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Absence of unidirectionally propagating
surface plasmon-polaritons at nonreciprocal
metal-dielectric interfaces
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In the presence of an external magnetic field, the surface plasmon polariton that exists at the
metal-dielectric interface is believed to support a unidirectional frequency range near the
surface plasmon frequency, where the surface plasmon polariton propagates along one but
not the opposite direction. Recent works have pointed to some of the paradoxical con-
sequences of such a unidirectional range, including in particular the violation of the time-
bandwidth product constraint that should otherwise apply in general in static systems. Here
we show that such a unidirectional frequency range is nonphysical using both a general
thermodynamic argument and a detailed calculation based on a nonlocal hydrodynamic
Drude model for the metal permittivity. Our calculation reveals that the surface plasmon-
polariton at metal-dielectric interfaces remains bidirectional for all frequencies.
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in the field of plasmonics, which explores surface-plasmon

polaritons that exist at metal-dielectric interfaces to achieve
nanoscale control of light!-3. Most plasmonic structures satisfy
the Lorentz reciprocity theorem*. On the other hand, in the
presence of an external magnetic field, the behavior of surface-
plasmon polaritons becomes nonreciprocal. Such nonreciprocal
surface-plasmon polaritons have generated substantial interest>~8
since they represent a fundamentally different regime of light
propagation, having potential importance for applications such as
sensing and information processing.

A particularly significant effect of nonreciprocal plasmons is the
existence of a unidirectional frequency range. Such unidirectional
frequency ranges have been shown to occur in topologically
nontrivial metal-metal interfaces® !4, where the unidirectional
behavior is linked to the topology of the bandstructure, or in
metal-dielectric systems!>~18, In this paper, we will discuss
metal-dielectric systems. With the metal described by the Drude
model, in the presence of an external magnetic field, there exists a
frequency range where the surface-plasmon polariton can only
propagate along one direction. In a recent paper!8, it was noted
that the existence of such unidirectional surface-plasmon polar-
itons can lead to resonator structures that violate the time-
bandwidth product constraint that should otherwise apply in
general in static systems!®. Subsequently, refs.202! argued that
breaking the time-bandwidth product should not be possible
based on a coupled-mode theory analysis, and that doing so may
violate the second law of thermodynamics. Motivated by these
considerations, it becomes important to re-examine the funda-
mental physical assumptions that give rise to unidirectionally
propagating surface-plasmon polaritons at metal-dielectric inter-
faces. Within the local Drude model, the existence of the uni-
directional frequency range depends on the behavior of the model
in the limit of large wavevectors. On the other hand, it has long
been known?2 that nonlocal effects become important in this limit.

In this paper, we show that there should not be a unidirectional
frequency range in the spectrum of the surface-plasmon polariton
at metal-dielectric interfaces once nonlocal effects are considered.
Instead, there will always be propagating modes in both direc-
tions. We illustrate this by detailed calculations based on the
hydrodynamic model for the metal dielectric function. We also
present a general thermodynamic argument to show that the
main conclusion of the paper, i.e., the absence of unidirectionally
propagating surface-plasmons polaritons at nonreciprocal
metal-dielectric interfaces, should hold for any physical nonlocal
model of the dielectric function.

I n the past 2 decades, there have been significant developments

Results

Drude model. We start with a brief review of the dispersion
relation of the surface-plasmon polariton at the metal-dielectric
interface. Throughout the paper, for simplicity, we refer to any
system with a strong plasmonic response as a metal. In addition
to the usual free-electron metals, such “metals” also include
heavily doped semiconductors that exhibit a plasmonic response
at infrared wavelengths. Within the local Drude model, in the
presence of a static magnetic field B, = —B,y, the frequency(w)-
dependent dielectric function of metal has the following form:

2

en(@) _ | “p
€o0 (w+ iYO)Z - w;
1+ik 0 i (1)
|0 Rt o |
—i 0 1+ ik

Dielectric X
&g

w (in wp)

-10 0 10 20
K (in k)

=20

Fig. 1 Surface-plasmon-polariton dispersion relation in the local Drude
model. a An interface between a dielectric and a metal described by the
Drude model. b Dispersion relation of surface-plasmon-polariton
propagation at the interface in the absence (green curve) and in the
presence (blue curve) of an external magnetic field By as indicated in a. K is
the wavevector component parallel to the interface, k, = w,/c, and .=
eBo/m is the cyclotron frequency.

where ¢.. is the dielectric response from the bound electrons and
ions, w, the plasma frequency, y, the phenomenological scatter-
ing loss rate, and w,=eBy/m the cyclotron frequency, with
fundamental charge e and effective mass of the free carriers m.

Consider the metal-dielectric interface shown in Fig. 1a. When
By =0, in the near-lossless limit of y, — 0, the dispersion relation
w(K) of the surface-plasmon polariton is shown by the green
curve in Fig. 1b, where K is the wavevector parallel to the
interface. Here we assume that €., =1, and that the dielectric is
air with e; = 1. Since the system is reciprocal, we have w(K) = w
(=K). In the K— oo limit, the frequency of the surface-
plasmon-polariton approaches the surface-plasmon frequency
Wy, = w,/ V2.

When B, #0, again assuming the near-lossless limit, the
dispersion relation for the same interface system is shown by the
blue curve in Fig. 1b. Since the system is no longer reciprocal, we
have w(K) # w(—K). Moreover, the surface-plasmon frequencies
for the forward and backward directions are unequal at the
|K| — oo limit, opening a unidirectional frequency range around
wsp where the surface plasmon polariton propagates only along
the positive-K direction. The existence of such a unidirectional
frequency range is the key to the unusual time-bandwidth
product behavior reported in ref.18. On the other hand, as
observed from Fig. 1b, the existence of such a unidirectional
range is strongly dependent on the behavior of the Drude model
in the |K| — oo limit. And yet, it is well known that the local
Drude model of Eq. (1) is no longer adequate in this limit?2, and
instead the spatially dispersive or “nonlocal” behavior of the
electromagnetic response of the metal must be considered. For
example, it was also shown!! that topological effects in
continuous media need to be described taking into account
nonlocality. Therefore, to understand the potential physics of
such unidirectional propagation, it is essential to consider the
effect of the nonlocal dielectric function.

2 NATURE COMMUNICATIONS | (2020)11:674 | https://doi.org/10.1038/541467-020-14504-9 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Hydrodynamic Drude model. There exist many treatments of
nonlocality, such as those based on the hydrodynamic model23-24,
the random phase approximation2>-2, and a quantum-corrected
model?’. The description of plasmonic properties using these
models is closely related to the emerging area of quantum plas-
monics, where the quantum nature of the electron gas plays a
significant role?’-2%, Here, we briefly discuss the hydrodynamic
model, a simple analytic model that has often been used to
describe nonlocal response in deep subwavelength metallic
structures?>30, and recently in nanoparticles made of doped
semiconductors such as indium antimonide (InSb)3l. We refer
readers to refs. 3032 and references therein for a detailed overview
of nonlocality in surface-plasmon polaritons as well as a deriva-
tion of the hydrodynamic model.

In this model, the collective motion of electrons is described
using a density n(r, t), a velocity v(r, t), and an energy functional
that can be appropriately chosen to describe the internal
kinetic energy as well as interactions. We follow ref. 30 to employ
the Thomas-Fermi approximation for the energy functional. The
equations of motion of the free carriers in this approximation are

given by3334
ov e , Vn
had . S— gt 2
at—}—yv—l—(v V)v m(E+VXB) t (2)
)
5 ==V (), (3)

where 8 is the nonlocal parameter proportional to the Fermi
velocity vg>2,
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Linearizing Eqs. (2) and (3), and defining the free-electron
current J = —en,v, where ny is the equilibrium electron density, a

single equation can be obtained for J in the frequency domain as
BV(V-]) + w(w+iy)] = fiw(w;eoceoE — %]x By), (5

where By is an externally applied dc magnetic field. This equation
is coupled with Maxwell’s equations, written using the E field as

w?
Vx VXE:C—ZGNE— iwp,]. (6)

Unlike in the local model, the presence of the nonlocal term
B* V (V) in this model requires an additional boundary
condition®® to determine the dispersion relation. Here, the
additional boundary condition required to solve Egs. (5) and
(6) is

J =0, (7)

where n is the unit vector normal to the metal-dielectric
interface. This has the effect of imposing an infinite potential well
for the electron gas at the metal-dielectric boundary.

To illustrate the effect of nonlocality on the nonreciprocal
behavior of the surface-plasmon polaritons, we consider an
interface where the dielectric layer is silicon (e;=11.68) and the
metallic layer is n-doped InSb, a material commonly used in
demonstrating magneto-optical plasmonic effects!>18. This inter-
face was previously used in ref. 18, with the InSb layer treated
using the local Drude model. The InSb layer has €., = 15.6 and
plasma frequency w,=2mx (2x10!2Hz). A constant dc mag-
netic field of By=0.2T is applied in the —y direction to break
reciprocity. Owing to a rather small conductivity effective mass
for electrons, a large value3! of f=1.07 x 10° ms~! is obtained at
300 K. Thus, the effect of nonlocality, which was not considered
in ref. 18, is in fact prominent in the dielectric response of InSb. In
order to highlight the difference between the hydrodynamic
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Fig. 2 Dispersion relations in the local and hydrodynamic Drude models.
Dispersion relation for the interface considered in ref. 8, in the local (blue)
and nonlocal (red) models. a A flat dispersion relation is obtained in the
lossless (yo = 0) local Drude model, resulting in a unidirectional gap
indicated by the dotted gray lines. This gap is removed in the hydrodynamic
Drude model with a high-K counter-propagating wave. b Real (solid line)
and imaginary (dotted line) parts of K when yo = 0.025w), in the local
(blue) and the nonlocal (red) models. Landau damping is self-consistently
incorporated in the nonlocal model. Re(K) <Im(K) in the unidirectional gap
in the local model, while Re(K) >Im(K) in the nonlocal model. Note that
K/kp is in log scale.

model and the local Drude model, we first set y, = 0. Using these
parameters, we solve Egs. (5) and (6) for surface-plasmon
polariton dispersion relation at the Si-InSb interface. The red
curve in Fig. 2a depicts the dispersion relation in the
hydrodynamic model, and the blue curve in the local Drude
model. The dispersion relations from the two models are almost
the same for small K, but deviate as K becomes larger. In
particular, within the hydrodynamic model, there is no longer a
unidirectional frequency range. At every frequency, there are both
a propagating and a counter-propagating mode. We also note
that the predictions between the local and nonlocal models start
to deviate for K= 0.4 um~1. Thus, in this system, nonlocal effects
become important even for surface-plasmon waves with wave-
length on the submicron scale, in contrast with standard
plasmonic metals where nonlocal effects are important only
when the plasmon wavelength is at the nanoscale.

The qualitative difference between the hydrodynamic model
and the local Drude model persists over a wide range of loss rates
y in Eq. (2). The loss in a surface-plasmon polariton arises not
only from scattering, but also surface-induced Landau
damping3®37. Unlike bulk plasmons where Landau damping
occurs only for K> w¥y, surface modes also experience Landau
damping at smaller wavevectors owing to confinement in the
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direction normal to the interface. Following ref. 36, we write y =
Y0 + ¥ where y, is the loss rate from scattering and

) = [T qIF(@)fdq
’ 2 [FIF (@) + |F.(q)dq

is the loss rate from Landau damping. Here, F, .(q) is the Fourier
transform of the electric field E,.(x) in the metal, and g is
normalized to the onset of Landau damping, i.e., to w¥g. Since y;
depends on the field profiles which in turn depend on y,, we solve
for the damping rate and the fields in a self-consistent manner.

In Fig. 2b, we plot the dispersion relation for y, = 0.025w,, in
blue for the local model and red for the nonlocal model. In the
nonlocal model, the effective loss rate is given by yo+ ys
described above. The solid lines represent Re(K), while the
dotted lines represent Im(K). Within the local model, while
propagation is not strictly unidirectional in the presence of
loss, the counter-propagating mode is significantly overdamped
(Re(K)<Im(K)) in the wunidirectional frequency range,
marked by the gray dotted lines. On the other hand, the
counter-propagating mode continues to remain underdamped
(Re(K) >Im(K)) in the nonlocal model. Only for substantially
high values of loss (yo>0.05w,) does the dispersion relation in
the nonlocal model return approximately to its local form, in
which case damping is high enough that the propagation of the
surface-plasmon polariton is no longer apparent. The analysis
here indicates that the effect of nonlocality on nonreciprocal
surface-plasmon polaritons should be pronounced for a wide
range of values of loss.

In order to numerically demonstrate the effect of nonlocality
on nonreciprocal photon transport, we re-examine the structure
shown in Fig. 3a, which was first considered in ref.!8. The
structure is two-dimensional and consists of the Si-InSb interface
as discussed above, subject to a static out-of-plane magnetic field.
Such an interface thus behaves as a nonreciprocal plasmonic
waveguide. The waveguide is surrounded by a metal region,
which serves both to truncate the waveguide at one end, as well as
to eliminate any radiation losses. In ref.!$, the surrounding
region was assumed to be silver. Here for simplicity we assume a
surrounding region made of a perfect electric conductor (PEC),
which makes very little difference to the simulations since
the operating frequency, in the far-infrared region, is far below
the plasma frequency of silver. Ref.1® treats the InSb layer
using the local dielectric function of Eq. (1). The choice of the
magnetic field along the —y direction results in a unidirectional
frequency range where there is a surface-plasmon polariton
propagating toward the truncation, but not in the opposite
direction. Consequently, at a frequency inside the unidirectional
range, ref. 18 shows that the electromagnetic field will propagate
toward and be trapped at the truncation, with no leakage either in
the backward direction, or through radiation losses. Such a
trapping effect appears to lead to the violation of the time-
bandwidth product constraint.

On the other hand, as we have discussed above, the nonlocal
behavior is in fact intrinsic and rather significant in the dielectric
response of InSb. Therefore, we extend the finite-difference
frequency-domain method3? to include the nonlocal response as
described by Eq. (5) for the InSb region, and resimulate the
structure in Fig. 3a. To highlight the fact that there is a backward
propagating mode even in the lossless system, we assume y = 0.
We excite the waveguide mode by placing a line source normal to
the interface. We choose w = 0.7w,, a frequency that is inside the
unidirectional range of the local model. In Fig. 3b, we plot the
field distribution of H,, the z-component of the magnetic field of
the excited surface-plasmon-polariton mode. We observe a
significant excitation of backward propagating surface-plasmon
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Fig. 3 Numerical simulation of a truncated waveguide using the
hydrodynamic model. A finite-difference frequency-domain (FDFD)
algorithm is used to obtain the numerical results, at w = 0.7w,. a The
structure as considered in ref. 8. b Field profile of H, generated by the
indicated line source, clearly depicting a backward propagating mode with a
significantly smaller wavevector than the forward propagating mode. ¢ A
finite Poynting flux in the backward direction relative to the line source, and
a zero Poynting flux forward owing to the PEC to the right. The blue curve is
the total Poynting vector from Eq. (9), while the red and yellow curve are its
electromagnetic and kinetic terms, respectively, from Eq. (9).

polariton, as well as significant reflection at the truncation, in
consistency with our dispersion relation analysis as shown in
Fig. 2. In the Supplementary Materials, we provide movies to
compare the field evolution in the local (Supplementary Movies 1
and 2) and nonlocal (Supplementary Movies 3 and 4) models in
the presence of losses. Even in the presence of losses, a strong
reflection into the high-K backward propagating mode is seen in
the nonlocal model. On the other hand, no such effect of
backward propagation is visible in the local model. These
simulations indicate that the difference between the predictions
of the local and nonlocal models are qualitatively different even in
the presence of losses.

To further highlight the contrast between the local and
nonlocal models, we note that, for y =0, the local Drude model
would predict that within the unidirectional frequency range,
there is a net energy flux toward the truncation, as ref. 18 shows.
On the other hand, we compute the Poynting vector flux along
the z-direction in the nonlocal model. The time-averaged
Poynting vector S in the hydrodynamic model can be derived
by combining the linearized forms of Egs. (2) and (3) with the
Poynting theorem to obtain

/32
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We show the Poynting flux along the z-direction in Fig. 3c.
The total Poynting flux (blue curve) within the hydrodynamic
model contains contributions from both the electromagnetic field
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Fig. 4 Dispersion relations in the real-wavevector complex-frequency
picture. The dispersion relations in the real wavevector and complex-
frequency picture for the surface-plasmon polariton in the local Drude
model (blue) is contrasted with that in the hydrodynamic model (red). The
solid and dotted lines represent the real and imaginary parts of the
frequency, respectively, for a loss rate of yo = 0.025w,. In the local model,
the flat asymptote in the limit of K — oo persists even upon the inclusion of
losses, resulting in an infinite number of states. By contrast, in the
hydrodynamic model, the unidirectional frequency gap is closed in the real-
wavevector complex-frequency picture as well as the complex-wavevector
real-frequency picture (shown in Fig. 2b).

(ExH", red curve) and the kinetic energy of the free carriers
(J*(V -7), yellow curve), unlike in the local model. Since there is a
PEC termination, the total Poynting vector to the right of the
source must be zero. We see that this is indeed the case, with the
forward propagating electromagnetic component being canceled
exactly by the counter-propagating kinetic component, an effect
arising from the nonlocal term I (V-] Similarly, a negative
value of Poynting flux is observed to the left of the source, also
confirming the excitation of the high-K mode propagating
backward.

General thermodynamic argument. In the local Drude model,
the surface plasmon has a dispersion relation w(K) that asymp-
totically approaches a constant in the limit of K — oo, which
results in an infinite number of states in a finite frequency range.
From Fig. 1, this asymptotic behavior is apparent when the Drude
model is lossless. However, this is also the case in the presence of
losses in the Drude model: the dispersion relation relevant to
computing the number of states in the presence of losses is
obtained by setting a real wavevector and solving for a complex
frequency>”. It was shown3%40 that such a dispersion relation
presents a flat asymptote at the surface-plasmon frequency even
in the presence of losses. In Fig. 4, we plot the surface-plasmon-
polariton dispersion relation in the presence of losses for a real
wavevector and complex frequency for the local Drude model in
blue, with the real part of the frequency shown by the solid
curve and the imaginary part by the dotted curve. Note that for
the local model, the flat asymptotes persist even in the presence of
losses in the real-wavevector complex-frequency picture. In
metal-dielectric systems, this asymptotic behavior is key to the
existence of the unidirectional frequency range when a magnetic
field is applied. However, since the asymptotic behavior also
implies an infinite number of states in a finite frequency range,
the thermal energy contained in the system diverges to infinity at
any nonzero temperature. Any physical system should not have
infinite thermal electromagnetic energy density at a finite tem-
perature. Thus, the dispersion relation of the local Drude model
and the resulting unidirectional frequency range are not physical.

Further, our prediction that a unidirectional frequency range does
not arise when a more realistic nonlocal model is used should
therefore hold true independent of the details of the nonlocal
model, since any valid nonlocal correction must remove the
diverging number of states in the local Drude model and thereby
remove the asymptotic behavior. As an example, the nonlocal
hydrodynamic model considered in this paper indeed removes
the flat asymptotic behavior in the real-wavevector complex-fre-
quency picture, shown by the red curve in Fig. 4.

Related to the general thermodynamic argument above, it was
shown3” that the leading order correction from quantum
plasmonics to the surface-plasmon polariton in the local Drude
model has a model-independent form of w — wg, ~ CK for some
constant C. Moreover, it was argued that the leading order nonlocal
correction to the dynamics of the electron gas is O(K?)*! regardless
of the microscopic model of nonlocality, with this correction also
being the origin of the slope of the dispersion relation for large K in
Fig. 2. These results concur with our observation above that the
prediction of w — wg, in the large-K limit from the local Drude
model is unphysical, and thus any effect that relies upon such
asymptotic behavior needs to be examined carefully.

Discussion

In this paper, we show that the unidirectional frequency range,
which is predicted for a metal-dielectric interface where the free-
electron metal under a static magnetic field is described using a
local Drude model, is nonphysical. We present a general argu-
ment from thermodynamic considerations and illustrate the
argument with an explicit calculation using a more realistic
nonlocal hydrodynamic model for the metal. Our results here
suggest that the anomalous time-bandwidth product predicted by
ref. 18, which arises as a direct consequence of the existence of the
unidirectional frequency range, is not physical either. More
generally, our work highlights the importance of using a more
realistic permittivity model, such as those derived from quantum
plasmonics considerations?’-2%, to understand nonreciprocal
plasmonic effects.

Methods
Numerical simulation. The field and Poynting flux in Fig. 3b, ¢ were obtained by
solving Egs. (5) and (6) using the finite-difference frequency-domain method3s.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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