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ABSTRACT: To deliver more therapeutics to more patients more quickly and economically is the ultimate goal of pharmaceutical
researchers. The advent and rapid development of artificial intelligence (AI), in combination with other powerful computational
methods in drug discovery, makes this goal more practical than ever before. Here, we describe a new strategy, retro drug design, or
RDD, to create novel small-molecule drugs from scratch to meet multiple predefined requirements, including biological activity
against a drug target and optimal range of physicochemical and ADMET properties. The molecular structure was represented by an
atom typing based molecular descriptor system, optATP, which was further transformed to the space of loading vectors from
principal component analysis. Traditional predictive models were trained over experimental data for the target properties using
optATP and shallow machine learning methods. The Monte Carlo sampling algorithm was then utilized to find the solutions in the
space of loading vectors that have the target properties. Finally, a deep learning model was employed to decode molecular structures
from the solutions. To test the feasibility of the algorithm, we challenged RDD to generate novel kinase inhibitors from random
numbers with five different ADMET properties optimized at the same time. The best Tanimoto similarity score between the
generated valid structures and the available 4,314 kinase inhibitors was < 0.50, indicating a high extent of novelty of the generated
compounds. From the 3,040 structures that met all six target properties, 20 were selected for synthesis and experimental
measurement of inhibition activity over 97 representative kinases and the ADMET properties. Fifteen and eight compounds were
determined to be hits or strong hits, respectively. Five of the six strong kinase inhibitors have excellent experimental ADMET
properties. The results presented in this paper illustrate that RDD has the potential to significantly improve the current drug
discovery process.

■ INTRODUCTION

The primary goal of modern drug discovery is to identify
molecules of therapeutic benefits. A successful drug molecule
usually shares two features: 1. It modulates the biological
function of its therapeutic target(s) selectively with optimal
binding affinity; 2. It has a balanced ADMET (absorption,
distribution, metabolism, excretion, and toxicity) profile, such
that it reaches its target(s) unchanged and in sufficient
quantity. Traditionally, a drug discovery project starts with
screening a compound library against a proposed drug target or
literature search,1 followed by an optimization process to fix
existing issues associated with original hit compounds, such as
potency, selectivity, pharmacokinetics (PK), etc. This tradi-
tional drug discovery process requires tremendous input of
resources and time. Computational generation of high-quality

drug candidates with desired properties, a long-sought goal of

pharmaceutical research, not only will reduce the unprece-

dented cost of bringing a drug to the market dramatically2,3 but

also will greatly speed up the whole process. Accelerated drug

discovery and development is of paramount importance for

public health threats of pandemics such as COVID-19.4
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One approach is to explore virtual chemical space more
broadly and efficiently. Chemical space is vast, like a galaxy.
The past decade observed tremendous efforts to expand the
coverage of both physical and virtual chemical space.5 Merck
MASSIVE 2018 contains 1020 virtual compounds, seconded by
AZ space of 1017 capacity.5 Even though supercomputers can
handle these huge compound libraries, they are ignorable
compared with the size of the estimated druglike chemical
space of 1060. To rebuild the galaxy is not an efficient way for
drug hunting, although occasional successes have been
achieved.6

The deep learning (DL) technology7 brings hope to a new
era of drug discovery and development and has the potential of
substantially improving or even revolutionizing the current
drug discovery paradigm. DL utilizes multiple layers of neurons
to model high-level abstractions, complex and nonlinear
relation in data, and has outperformed humans in many fields
including image processing, text and voice recognition, protein
structure prediction, and GO game; yet, this potential in drug
discovery remains to be fulfilled.
Various machine learning and deep learning algorithms have

been proposed over the past decade for generation of novel
molecules with therapeutic benefits. Kadurin et al.,8 Blascheke
et al.,9 and Lim et al.10 used autoencoder, variational
autoencoder, and adversarial autoencoder to identify and
generate new molecular fingerprints with predefined proper-
ties. Bjerrum and Threlfall,11 Cherti et al.,12 and Segler et al.13

utilized recurrent neural networks, in particular, the long short-
term memory (LSTM) model,14 to generate novel molecular
structures with certain target properties.15,16

The autoencoder and RNN models are quite limited for
generating novel molecules of predefined properties. A
recurrent neural network (RNN) is a class of artificial neural
networks in which connections between nodes form a directed
graph along a temporal sequence. These models are not
designed to assess, or optimize, the properties of the generated
molecules. Furthermore, quality of deep learning models is
largely determined by data quality and quantity on which they
are based, and unfortunately the sample size and data quality of
available experimental drug discovery data are usually
insufficient for deep learning methods.15

To address the limitations of autoencoder and RNN models,
various reinforcement learning (RL)17 and generative
adversarial networks (GANs)18 have been proposed and
implemented for sequence generation. These models typically
consist of a sequence generation model, RL, and GAN. The RL
and GAN models are used to optimize and revise the
generated molecules toward the target properties.
Olivecrona et al.9 introduced a method to tune a sequence-

based generative model for de novo molecular design. Sanchez-
Lengeling et al.19 presented ORGANIC, a framework based on
both GAN and RL, which can produce a distribution over
molecular space that matches with a certain set of desirable
metrics. Popova et al.20 devised and implemented a novel
computational strategy for de novo design of molecules with
desired properties. As a typical strategy, it includes a generative
model that produces a chemically valid SMILES string,
predictive models that forecast the desired properties of the
de novo-generated compounds, and a reinforcement learning
module that tips the generated structures toward the desired
properties. Putin et al.21 reported a deep neural network,
ATNC or Adversarial Threshold Neural Computer, for the de
novo design of novel small-molecule organic structures with

druglikeness properties. Zhou et al.22 presented a framework,
called Molecule Deep Q-Networks (MolDQN), for molecule
optimization by combining domain knowledge of chemistry
and state-of-the-art reinforcement learning techniques (double
Q-learning and randomized value functions). One feature of
MolDQN is that it can produce structures of 100% chemical
validity. Zhavoronkov23 developed a deep generative model,
generative tensorial reinforcement learning (GENTRL), for de
novo small-molecule design, and GENTRL produced several
compounds, which were active in biochemical assays and cell-
based assays. Ikebata et al.24 used the Bayesian model to
identify promising hypothetical molecules with a predefined set
of desired properties.
Most of the efforts in de novo molecular design are based

upon deep neural networks RNN, GAN, and RL. One latest
example is REINVENT 2.0,25 a powerful tool for de novo drug
design. These DL methods demonstrated the good potential in
drug discovery; however, there exist several limitations. First,
deep learning models require a very large number of good
quality samples, while the biological data tend to be noisy,
limited in quantity, and severely imbalanced, representing a
long-standing bottleneck for DNN methods.15 Second, current
methods are not efficient in sampling molecular structural
space while optimizing ADMET properties. Local, small, and
slow perturbations applied on existing molecules, represented
either as SMILES strings (Daylight) or graphs, can hardly be
efficient in exploring the vast possible chemical and structural
space. This may partially explain why GENTRL took 21 days
to produce several active compounds. In addition, sampling
regardless of chemical structure validity inevitably leads to a
very low percentage of valid output structures. For example,
only 7% of the generated structures by ORGANIC19 is valid.
Third, RL algorithms tend to have difficulties in achieving a
good balance between exploration and exploitation, in making
long-term credit assignments, and in achieving good stability,
likely due to aiming at moving targets. Fourthly, RL, although
theoretically possible to optimize multiple target properties, in
practice, is mostly found to optimize either one target property
or the weighted sum of multiple target properties.
In order to overcome the above-mentioned limitations, we

propose a new strategy called Retro Drug Design (RDD),
starting with multiple preselected target properties and their
optimal ranges, working backward to generate “qualified”
compound structures.
RDD is based upon following rationales and considerations.

First, given that the quantity of available biological data for
small-molecule drug discovery is insufficient to train deep
learning models, where from thousands to millions of variables
are involved, it is sufficient for traditional, or shallow, machine
learning models. Second, over the past decades, we developed
a generic molecular descriptor system, called optATP, of 269
descriptors,26 which have achieved outstanding performance in
traditional machine learning prediction models of all the
physicochemical and ADMET properties, accessible to us.
Furthermore, optATP is originally designed to have good one-
to-one correspondence with SMILES; in other words, one
SMILES produces one optATP, and one optATP corresponds
to as few molecules as possible. Third, optATP disassembles a
molecule to atom types and functional groups, which greatly
increases its coverage of chemical space.27

RDD is conceptually similar to the inverse QSPR/QSAR
analysis for chemical structure generation.28 However, there
exist substantial differences in implementations. First, inverse
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QSPR/QSAR used Gaussian mixture models and cluster-wise
multiple linear regression, was a linear model, and seemed to
support one target property only. Second, de novo generation
of chemical structures with this inverse QSPR/QSAR
algorithm, by combining ring systems and atom fragments in
every possible way, was complex and less reliable and efficient
than the deep learning algorithm utilized in RDD.
Kotsias et al. described an algorithm for de novo molecular

generation with descriptor conditional recurrent neural
networks.29 This is an ingenious way to tackle the inverse
design problem and generate molecules near the specified
conditions. In RDD, we independently came up with and
utilized the same idea for de novo generation of molecular
structures.
To evaluate the performance of RDD, we challenged it to

generate 120,000 novel small molecules that could inhibit
protein kinase activity and satisfy five other important ADMET
properties, including solubility and cytotoxicity. Twenty top-
ranking hits were selected, synthesize, and tested for active-
directed competition kinase binding and ADMET activities.
Protein kinases are involved in regulation of nearly all aspects
of cell life, representing an important class of drug targets for
antitumor therapeutics and other diseases.30 Most kinase
inhibitors compete with ATP, the common substrate of
kinases; thus, they share some common structural features−a
flat aromatic moiety with an adjacent hydrogen bond donor
and acceptor to facilitate favorable interactions with the highly
conserved hinge region of kinases. This moiety tends to stack

and aggregate in aqueous solutions, leading to poor
solubility.31,32 Being primarily antitumor targets, inhibition of
many protein kinases causes cytotoxicity if their functions are
essential for cell growth, apoptosis, or survival.33,34 Therefore,
to design three key properties, kinase inhibiting, soluble, and
noncytotoxic, into one molecule itself represents a great
challenge. If RDD could generate such kinds of molecules, it
would be strong evidence that the algorithm is capable of
navigating chemical space efficiently to locate a small niche
where multiple seemingly exclusive properties are made
concordant.

■ RESULTS

General RDD Workflow. RDD is a computational drug
discovery platform that generates novel small-molecule drugs
from scratch to meet predefined requirements, including but
not limited to biological activity against a drug target and
optimal range of physicochemical and ADMET properties.
Molecular structures are represented by an optimized atom-
type-based molecular descriptor system of 269 descriptors or
optATP. Furthermore, principal component analysis (PCA)
was performed on the optATP of the 906,727 unique
molecular structures in the compound collection of the
National Center for Advancing Translation Sciences
(NCATS), and the feature or loading vectors of the principal
components were employed to transform the representation of
molecules from the space of optATP to the space of loading

Figure 1. Flowchart for retro drug design.

Figure 2. Cost and accuracy vs epoch on the training and validation data sets. The number of the units in both the fully connected layer and the
GRU cell is 2048.
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vectors, called ATP_LV, without sacrifice of much structural
information. The target properties are computed by evaluators,
which could be either predictive models trained over
experimental data or mathematical functions.
The RDD workflow is illustrated in Figure 1. RDD starts

with a list of target properties and their preferred ranges, such
as logP between 2 and 5. The number of properties to be
designed into a molecule is only limited by available computing
resources. The properties can be physicochemical properties,
such as molecular size, solubility, or biological properties. In
this study, all properties are computed from the same
molecular descriptor system, optATP, through an evaluator.
The property range is defined by lower and upper boundaries
of L0−Ln and U0−Un (Figure 1). The Monte Carlo sampling
algorithm was then utilized to find the solutions in the space of
ATP_LV that have the target properties. Finally, the deep
learning model of LV2SMI was employed to decode molecular
structures from the solutions.
LV2SMI. We used all of the 906,727 unique molecules in

the NCATS compound collection, computed optATP,
performed principal component analysis (PCA), and found
that 7, 14, and 38 principal components account for 95, 97,
and 99% of the total variance, respectively. This collection is of
pharmaceutical interest, consisting of the marketed drugs,
drugs that have reached clinical trials, and other bioactive
molecules. Using feature or loading vectors of the principal
components, we transformed the representation of molecules
from the space of optATP to the space of loading vectors,
called ATP_LV.
We designed and trained a deep learning model LV2SMI

over the entire collection of 906,727 molecular structures to
decode molecular structures as represented by SMILES
strings35 from loading vectors. For each molecule, three
ATP_LVs were calculated using loading or feature vectors
from 7, 14, and 38 principal components. Each ATP_LV and
the corresponding ground truth SMILES form a data sample of
input and output. The 906,727 samples were randomly split
into a training data set of 816,424 samples (90%), a validation
data set of 45,306 samples (5%), and a test data set of 44,998
samples (5%).
The training process took from about 1 day for an ATP_LV

dimension of 7 and a GRU cell of 1,024 units to 2 days for an
ATP_LV dimension of 38 and a GRU cell of 2,048. Gated
recurrent units (GRUs) are a gating mechanism in RNN.36

The cost and the accuracies versus epoch on the training and
validation data sets were plotted in Figure 2. The cost dropped
dramatically in the first 10 epochs and then continued to
decrease smoothly. The accuracies on both training and
validation data sets also increased rapidly in the first 10 epochs
and then continued to improve slowly.
We trained 12 LV2SMI models using ATP_LV dimensions

of 7, 14, and 38 elements and GRU cells of 1024, 1280, 1536,
and 2048 units, and the accuracies of the optimized models on
the test data set are given in Table 1. The accuracy improves as
both the ATP_LV dimension and the unit number of the GRU
cell in the decoder increase. The striking factor is that even the
simplest model with a dimension of 7 and a GRU cell of 1024
units achieved excellent accuracy.
A dimension of 38 and a unit size of 2048 were adopted to

test the performance of the LV2SMI model. Among the 44,998
SMILES generated for the test set, 42,053 (93.5%) are
chemically valid. Among the 42,053 valid SMILES, 19,716
(46.9%) molecules are identical to the ground truth, and

40,762 (96.9%) have a cosine similarity score of optATP
greater than 0.95.

Generation of Ligands for Kinase Competition
Binding with Desired ADMET Properties. Protein kinases
regulate nearly all aspects of cell life,30 so they are the major
drug targets of small-molecule drug discovery. As of March
2021, there are 65 FDA-approved small-molecule protein
kinase inhibitor drugs.37 Protein kinase inhibitors represent a
large, structurally diverse compound collection, the majority of
which target the same adenosine triphosphate binding pocket.
It has been found that a large fraction of the collection is
poorly soluble and cytotoxic.31,33 Therefore, we determined to
challenge RDD to create soluble and noncytotoxic kinase
inhibitors with a favorable ADMET profile, in order to evaluate
its efficiency in sampling vast chemical space.
The Monte Carlo sampling was performed in the space of 38

loading vectors from PCA. Starting from vectors of random
numbers, RDD generated 120,000 chemical structures, of
which 75% (90,215) were chemically valid. On average, RDD
found 100 solutions per CPU Core-Hour with six desired
target properties. Out of the 90,215 valid structures, about 26%
(31,484) were predicted to be active kinase inhibitors. For the
other five ADMET properties, 72,326, 40,955, 68,016, 40,196,
and 54,559 were predicted to have the desired target property
(Table 3) for logP, solubility, hERG, PAMPA, and Cytotox,
respectively. 3,040 structures are predicted to have all six target
properties.

Experimental Confirmation of the Target Properties.
From the top-ranking structures for kinase activity, 20
compounds with a balanced ADMET profile were selected
for synthesis and experimental measurement of competition
binding activity over 97 representative kinases and ADMET
properties. The main criteria for the selection are predicted
kinase activity, solubility and cytotoxicity, synthesizability, and
structure diversity that aim to provide some structure−
property relationship (SPR). The SMILES of these 20 selected
structures are given in Table S1. All compounds are >95% pure
by HPLC analysis.
These 20 selected compounds were assayed by Eurofins

Discovery (San Diego, USA) using the KINOMEscan panel of
scanEDGE. scanEDGE includes 97 kinases distributed
throughout the AGC, CAMK, CMGC, CK1, STE, TK, TKL,
lipid, and atypical kinase families, plus important mutant forms.
scanEDGE is an economical alternative to scanMAX with
maximized coverage of the kinome space. The assay results are
given in Table S2.

Table 1. Accuracies of the Optimized Models on the Test
Data Set

epoch ATP_LV dimension no.of units in GRU cell accuracy

120 7 1024 0.885
40 7 1280 0.885
30 7 1536 0.885
70 7 2048 0.897
120 14 1024 0.923
40 14 1280 0.923
110 14 1536 0.936
30 14 2048 0.936
250 38 1024 0.962
80 38 1280 0.962
50 38 1536 0.962
120 38 2048 0.974
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Figure 3. Chemical structures of the 20 compounds designed by RDD. Six compounds exhibit strong kinase inhibitory activity, and their sample
IDs and best ECFP4 similarity scores38 (RDKit 2022.03.1) with the 4,426 kinase inhibitors in the PKIDB39 are NCGC00689657,
NCGC00689660, NCGC00689661, NCGC00689669, NCGC00689670, and NCGC00689674 and 0.59, 0.42, 0.44, 0.49, 0.45, and 0.45,
respectively.

Table 2. Predicted and Experimentally Measured Kinase Competition Binding and Five Other ADMET Properties of the 20
Compounds Generated from the Retro Drug Design Pipeline and Synthesized by Wuxi AppTecb

as: strong; w: weak; n: not detectable. bThe predicted numbers are binary classification model probability scores from SVM with the exception of
logP, which is predicted using a regression model.
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Fifteen of the 20 compounds exhibited kinase competition
binding activity with normalized kinase competition binding
percent activity < 35%, among which six compounds were
identified as strong kinase inhibitors with kinase competition
binding percent activity < 10% (Figure 3). Five compounds
did not have detectable activities at 10 μM concentration
against the 97 kinases in the panel. One possible explanation of
the observation is that this kinase panel only covers less than
one-fifth of the human kinome, while the kinase inhibitors in
the training set exhibit a broader coverage.
As shown in Figure 3, three kinase inhibitors are pyrimidine-

2-amines, and three compounds have pyrazoles. Both frag-
ments are recognized as privileged structures of kinase
inhibitors.40 Indeed, pyrimidine-2-amines and pyrazoles appear
in 48 and 53 of 244 kinase drug candidates entered clinical
trials and 756 and 1,056 of 4,426 kinase inhibitors in the
PKIDB.39 This is strong evidence that RDD is capable of
locating subspace for kinase inhibitors, although the searching
starts from random numbers without any structural informa-
tion provided.
Predicted and experimentally measured kinase competition

binding and five other ADMET properties of the 20
compounds generated from RDD pipeline and synthesized
by Wuxi AppTec are given in Table 2. The primary goal of the
experiment is to design three seemingly conflicting properties
into one molecule, i.e., to discover novel kinase inhibitors with
good aqueous solubility but without cytotoxicity. The chemical
space that satisfies these three requirements is limited. It is
challenging for RDD to navigate the vast chemical space to
locate this tiny subspace. The results we presented here clearly
indicated that RDD was capable of spotting the specific area in
the vast chemical space, where multiple subspaces overlapped.
On the other hand, hERG, an important toxicity end point,
and permeability, a determinant factor of a drug’s PK profile,
are not seemingly correlated with the kinase activity of a
compound. In other words, the subspaces for kinase inhibitors,
for hERG inactives, and for good permeability might share a
larger common area in the chemical space; therefore,
generating novel molecules to meet these three requirements
is less challenging than designing novel kinase inhibitors with
good solubility and without cytotoxicity. In this study, we
demonstrated the power of RDD to design all the properties
into one molecule. The six strong kinase inhibitors are
structurally diverse (Figure 3), having excellent profiles of
lipophilicity, solubility, cytotoxicity, permeability, and cardio-
toxicity (hERG), except NCGC00689657. The compound
NCGC00689657 has poor solubility and permeability,
although its predicted solubility and permeability are good
(Table 2).

■ DISCUSSION AND CONCLUSIONS

We demonstrated that RDD was able to generate novel
chemical structures with multiple targeted properties. In this
computational drug discovery platform, optATP is used to
dismantle a molecule to smaller pieces, such as atoms and
functional groups, which greatly expand the coverage of
chemical space. SVM and other ML models are used to extract
the important or discriminant atom types associated with a
protein target or a property, in other words, to identify
subspaces shaped by predefined properties, whereas the Monte
Carlo algorithm serves as a search engine to locate the
intersection of such subspaces, Finally, LV2SMI reassembles

the atomic information represented by the subspaces back to
molecules.
When optATP was designed, one of the major motivations

was to produce a universal molecular descriptor system; in
other words, the same system can be applied to generate
QSAR models for all properties.41 Each atom type was also
designed to carry sufficient information on its chemical
environment, so optATP descriptors and the corresponding
SMILES could be as interconvertible as possible. Our following
efforts have confirmed that optATP meets our design goals.
optATP provided excellent QSAR models for all the data sets
available to us, and most of the constructed QSAR models
achieved accuracy comparable to experimental determina-
tions.26,31,33,42 Even the simplest LV2SMI model with a
dimension of 7 and a GRU cell of 1024 units achieved
excellent accuracy in reproducing a molecular structure from
optATP. Furthermore, optATP has an excellent dimension
reducibility. Through PCA, the space of 269 optATP
descriptors could be reduced to the space of 38 loading
vectors (ATP_LV) with 99% coverage of the variance.
Unlike typical deep generative models that usually start from

existing molecules and introduce different levels of perturba-
tion to generate new structures in the space of the molecular
graph, RDD did not directly search the chemical structural
space; instead, the Monte Carlo search was performed in the
ATP_LV space, i.e., the space of 38 loading vectors.
Consequently, RDD can explore a much larger structural
space in a much more efficient manner without invalidating
molecular structures. Starting from random numbers, fur-
thermore, RDD aims at searching chemical space in an
unbiased manner. In this study, a high percentage of the
structures generated by RDD is both chemically valid and
novel. Out of 120,000 generated structures, 90,215 were
chemically valid. Out of the 90,215 valid structures, the best
Tanimoto similarity score with the available 4,314 kinase
inhibitor drugs/ligands is < 0.35, and only 491 are available in
Aldrich’s catalog of over 20 million compounds. These results
also indicate that the collection of commercially available
chemicals is tiny and insufficient to provide a good coverage of
the vast chemical space.
To generate a valid SMILES from scratch is not trivial.

There are numerous underlying rules to follow in order to
avoid invalid moieties, such as 5-carbon aromatic rings or 5-
bond carbons. RDD can learn these chemical and structural
rules and incorporate them into the process of generating new
structures, as indicated by the results−3/4 of the RDD-
generated compounds are chemically valid. In other words,
RDD has not only learned these rules but also knows how to
apply these rules and compose valid chemical structures.
Designed as a platform, RDD allows multiple properties to

be optimized individually and yet simultaneously using various
evaluators of individual properties. Since typical machine
learning models such as SVM could be trained over specific
experimental data sets of moderate size, as few as several
hundred data points, RDD does not need a very large quantity
of quality samples to generate new structures with multiple
desired properties. The Monte Carlo sampling algorithm is
very stable and fast.
RDD allows scientists dialing in or dialing out biological and

ADMET properties to meet their specific designing require-
ments, paving the road toward true rational drug design. While
RDD has the potential of starting a new paradigm for drug
discovery, one major limitation is apparent. In this study, the
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prediction model for ligand-kinase binding affinity is derived
from available, 4,314 known and experimentally determined
kinase inhibitors from the PKIDB39 and 5,894 nonkinase
inhibitors from the NCATS pharmaceutical collection
(NPC),43 and it is not for a specific kinase. The generated
ligands are expected to modulate various kinases and are
promiscuous; surprisingly, the hit compounds are quite
selective (Table S3) for reasons we do not fully understand.
As more 3D structures of proteins become available,44 a
generic evaluator or a model that could predict a ligand’s
affinity with a target is strongly desired; such a model would
make RDD applicable to most if not all druggable targets.
Current available docking algorithms such as AutoDock Vina45

are too slow or inaccurate to be feasible for this purpose. We
are currently testing a model that is based upon a decoupled
3D fingerprint and trained over a very large number of
experimental data sets.46

In conclusion, we proposed and developed a new computa-
tional drug discovery platform, Retro Drug Design. The RDD
platform is capable of generating highly novel structures from
scratch to meet predefined requirements, such as kinase
competition binding activity and five other physical-chemical
and ADMET properties. The availability of such a highly
efficient and productive drug discovery platform is essential in
handling emergent public health threats, such as the pandemic
of COVID-19.

■ EXPERIMENTAL SECTION
Molecular Representation. The atom-type-based molec-

ular descriptor system, or optATP, consisting of 221 atom
types and 48 correction factors, was employed to represent
small molecules. The details of the molecular descriptors have
been elaborated elsewhere.41 Atom types are assigned
according to the properties of an atom and its chemical
environment (Figure S1). An atom type casting tree was
designed to assign atom types, based on whether the atom is
aromatic, whether the atom is in a ring, whether the atom is
next to different functional groups, etc. This original tree,
largely based on a medicinal chemist’s intuition, was subject to
recursive optimization cycles in terms of where to further split
the tree, where to stop splitting, and where to combine the
branches, in order to make the best prediction of logP values in
the Starlist data set containing about 11,000 structurally
diverse compounds. Here, an atom in a molecule is like a piece
of puzzle chip in a puzzle, which has its unique edge. When a
set of puzzle chipsis provided, the puzzle can be solved
unambiguously, because of the unique shape of each piece.
The optimized tree output 221 atom types, featuring 88

different carbon types, 7 hydrogen types, 58 nitrogen types, 31
oxygen types, 8 halide types, 23 sulfur types, and 6 phosphorus
types. Forty-eight correction factors are appended to catch
several whole molecule features, such as the molecular
globularity, molecular rigidity, lipophilicity, etc. In total, a
series of 269 numerical values comprise the final set of the
atom type molecular descriptors.
Using optATP representation, we could design molecules of

predefined properties by sampling in the optATP space of 269
dimensions. As is well-known, sampling in such high
dimensional space is extremely challenging. Fortunately,
there exists a substantial amount of dependency among the
269 descriptors. To reduce the dependency and the dimension
of the sampling space, we performed principal component
analysis (PCA) on the optATP of 906,727 unique molecular

structures in the entire compound collection of NCATS and
found that 7, 14, and 38 principal components account for 95,
97, and 99% of the total variance, respectively. Using feature or
loading vectors of the principal components, we successfully
transformed the representation of molecules from the space of
optATP to the space of loading vectors, called ATP_LV,
without sacrifice of much structural information.
The ATP_LV space not only has reduced dimension (from

269 to 7, 14, or 38) but also provided orthogonal principal
vectors with highly loaded information. Furthermore, different
dimensions of the ATP_LV space correspond to molecular
structural properties at different scales. For example, the first
dimension, defined by the first principal component, captures
the molecular characteristics at the largest scale. By sampling
the molecular structure in the ATP_LV space, RDD can
explore a much larger structural space in a much more efficient
manner without invalidating sampled molecular structures.

Monte Carlo Search. With the input list of target
properties and their desired ranges, RDD uses a number of
evaluators of P0-Pn (Figure 1) and a Monte Carlo (MC)
sampling algorithm to find solutions in the ATP_LV space that
have the desired ranges according to the corresponding
evaluators. The Monte Carlo sampling algorithm is very
powerful for numerical optimization47 of multivariable
function. In order to sample in the more druglike region of
the ATP_LV space, we calculated the mean (ATP_LV_Mean)
and the standard deviation (ATP_LV_Std) from the ATP_LV
for 906,727 unique molecular structures in NCATS’s
compound collection for MC sampling.
The MC algorithm was carried out as follows:

1. Start from a randomly initialized ATP_LV according to
eq 1

i ilv i ATP LV Mean gr ATP LV Std[ ] = _ _ [ ] + × _ _ [ ]
(1)

where gr is a Gaussian random number generator with a
mean of 0.0 and standard deviation of 1.0. Reversely
transform the current lv back to optATP using the
feature vectors from PCA, apply the evaluators, and
compute the output score Si. Then, calculate the initial
cost according to eq 2

C w L S w S U( ) ( )
i

n

i i i S L i i i S U
0

i i i i
∑= − + −
=

< >
(2)

where n is the number of properties or evaluators, wi is
the weighting factor for the ith evaluator, and Li and Ui
are the lower and upper boundaries of the ith property.

2. Randomly pick eight elements (optional) from a
previous lv and perturb each by adding 0.5*(r − 0.5)
* ATP_LV_Std[i] to propose a new lv. r is a uniform
random number generator between 0.0 and 1.0.

3. Recalculate the cost of the current lv. If the current cost
is < 0.01 (optional), stop the sampling process and
output the solution. If the current cost is smaller than
the previous one, accept the perturbation; otherwise
reject the perturbation. Go back to step 2.

4. If no solution is found after 50 steps, go back to step 1.
5. If no solution is found after 40,000 steps, stop and

terminate.

LV2SMI. Taking the solution of lv in the ATP_LV space
from the MC algorithm, RDD uses a deep learning model,
called LV2SMI, to map lv to molecular structures as
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represented by SMILES. LV2SMI is adapted from the widely
used SEQ2SEQ model.48 A typical SEQ2SEQ model consists
of an encoder and a decoder; the encoder transforms the
sequence input to a vector of latent variables, which is then
transformed to the output sequence by the decoder. In
LV2SMI, we removed the encoder and directly used ATP_LV
as the vector of latent variables and then used a decoder to
transform ATP_LV to output sequence-SMILES (Figure 4).

SMILES uses a line notation to represent a molecular
structure as ASCII strings. In this study, we ignored chirality in
a molecular structure and used a vocabulary of only 39 letters
or words−A, T, E, U, = # % () [ ]/\ 0 1 2 3 4 5 6 7 8 9 N O P
S F I c n o p s - + Br Cl−to encode a SMILES. A, T, E, and U
are tokens for padding, starting, stopping, and extraordinary
letters outside this vocabulary list. Each element in this
vocabulary list is encoded by a one hot vector. We ignored
chirality in a molecular structure, mainly for simplification
purposes, and plan to include chirality in future studies.
In the LV2SMI, as shown in Figure 4, a loading vector is fed

to a fully connected layer, FC, and its output is fed to a
decoder, a recurrent neural network of GRU cells. The number
of units in the FC is the same as that in the GRU cell. Four
different numbers of units, 1,024, 1,280, 1,536 and 2,048, were
used in search for a balance between accuracy and efficiency.
Sparse categorical cross entropy is used as the loss or cost

function. Backpropagation is employed for training the
network.49 Optimization of the loss function is carried out
by minibatch of a size 128 and the ADAM optimizer,50 which
is implemented as tf.train.AdamOptimizer in the Tensorflow
library.51 For the ADAM optimizer, a learning rate of 0.001
was selected according to our previous experience to produce a
satisfactory result.
The model training process was monitored by two metrics:

cost function and accuracy on both the training and validation
data sets. The model with the best accuracy on the validation
set was saved and applied to the test data set to collect
chemistry specific benchmarks. In this study, we computed
three chemistry specific metrics. The first one was the
percentage of the generated structures that was chemically
valid. A structure is considered valid if it is successfully parsed
by ChemAxon’s molecular parser.52 The second metrics was
the percentage of the valid structures that was identical with
the ground truth. The third was the percentage of the
structures having a cosine similarity score of optATP > 0.95.
SVM Models as Evaluators of Kinase Competition

Binding Activity and ADMET Properties. Designed as a
platform, RDD supports various evaluators/plugins, and it

allows multiple properties to be optimized individually and
simultaneously. In this study, we chose six target properties
and built corresponding support vector machine (SVM)
models from experimental data as evaluators.

Model for Predicting Kinase Competition Binding. The
4,314 known kinase inhibitors from the PKIDB39 and 5,894
nonkinase inhibitors from the NCATS pharmaceutical
collection (NPC)43 comprised the data set for kinase/
nonkinase classification. optATP of 269 descriptors for each
molecular structure was computed as molecular descriptors.26

The 10,208 samples were randomly split into training (80%)
and testing (20%) data sets. The SVM model was trained on
the training data set using the software package of LIB-SVM
(C-C Change 2001). The parametrization of the penalty for
misclassification, C, and the nonlinearity parameter in the
kernel function of a Gaussian Radial Basis Function (RBF), γ,
was accomplished on a grid-based search to minimize the
mean standard error (MSE) of 5-fold cross-validation (CV) on
the training data. The prediction results on the test data set
were used for benchmarking the accuracy, root-mean-square
error, or AUC-ROC3. The benchmarking results are given in
Table 3.

The SVM models for logP, solubility, hERG, PAMPA, and
Cytotox were described elsewhere.26,31,41,42,53 The same
procedure as the one used for kinase competition binding
prediction was followed for constructing these SVM models.
The details for training data and model performances are given
in Table 3. The lower and upper boundaries for classification
models were selected according to the optimal cutoffs of the
corresponding classifiers.

Kinase Competition Binding Assay. The KINOMEscan
screening platform by Eurofins Discovery Services54 is a novel
and proprietary active site-directed competition binding assay
to quantitatively measure interactions between test compounds
and more than 489 kinase assays and disease relevant mutant
variants. KINOMEscan assays do not require ATP and thereby
report true thermodynamic interaction affinities, as opposed to
IC50 values, which can depend on the optATP concentration.
In this study, we tested the 20 compounds generated from

the RDD pipeline using the KINOMEscan panel of

Figure 4. LV2SMI network. The loading vector of ATP_LV is fed to
a fully connected layer, FC, and the output is fed to a decoder, a
recurrent neural network of GRU cells. Each GRU cell outputs a letter
of a SMILES.

Table 3. Data, Performance, and Predefined Boundaries of
SVM Models for Kinase Competition Binding Activity and
Five ADMET Properties

property logPa solubility hERG PAMPA Cytotoxb
kinase

inhibition

totalc 10850 21993 3022 5435 5275 10208
Posd 10827 482 2406 620 4314
accuracy 0.86 0.83 0.83 0.89 0.92
AUCe,f 0.14 0.93 0.92 0.90 0.89 0.97
lowerg 1.00 0.70 0.00 0.52 0.00 0.50
upperh 5.00 1.00 0.19 1.00 0.50 1.00
cutoff 0.46 0.3 0.46 0.57 0.45

aRegression model; all of the other five models are classification
models. bSeven submodels were used due to the imbalance data.33
cTotal number of samples. dNumber of positive samples. eArea under
the Receiver Operating Characteristics (ROC) curve. The number for
logP is mean squared error. fRoot-mean-square error. gLower
boundary of model score for target property. hUpper boundary of
the model score for the target property. The classification criteria for
solubility, hERG, PAMPA, Cytotox, and kinase inhibition are 0.458,
0.296, 0.459, 0.570, and 0.453, respectively.
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scanEDGE. scanEDGE includes 97 kinases distributed
throughout the AGC, CAMK, CMGC, CK1, STE, TK, TKL,
lipid, and atypical kinase families, plus important mutant forms.
scanEDGE is an economical alternative to scanMAX with
reasonable coverage of the diversity of the whole KINOME.
The 20 compounds were screened at 10 μM, and results for

primary screen binding interactions are reported as “% Ctrl”
according to eq 3, where lower numbers indicate stronger
inhibition activity.

%Ctrl
test compound signal positive control signal

negative control signal positive control sigmal
=

−
−

(3)

Computer Hardware and Software. The computations
were performed on a Dell PowerEdge R940xa server with four
Intel Xeon Platinum 8160 processors (each with 24 cores),
3TB of RAM, and four 16GB NVIDIA Tesla V100 graphic
processing units, installed with Ubuntu 16.04.6 distribution,
Python 3.5, CUDA driver version 10.0, cuDNN version 7.4,
TensorRT 5.1, and TensorFlow 1.13.1. A Java program was
developed in-house to use JOELib (JOELib) for molecule
structure parsing and optATP calculation. The Monte Carlo
algorithm was coded in Java, and the ATP2SMI module was
coded in Python.

■ DATA AND SOFTWARE AVAILABILITY
The source codes and the required data and library files are all
available from Google Drive: https://drive.google.com/drive/
folders/1nirsvwKeMKrhC2nvU9gvPyhrWvqN1hmD?usp=
sharing. A readme file is also included about how to execute
the programs.
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Experimental details of kinase inhibition assay, SMILES
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hit kinases and % Ctrl values (<35%) for 20 compounds,
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