, 
bacterial coinfection is a known risk 
factor for more severe and sustained 
PARDS (21). However, we did not 
include coinfection in the predictive 
models because it is a difficult diag-
nosis to make prospectively at day 
2 (21, 44). Third, the outcome was 
treated as a binary variable, without 
incorporating mortality. Because we 

documented only two deaths (0.8%) before the seventh day, a 
composite outcome would probably have been influenced mini-
mally by survival. Furthermore, patients with significant comor-
bidities that were associated with lung disease were excluded from 
this study, precluding the use of the model in this population. 
However, those patients were already known to be more at risk of 
prolonged AHRF (1).

CONCLUSIONS
In our observational prospective multicentric study, prolonged 
AHRF at 1 week for children with severe influenza is strongly 
associated with the initial respiratory severity and its evolution by 
day 2 and is associated with a significantly higher mortality, mor-
bidity. Our model may help future trials to target the most severe 
group in the first 24 hours after admission and may guide PICU 
managers to anticipate resources that would be required in case 

Figure 4. Alluvial plot showing the hypoxemia severity evolution between admission and day 7.

Figure 5. Random forests empirical distributions of the area under the receiver operating characteristic (ROC) curve obtained after Monte Carlo simulation  
using common hypoxemia markers and multivariable models. Boxplot indicate the median value, interquartile range, and 95% CI. OI = oxygenation index,  
OSI = oxygenation saturation index, PF = Pao2/Fio2, SF = pulse oximetric saturation/Fio2.
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of the emergence of a novel influenza virus. External validation is 
needed before it can be used at the bedside.
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