Hindawi

Applied Bionics and Biomechanics
Volume 2022, Article ID 2073067, 17 pages
https://doi.org/10.1155/2022/2073067

Research Article

Classical and Bayesian Inference Using Type-II Unified
Progressive Hybrid Censored Samples for Pareto Model

M. Nagy( and Adel Fahad Alrasheedi

Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455,

Riyadh 11451, Saudi Arabia

Correspondence should be addressed to M. Nagy; mnaji@ksu.edu.sa

Received 15 January 2022; Revised 17 February 2022; Accepted 8 March 2022; Published 29 April 2022

Academic Editor: Muye Pang

Copyright © 2022 M. Nagy and Adel Fahad Alrasheedi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In the lifetime and reliability experiments, the censored samples play a fundamental and important role in order to control time
and cost. The researchers developed the censored sample schemes to solve the problems that arise by applying the previous
methods. Recently, Gérny and Cramer (2018) proposed a new general type of censored sample called Type-II unified
progressive hybrid censored sample. In this paper, we present an overview of the Type-II unified progressive hybrid censored
sample. We used this censored sample to compute the maximum likelihood estimates of unknown parameters from the Pareto
distribution, as well as Bayesian estimates for unknown parameters under three different error loss functions. The point and
interval Bayesian predictions one- and two-sample Bayesian predictions from the Pareto distribution are shown. Simulation
studies are carried out to compare the efficacy of the various inference approaches. Finally, real data sets are examined to

determine the applicability of the proposed model and various estimating approaches.

1. Introduction

In order to time and expense constraints, experiments in
reliability analysis frequently end before all units in the test
have failed. In such circumstances, failure information is
only accessible for a portion of the sample, and only limited
information is given on all units that have not failed. Data
that has been censored is referred to as censored data. There
are several different censoring schemes such as Type-I and
Type-II. Since Epstein [1] presented Type-I hybrid censor-
ing, various hybrid censoring modifications have been devel-
oped to address the model’s flaws. Due to the fact that Type-
I hybrid censoring does not guarantee the observation of at
least one of the failures, Childs et al. [2] developed Type-II
hybrid censoring, which ensures the observation of at least
m failures from the » units put on the life test. However,
the main disadvantage of this censoring system is that the
experimenter has not controlled the test time. The disadvan-
tages of both Type-I and Type-II hybrid censoring are miti-
gated by Chandrasekar et al. [3]. In addition, the unified

hybrid censoring methods are even more flexible than
hybrid censoring techniques (see, e.g., Balakrishnan et al.
[4]; Huang and Yang [5]; Park and Balakrishnan [6]). In
unified hybrid censoring method, consider, n identical units
are placed on a life-testing device. Fix the integers k, m € {
1,2,---,n}, and T, and T,€(0, 00) such that k<m and T,
< T,. The experiment is stopped at min (max (T,,Y,,,),

T,) if the k™ failure occurs before time T . Otherwise, the
experiment is stopped at min (max (Y., T,), Y,,.,,)%. We
can guarantee that the experiment will be completed at most
in time T, with at least k failures, and if not, we can guaran-
tee exactly k failures under this censoring strategy.

If one of these units is inadvertently broken but the
experiment has not yet been terminated, this unit must be
removed from the life test, and the progressive censoring
methodology is the best method for this case. Complete fail-
ures of m units will be observed in Type-II progressive cen-
soring methods. When the first failure occurs, R, of the n — 1
remaining units is chosen at random and removed from the
lifetime test. R, of the n — R, — 2 surviving units is randomly
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selected and eliminated at the second observed failure.
Finally, R, surviving units are removed after the m" failure,
and the experiment comes to an end. We will denote the m
ordered failure times thus observed by Y Y e 1S
evident that n=m+ Y ;" Ry.

The downsides of the Type-II progressive censoring sys-
tem are that if the units are highly reliable, the experiment
can take a long time. Therefore, Kundu and Joarder [7]
and Childs et al. [8] proposed a progressive hybrid censoring
scheme (PHCS) in which the life-testing experiment is
ended at time min {Y,,,,.,, T}, with T € (0,00). For more
details, we refer our readers to Tomer and Panwar [9],
Panahi [10], Almarashi et al. [11], and Moihe El-Din et al.
[12, 13]. On the other hand, the disadvantage of the PHCS
is that it cannot be applied when only a few failures are likely
to occur before time T. For this reason, Cho et al. [14] pro-
posed a Type-I generalized PHCS in which the life-testing
experiment is terminated at the time min {max (T, Y.,,.,),
Y,.mn} for prefixed k <m{1,2,---,n}. Moreover, Lee et al.
[15] proposed Type-II generalized PHCS, in which the life-
testing experiment is terminated at time min {max (T},
Y,mn)» To} for prefixed T, < T,(0,00). For recent work
on this topic, see, for example, Moihe El-Din and Nagy
[16], Nagy et al. [17, 18], and Nagy and Alrasheedi [19].

While generalized PHCS are superior to Type-I and
Type-II PHSC, they do have significant disadvantages.
Therefore, Gérny and Cramer [20] developed a general type
of generalized PHCS, called Type-II unified PHCS to address
some of the shortcomings of these schemes. Under Type-II
unified PHCS, we can guarantee that the lifetime experiment
will be completed at no later than T, with at least kK number
of unit failures; this ensures that the statistical inference is
carried out with more efficiency. For recent work on the
Type-II unified PHCS, see, for example, Gorny and Cramer
in [21] and Kim and Lee in [22].

The following is how the rest of the article is structured: Sec-
tion 2 provides an overview of the Type-II unified PHCS. Sec-
tion 3 determines the maximum likelihood estimates (ML) of
unknown parameters, while Section 4 derives the Bayesian esti-
mates for the unknown parameters with three loss functions.
Sections 5 and 6 calculate the point and interval Bayesian pre-
dictions for one- and two-sample Bayesian predictions, respec-
tively. Simulation studies are carried out in Section 7 to
compare the efficacy of the offered inference methodologies.
A real data is utilized to demonstrate the theoretical findings
in Section 8. Finally, the paper is concluded in Section 9.

Lmm> ™"

2. The Type-1I Unified PHCS and
Likelihood Function

Consider a life test in which # identical items are put on test.
Then, the Type-II unified PHCS may be described as follows.
Let Ty, T, € (0,00) and integer k,m € {1,2,---,n} are pre-
fixed such that T, < T, and k <m with R=(R,R,,--,R,)
is also prefixed integers satisfying n=m+ R, +--- + R,,. At
the time of first failure, R, of the remaining units are randomly
removed. Similarly, at the time of the second failure R,, of the

remaining units are removed and so on. If the k™ failure
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occurs before time T, the experiment is terminated at min {

max (Y,,.,..o T))» T, }. If the k™ failure occurs between T,
and T,, the experiment is terminated at min (Y,,,.,.,» T,)
and if the k™ failure occurs after time T, the experiment is ter-
minated at Y}.,,. Under this censoring scheme, we can guaran-
tee that the experiment would be completed at most in time T',
with at least k failure and if not, we can guarantee exactly k
failures. Let D, and D, denote the numbers of observed fail-
ures up to time T, and T,, respectively. In addition, d, and
d, are the observed values of D, and D,, respectively.

Under the UPHCS described above, we have one of the
following types of observations:

(1) If the k™ failure occurs before time T, the experi-
ment is terminated at min {max (Y., T;), >}
and then we have the following three subcases:

(a) If the m™ failure occurs before T, i.e., 0< Yy, <
Y ,mn < T1 < T, then instead of terminating the test
by withdrawing the remaining R, items after the m'™
failure, we continue to observe failures (without any
further withdrawals) up to the experiment end at
time T" = T,. Therefore, the observed failure times

are {Yl:m:n<"'<Yk:m:n<'“<Ym:m:n<'“<Yd]:n}

(b) If the m™ failure occurs between T, and T,, i.e., 0 <
Yiwn <T1<Ypmn < T, then the experiment will
endat T* =Y, and the observed failure times are
{Y <"'<Yk:m:n<'”<Yd1:m:n<”'<Y

1:m:n m:m:n}

(c) If the m™ failure occurs after T,, i.e, 0< Y, <
T,<T,<Y,.nn then the experiment will end at
T* =T, and the observed failure times are {Y.,,.,<

"'<Yk:m:n<'"<Yd1:m:n<”'<Yd2:m:n}

(2) If the time T, pass before the k', then the experi-
ment will end at min {max (Y;.,.. T5)> Y pn
and then we have the following three subcases:

(a) If T, passes before the k™ failure occurs, ie., 0
<Ty<Ty<Yipn < Y,mn then the experiment
will end at T* =Y., and we will observe {
Y <“'<Yd1:m:n<'“<Yd2:m:n<'“<Yk:m:n}

L:im:n

(b) If the m™ failure occurs before T,, i.e., 0 < T, <
Yimn <Y pmn < T, then the experiment will
end at T* =Y, and we will observe {Y
<"'<Yd1:m:n<'“<Yk:m:n<'“<Y

Lim:n

m:m:n}

(c) If the time T, between Y., and Y, ., ie, 0
<T,<Yipn<T, <Y, .. then the experiment
will end at T* =T, and the observed failure
times are {Y,,.,< <Yy < <Y, <<
de:m:n}

1:m:n
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Let Y be the Type-II unified progressive hybrid censored
sample from distribution with the probability density func-
tion (PDF) g(y), and the cumulative distribution function
(CDF) G(y), then, based on the Type-II unified PHCS, the
likelihood function is given by

s | T . Rirmy R
HZ(RJ+ 1) Hg(yi:m:n) [G(yi:m:n)} Y[G(Tl)} " in Case la»
Li=1 j=1 ] =l
ﬂ Z(~J + 1) f[g(yi:m:n) [Go’i:m:nﬂ & in Case lb’
Lic1 j=1 1
fhom _ ) R
[[2(R+1) Hg(y,mn i) [G(T)]™ inCase1,,

=4 ‘
1:[ ;(Rj + 1) Hg(yi:m:n) [G(yi:m:n)}R’ inCase2,,
ﬂZ(Nj“) f[g(yi:m:n)[é(yi:m:n)}kl in Case 2,,
Lic1 j=1 ]
T _
Z( J+1) Hg(y!mn) G(yrmn)} [ ( 2)} inCaseZC,

i=1 j=1 ]

(1)

where G=1-G and

Do 5> Yk > Y timens Y > Y1) 10 Case 1o,
Dromen ™ Yiemens =" Yt =" Ymemen) in Case 1,,
(yl:m:n’ 5 Vim0 Ydtimen “"de:m:n) in Cases L
LN Grone Yt Ytz = Vi) in Case 2,,
(ylzm:n’ 5 Vao s Viemm "'Jm;m;n) in Case2,,
D i > Vv > Ve "> Vdzmn) in Cases 2,,

d, inCasel,,

m  inCases 1,and 2,

- d, inCasesl and2,
k  inCase2,,

(Rl""’Rk’"')Rm—1>0>"'>0’Rt1) in Case 1,
(Rp' , R '>Rd,»"'»Rm) in Case 1,

- (Rys =+ Ry s Ry -+, R, ) in Cases 1,,
= (Rys =Ry Ry, Ree)  inCase2,,
(Rys++ Rys =+ Ry, R,,) in Case 2,,

(Rys -+ Ry, Ry, R, in Cases 2,,

with Ry =n—k- Zj‘ IIR],R is the number of surviving

units that are eliminated at T, given by

m—1
- n—d, - ZR inCasel ,
R, = = ’ (4)

0 in all other cases,

and th is the number of surviving units that are eliminated
at T,, given by

d,
- n—dz—ZR in Cases 1,and 2,
Rz2 = j=1 ! ‘ ‘ (5)
0 in all other cases.

Special cases: The Type-II unified PHCS is a generaliza-
tion of many censoring schemes, for example:

(1) If R;=0 for all i<m and R,, =n—m, the Type-II
unified PHCS becomes unified HCS

(2) If T, = 00, the Type-II unified PHCS becomes gener-
alized Type-I PHCS

(3) If k = m, the Type-II unified PHCS becomes general-
ized Type-1I PHCS

(4) If T,=0 and k=m, the Type-II unified PHCS
becomes Type-I PHCS

(5) If T,=c0 and k=0, the Type-II unified PHCS
becomes Type-II PHCS

Note: In order for the experiment to be terminated at
time T, R,, must be not equal to zero; if R,, is equal to zero
and the m™ failure occurs before T, then the experiment is
terminated at Y ,,.,,,.,.-

3. The ML Estimation

In this section, we derive the ML inference of the unknown
parameters A and 0 for the Pareto distribution which was
introduced by Pareto [23] as a model for the distribution
of income, based on the Type-II unified PHCS. Using the
exponential form, Pareto distribution has the following den-
sity function (PDF) and distribution function (CDF), respec-
tively, given by

g(ylx\,e)=%exp [—Aln (g)},/\,9>0,y29, (6)

G(ylA,0)=1-exp [ Aln <9>} A,0>0,y>0.%.

(7)



From (7), (6), and (2), the likelihood function of A,
under the Type-II unified PHCS can be derived as

d* m
oo [f{S 0]
i1 j=i
. <Hd’ }%) exp {—/\ {’1({) + Rtl InT, + sz InT,-nln 0] },
i=1 i
(8)
where TI(X) = ;Zl (R,- +1)Iny, and y, =y, ;- for simplicity

of notation.

Since the likelihood function (8) is an increasing func-
tion in 6, but 6 is the lower bound of y, for all y, €Y, so its
maximum value will be attained at the maximum value y,
of 0. From (8), the log-likelihood function of (A, 8) is given

by
In [L(A,0]Y)] ocd” In (1)

)L|: %( )+Rf1 lnT1+thlnT2—nln(9)] 9)

To maximize relative to A, differentiate (9) with respect
to A and solve the equation

oln [L(A,01Y)]
—_— = 5 1

o 0 (10)

so the ML estimator A . of A is obtained as

~ a*
Ay = - — .
n(x) +Rt] In T, +Rt2 InT,-nln(y,,)

(11)

3.1. Approximate Confidence Intervals for A and 6. For large
d”, the observed Fisher information matrix of the parame-
ters A and 0 is given by

*InL(AL,0]Y) 09°InL(A6]Y)
; (X, 5) | N2 - 0A00
o’ InL(L,60]Y) 9*InL(A60]Y)
- 060r - 00 (;g)

where

?InL(AO|Y) d

A2 22’
82 In L()L,0|X) nA (13)
A
azlnL(A,GIX) _n

0100 e
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and a 100(1 — &)% two-sided approximate confidence inter-
vals for the parameters A and 0 are then

(A-zuay /v (3). A+ 200
(5200 [V (2)-0 20/ (8) ).

respectively, where V()\) and V(a) are the estimated
variances of A v and GML, which are glven by the first

and the second diagonal element of I~ (A, 6), and z,,
is the upper (a/2) percentile of the standard normal
distribution.

4. Bayesian Estimation

In this study, we investigate three forms of loss functions for
Bayesian estimation. The first is the squared error loss func-
tion (SELF), which is a symmetric function that values over-
estimation and underestimation equally when estimating
parameters. The LINEX loss function (LLF), which is asym-
metric and offers different weights due to overestimation
and underestimation, is the second option. The generaliza-
tion of the entropy loss function is the third loss function
(GELF).

Under the assumption that both parameters A and 0 are
unknown, we can use the joint prior density function of A
and 0 proposed by Lwin [24] and generalized by Arnold
and Press [25] for Bayesian Estimations. The generalized
Lwin prior is given by

ay

(A, 0) o A exp [-A(ln a, -

5 b, In0),A>0,0<0<d,

(15)

where a,, b, a,, b, are positive constants and bgl <a,.
Upon combining (8) and (15), given UPHCS, the poste-
rior density function of A, 0 is obtained as

L(A,0]Y)m(A,6)
[CL(X61Y)n(A,6)dAd6

A9+ exp { {—/\11 <X) + Rt] In T,

7 (A,01Y) =

+I~2t2 InT,-(n+b)) ln0+lna2} },
(16)
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where

I= Jjj:o)tdiml 67" exp {—)L [;1 (X) +1~%t1 In T,
+R, InT,~(n+b,)Inf+In az] }d)td@

r(d +ay)

- 1(y) +R, In Ty + R, In T,

—(d"+a,)
—(n+b) ln8+lna2}

>

with § =min (y,,,, b,).

4.1. The Bayesian Estimation under SELF. A commonly used
loss function is the squared error loss function (SELF)
defined as follows:

~ ~ 2

Lys(B.B) o< (B~ B) (18)
The Bayesian estimate ,E ps for the unknown parameter f3
00 Ad * +a;

R d oo
0, = 0n*(\,0|Y)d\do=T"'] ——
Bs ” w(A61Y) J An+by)

= ){ﬂ(z)+l~ltl lnT1+l~2t2 InT,-(n+b,)Inéd+Ina,

td* +ay e—l’

, relative to the squared error loss function, is given by

Bys=Ex[B] (19)

By using (16), the Bayesian estimator of A under the
squared error loss function is the mean of the posterior den-
sity function, given by

R S (oo
/\BS:J J Arr* (A, 0 Y)dAd6. (20)
0J0

Hence, the Bayesian estimator of A under the squared
error loss function is obtained as

d* +a,
BS = - ~ ’
;7();> +R, In T, +R, InT,-(n+b,)Iné+Ina,
(21)

and the Bayesian estimator of 6 under the squared error loss
function is obtained as

>)

—7 &P {—)L[n(z) +1~Qt1 In T, +Rzz InT,-(n+b,)Iné+In az} }d)t

:| —(d"+ay)

dt

X
JO t+ [q(z) +I~Qt1 In T, +I~2t2 InT,-(n+b)) ln8+lna2]/(n+bl)

é [”(X)”LRA In T1+I~2t2 InT,-(n+b,)Inéd+Ina,

= ° o|d+a,

CI(d +a)

where

00 tye—t

o Lty

Dy, ) =J dt. (23)

A partial tabulation of y(y,y) = (y/I'(y))@(y - 1,y) has
been provided by Arnold and Press in [25].

4.2. The Bayesian Estimation under GELF. Another com-
monly used asymmetric loss function is the general entropy
(GE) loss function given by

Lgg (E,ﬁ) o< (g)w —wln (%) -1. (24)

(n+b))

(22)

For w > 0, a positive error has a more serious effect than
a negative error, and for w <0, a negative error has a more
serious effect than a positive error. In this case, the Bayesian

estimate 3 relative to the GE loss function is given by

O = {E [}, (25)

—w

provided that the involved expectation E,.[S8]™" is finite. It
can be shown that, when w=1, the Bayesian estimate in
Eq. (25) coincides with the Bayesian estimate under the
weighted squared error loss function. Similarly, when w = -
1, the Bayesian estimate in Eq. (25) coincides with the Bayes-
ian estimate under the SE loss function.



By using (16), the Bayesian estimator of A under GELF is

given by

-1

~ 5 oo w
o= {J J A-wn*(a,mz)dme)}

0J0

r(d +a, - w) [ﬂ(z) +R, InT,+R, InT,~(n+b)In (8) +In (a,)
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} (@ +a) \ o (26)

r(d +a,) {;1@ +R, InT, +R, InT,~(n+by)ln (8) +1In (a,) +e

and the Bayesian estimator of 6 under GEF is obtained as

-1

] (d"+a,-w)

~ 4 (oo w 3 * - - d"+a;+
GBE={[ [ G‘wn*(/\,OIX)dAdG} :{rl[ [ +a+1) [1(y) + R, 10 Ty + R, In Ty = (4 by) In (6) +In ()] ”de}.

1-w
JoJo JO 6

4.3. The Bayesian Estimation under LLF. Under the assump-

tion that the minimal loss occurs at E = f3, the LINEX loss
function can be expressed as

Ly (B.B)=exp [e(B-B)] -¢(B-B) -1  (28)

where € # 0. The sign and magnitude of the shape parameter
v represent the direction and degree of asymmetry, respec-
tively. It is easily seen the (unique) Bayesian estimator of 0,
denoted by éLunder the LINEX loss function, and the

(27)

Valueﬁ ;which minimizesE,,. [LL(E, B)]is given by

Bu= - In (B, [ (0B} (29)

provided that the involved expectation E,.[exp (—vf)] is
finite.

By using (16), the Bayesian estimator of A under LLF is
given by

N _ S oo
1=t {J J exp (~A)r* (1,6 X)d)\d@}

€ 0Jo
= ~ d"+a,
1, [1(y) + R, In T+ R, In Ty (14 by) In (8) +1n (az)]( ) (30)
= —1n
= ~ d*+ay) (°
© | [n(y) #R, T+ Ry W0 Ty = (148 I () 410 () +s}( )

and the Bayesian estimator of 6 under LLF is obtained as

N _ S (0o
6, 'l {J J exp (~vB)" (A,9|Y)amde}

0 0

8F da* 1 ~ ~ d*+a,+1
S {I—IJ LA+ D) o (—0h) x [q(z) +R, InT,+R, InT,~(n+b)In(6)+In (az)}( )de}.

(31)
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5. One-Sample Bayesian Prediction

Forg=1,2,- R let Y, R, denote the g order statistic out

of I~2j removed units at stage j. Then, the conditional density
function of Y3 , given the observed Type-II unified PHCS,
I

is given, see Basak et al. [26], by

9(Yyn 1Y) =90r1Y)

~ q-1 R.—
Rt [60)-6(y)]" =G0 0)

@ DI(R-q)! R IRAes

’ [1-6(»)]
(32)
where
1;"'7k)"'7m_1yt1 inCaSela,
L.k dy,-,m inCasel,,

) Lk dp, - t,  inCases1,

Jj= . (33)
L., dy, - dy, k" inCase2,,
L., dy, -k --,m  inCase2,,

Ldy, ko t,  inCases2,

with y, =T, andy, =T,.
By using (6) and (7) in (32), given Type-II unified PHCS,
the conditional density function of Y. R, 1 then given as fol-

lows:

gy1Y)= qZICh% exp {—/\{a)h<lny—lnyj>]},y>yj,

h=0
(34)

q-1\. -
where Ch:(—l)h< )Rj!/(q—l)!(Rj—q)! and @, =h
+1~2j—q+1f0rh=0,---,q—1..

Upon combining (16) and (34), the Bayesian predictive
density function of Y , given UPHCS, is obtained as
o

5 Ad+a,+l
pi=r S [V o

'{*A[ﬂ(}’) R In T, R InT, 7(n+b1)1n9+lna2}}
Xexp{ {‘Dh Iny- lny)]}d)td@
il

M >+§:l InT, +1~{[2 InT,
—(n+b1)1n8+lna2+@h(lny—lnyj>]

(n+b)) hoy[

—(d"+a,+1)
(35)

The Bayesian predictive survival function of Yok given

7
Type-II unified PHCS, is given as
. o0 I'r(d +a,) 2 C,
G (Y =J 1Y)y = L+ 3) 5 Gy
(tHY)=] g01Y) nib) 2o,
. [11 (X) +I~2tl In T, +1~2t2 InT,
—(d"+a,
_(n+b1)ln8+lna2+&)h(lnt—lnyj)} “ ).
(36)

The Bayesian point predictor of Y under the squared
error loss function is the mean of the predictive density,
given by

Yor = Jooyf "1 Y)dy, (37)

where g*(y | Y) is given as in (35). The Bayesian predictive
bounds of 100(1 — «)% two-sided equi-tailed (ET) interval

for Y, can be obtained by solving the following two equa-
tions:
. o _ o
G(LET|X)=§ and G (UETlx)zl_E’ (38)

where G"(¢|Y) is given as in (36), and Ly and U, denote
the lower and upper bounds, respectively.

6. Two-Sample Bayesian Prediction

Let Y, < Yooy <o+ £ Yy be a future independent pro-
gressive Type-II censored sample from the same population
with censoring scheme S = (S;, -+, S,). In this section, we
develop a general procedure for deriving the point and inter-
val predictions for Y., 1 <s<¢¥, based on the observed
UPHCS. The marginal density function of Y, is given
by Balakrishnan et al. [27] as

9., 0s10) = CNSZChsl -G g),  (39)

where 1<s<g,

Cre=N(N =8, =1) -+ (N=8, - =S, +1), W, =N -5,
h
Chs-1= (_1)

-1

- =S8 1 —s+h+land

(T D5 S+ DITES T S+ D)
Upon substituting (7) and (6) in (39), the marginal den-
sity function of Y., is then obtained as

911061 Fe oo 4 n ()]}

y,>0.
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TaBLE 1: The values of MSE and EB of ML and Bayesian estimates for A based on the different Type-II unified PHCSs.

Ay
(n, m, k) Sch. (T), T,) At 2 g A e Ass
P NIP P NIP P NIP
MSE
(5020.10) 1 0.2637 0.2075 0.2341 0.1954 0.2191 0.1999 0.2247
o 2 0.2823 0.2215 0.2516 0.2083 0.2353 0.2133 0.2414
1 0.2192 0.1891 0.2053 0.1837 0.1989 0.1851 0.2006
(50,30,15) (5,10)
2 0.2193 0.1899 0.2064 0.1854 0.2010 0.1861 0.2020
(5040.20) 1 0.2009 0.1794 0.1920 0.1768 0.1889 0.1768 0.1890
o 2 0.1996 0.1782 0.1904 0.1751 0.1869 0.1755 0.1873
(50.20.10) 1 0.2382 0.1868 0.2107 0.1759 0.1972 0.1799 0.2022
o 2 0.1949 0.2158 0.2333 0.1875 0.2118 0.1920 0.2406
1 0.1503 0.1331 0.1420 0.1326 0.1412 0.1314 0.1400
(50,30,15) (10,20)
2 0.1672 0.1452 0.1555 0.1419 0.1516 0.1425 0.1523
(50,40.20) 1 0.1672 0.1452 0.1555 0.1419 0.1516 0.1425 0.1523
o 2 0.1877 0.1676 0.1779 0.1633 0.1732 0.1647 0.1747
(50.20.10) 1 0.2144 0.2300 0.2474 0.2531 0.2724 0.2356 0.2534
= 2 0.1754 0.1942 0.2100 0.2186 0.2363 0.2005 0.2165
1 0.1208 0.1320 0.1396 0.1193 0.1271 0.1183 0.1260
(50,30,15) (15,30)
2 0.1098 0.1173 0.1241 0.1311 0.1387 0.1208 0.1278
(50.40.20) 1 0.1505 0.1307 0.1400 0.1277 0.1364 0.1283 0.1371
o 2 0.1770 0.1581 0.1674 0.1539 0.1627 0.1554 0.1643
EB
(50.20.10) 1 0.1102 0.0459 0.0547 0.0086 0.0131 0.0326 0.0397
= 2 0.1178 0.0516 0.0618 0.0141 0.0199 0.0382 0.0465
1 0.0669 0.0265 0.0299 0.0006 0.0021 0.0175 0.0202
(50,30,15) (5,10)
2 0.0642 0.0232 0.0261 0.0033 0.0024 0.0140 0.0162
(50.40.20) 1 0.0515 0.0167 0.0184 0.0065 0.0064 0.0088 0.0099
e 2 0.0527 0.0187 0.0205 0.0039 0.0036 0.0110 0.0122
(50.20.10) 1 0.0992 0.0413 0.0492 0.0077 0.0118 0.0293 0.0357
= 2 0.1060 0.0464 0.0556 0.0127 0.0179 0.0344 0.0419
1 0.0319 0.0030 0.0025 0.0005 0.0019 0.0111 0.0111
(50,30,15) (10,20)
2 0.0480 0.0113 0.0130 0.0030 0.0022 0.0030 0.0041
P 1 0.0464 0.0150 0.0166 0.0051 0.0061 0.0079 0.0089
o 2 0.0474 0.0168 0.0185 0.0035 0.0032 0.0099 0.0110
(50.20.10) 1 0.2071 0.2243 0.2417 0.2484 0.2677 0.2303 0.2480
= 2 0.1674 0.1884 0.2040 0.2138 0.2314 0.1950 0.2111
1 0.0287 0.0027 0.0023 0.0244 0.0254 0.0100 0.0100
(50,30,15) (15,30)
2 0.0470 0.0102 0.0117 0.0119 0.0119 0.0027 0.0037
(50.40.20) 1 0.0520 0.0233 0.0254 0.0044 0.0054 0.0168 0.0184
o 2 0.0510 0.0225 0.0245 0.0036 0.0046 0.0160 0.0176
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TaBLE 2: The values of MSE and EB of ML and Bayesian estimates for 6 based on the different Type-II unified UHCSs.

0,
(n, m, k) Sch. (T), T,) 6,1 0 5 0 45 0y
P NIP P NIP P NIP
MSE
(5020.10) 1 0.0820 0.0604 0.0673 0.0671 0.0674 0.0544 0.0598
o 2 0.0911 0.0671 0.0674 0.0672 0.0675 0.0604 0.0664
1 0.0771 0.0569 0.0634 0.0570 0.0572 0.0512 0.0563
(50,30,15) (5,10)
2 0.0857 0.0632 0.0635 0.0633 0.0636 0.0569 0.0626
(5040.20) 1 0.0758 0.0602 0.0604 0.0603 0.0605 0.0542 0.0596
o 2 0.0842 0.0601 0.0603 0.0602 0.0604 0.0541 0.0595
(50.20.10) 1 0.0738 0.0544 0.0606 0.0604 0.0607 0.0489 0.0538
o 2 0.0820 0.0604 0.0607 0.0605 0.0608 0.0544 0.0598
1 0.0694 0.0512 0.0631 0.0513 0.0515 0.0461 0.0507
(50,30,15) (10,20)
2 0.0771 0.0630 0.0631 0.0631 0.0633 0.0567 0.0623
(50,40.20) 1 0.0682 0.0600 0.0601 0.0601 0.0602 0.0540 0.0594
o 2 0.0758 0.0600 0.0601 0.0600 0.0602 0.0540 0.0594
(50.20.10) 1 0.0664 0.0489 0.0545 0.0544 0.0546 0.0440 0.0484
e 2 0.0738 0.0544 0.0546 0.0544 0.0547 0.0489 0.0538
1 0.0625 0.0461 0.0568 0.0461 0.0464 0.0415 0.0456
(50,30,15) (15,30)
2 0.0694 0.0567 0.0568 0.0568 0.0570 0.0510 0.0561
(50.40.20) 1 0.0614 0.0540 0.0541 0.0600 0.0542 0.0486 0.0535
o 2 0.0682 0.0599 0.0600 0.0540 0.0601 0.0486 0.0593
EB
(50.20.10) 1 0.0555 0.0005 0.0010 0.0006 0.0021 0.0004 0.0005
= 2 0.0617 0.0006 0.0009 0.0005 0.0020 0.0005 0.0006
1 0.0519 0.0034 0.0048 0.0045 0.0059 0.0031 0.0034
(50,30,15) (5,10)
2 0.0577 0.0037 0.0052 0.0048 0.0063 0.0034 0.0037
(50.40.20) 1 0.0526 0.0031 0.0045 0.0041 0.0056 0.0028 0.0030
e 2 0.0584 0.0029 0.0043 0.0039 0.0053 0.0026 0.0028
(50.20.10) 1 0.0500 0.0005 0.0009 0.0005 0.0019 0.0004 0.0005
= 2 0.0555 0.0005 0.0008 0.0005 0.0018 0.0005 0.0005
1 0.0467 0.0031 0.0043 0.0041 0.0053 0.0028 0.0031
(50,30,15) (10,20)
2 0.0519 0.0036 0.0049 0.0046 0.0060 0.0032 0.0035
P 1 0.0473 0.0020 0.0033 0.0030 0.0043 0.0018 0.0020
o 2 0.0526 0.0019 0.0032 0.0029 0.0042 0.0017 0.0019
(50.20.10) 1 0.0450 0.0004 0.0008 0.0005 0.0017 0.0003 0.0004
= 2 0.0500 0.0005 0.0007 0.0004 0.0016 0.0004 0.0005
1 0.0421 0.0028 0.0039 0.0036 0.0048 0.0025 0.0028
(50,30,15) (15,30)
2 0.0467 0.0032 0.0044 0.0041 0.0054 0.0029 0.0032
(50.40.20) 1 0.0426 0.0019 0.0031 0.0029 0.0041 0.0017 0.0019
o 2 0.0473 0.0017 0.0031 0.0026 0.0038 0.0015 0.0017
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TaBLE 3: The ACL of 95% and 99% confidence intervals and corresponding CP for 2 v and 2  at the different priors and Type-II unified
PHCSs.

95% 99%

)
~)
>~]
)
~)
=~]

mk)  Sch.
(m,m, ) ¢ A P NIP At P NIP

(T,,T,) ACL CP ACL CP ACL CP ACL CP ACL CP ACL CP

1 0988 0985 0940 0979 0968 0996 1391 0990 1240 0979 1.257 1.000
(50.20,10) 2 0988 0977 0940 0971 0968 0993 1391 0986 1240 0977 1253 0.989
1 0.800 0981 0761 0973 0.786 0981 1.134 0991 1.003 0988 1.089 0.983
(50,30,15) 2 (5.10) 0.682 0985 0650 0981 0.654 0997 0924 0986 0.820 0982 0.869 0975
(50,40,20) 1 0.532  1.000 0.506 0979 0513 0978 0.758 0995 0.672 1.000 0.716  0.989
2 0410 0986 0384 0977 0509 1.000 0.752 1.000 0.667 1.000 0.711 1.000
1 0.677 0991 0.643 0988 0.675 0995 0954 0976 0849 0980 0.875 0.985
(50.20,10) 2 0.711 0986 0.675 0982 0.707 0989 1.001 0977 0.891 1.000 0917 0978
(50,30,15) 1 (10.20) 0.789 0.995 0.750 1.000 0.775 0983 1.109 0984 0989 0974 1.004 0.989
2 0.800 1.000 0.761 1.000 0.786 0975 1.125 0986 1.003 0.982 1.018 0.984
(50,40,20) 1 0.601 0976 0572 0980 0.583 0989 0.813 0984 0.726 0979 0.727  0.990
2 0793 0977 0754 0997 0777 0972 1.114 1.000 0993 0974 1.006 1.000
1 0541 0984 0514 0974 0544 0985 0.764 0983 0.678 0974 0.710 0971
(50.20,10) 2 0563 0986 0534 0982 0564 0978 0.794 0991 0.705 0987 0.737 0.9%4
1 0.681 0984 0.648 0979 0.673 0989 0938 1.000 0.854 0988 0.703 1.000
(50,30,15) (15,30)
2 0.702 1.000 0.667 0974 0.692 0984 0.969 0978 0.879 0986 0.751  0.995
(50,40,20) 1 0793 0983 0754 0974 0.777 0990 1.114 0992 0993 0992 1.003 0.984
2 0793 0991 0754 0987 0.777 1.000 1.117 0975 0993 1.000 1.032 0.986

TaBLE 4: The ACL of 95% and 99% confidence intervals and corresponding CP for 0 . and 53 at the different priors and Type-II unified
PHCSs.

95% 99%

,mk)  Sch. _
(n,m, k) ¢ O P NIP P NIP

(T,,T,) ACL CP ACL CP ACL CP ACL CP ACL CP ACL CP

1 0269 0963 0249 0943 0263 0945 0405 0992 0354 0990 0375 0.990
(50,20,10) 2 0370 0963 0351 0944 0354 0945 0512 0991 0456 0990 0.466 0.989
(50,30.15) 1 (5.10) 2447 0969 2379 0950 2282 0950 2.699 0983 2478 0.983 2385 0.980
2 2.757 0953 2749 0945 2503 0923 3.019 0965 2845 0976 2595 0951
1 4188 0973 4073 0955 3904 0953 4536 0982 4170 0982 4.004 0.978
(50.40,20) 2 4276 0978 4.151 0957 3994 0960 4.629 0984 4246 0984 4.093 0.980
1 0326 0986 0298 0965 0322 0968 0505 0995 0437 0993 0473 0.993
(50.20,10) 2 0.309 0982 0283 0962 0305 0964 0480 0995 0416 0994 0449 0.993
(50,30.15) 1 (10.20) 0294 0964 0276 0942 0285 0948 0428 0988 0378 0986 0392 0.987
2 0437 0962 0414 0942 0418 0945 0577 0988 0515 0986 0525 0.987
1 4574 0984 4469 0963 4244 0966 4944 0993 4565 0991 4344 0991
(50.40,20) 2 4564 0987 4523 0966 4169 0969 4933 099 4619 0994 4269 0.9%4
1 0395 0983 0361 0965 0392 0963 0.609 0995 0.526 0994 0572 0993
(50,20,10) 2 0378 0985 0346 0967 0375 0965 0584 0995 0504 0993 0548 0.994
1 0280 0968 0261 0948 0273 0950 0423 0990 0372 0988 0390 0.988
(50,30,15) (15,30)
2 0287 0967 0268 0949 0279 0948 0427 0990 0377 0989 0393 0.988
1 2774 0976 2940 0956 2343 0957 3.041 0991 3.037 0989 2443 0.990
(50.40,20) 2 2402 0973 2644 0953 1931 0955 2648 0991 2741 0989 2.031 0.990
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TaBLE 5: The real data.
1.2 2.1 2.6 2.7 2.9 2.9 4.8 5.7 59 7.0 7.4 15.3 32.6 38.6 50.2
Upon combining (16) and (39), given UPHCS, the o
Bayesian predictive density function of Y, is obtained as Gy, (1Y) =J Gay., s | X)dy,
* s=1
* les:e:N(ys | X)’ 0<y,< 5, =I'rd* +a,)C — fhel
97,0,0: 1) = { : (a) (@) Coe 2 Gy 7,
gZYs:m, (ys | X)’ Vs > 8’ ~ ~
X [11 (X) +R, InT;+R, InT,
where —(n+b + W, ) In8+ W, Int+1Inay] @),
(44)

I‘VS 00
iy (1Y) = j j gy, (. 1Y)7 (1,6 Y)dAdo
0JO

s=1

C
=T d* +a, +1)Cy Y ——— L
! N,S}g(:)%(n-'—bl + Wh,s)ys

X {11 (X) + Rt, InT, + th InT,

>

—(d"+a,+1)
—(n+b1)1nys+lna2] o

(o]

S5
Gy, (1Y) = j j gy (1Y) (1,01 Y)dAd0

q-1
C
=r'rd 1)Cy, Y —— b
(@ +a+1) NQ;;)(" +by + W)y,
X {17 (X) + Rt‘ InT, + th InT,

d"+a,+1)

~(n+b+ W, )Ind+ W, Iny +In a,] .
(42)

From (41), we simply obtain the predictive survival func-
tion of Y., given UPHCS, as

*

Gy, (t1Y), 0<t<§,

G;s:e;{\/ (t | X) = J g*(ys | X)dys = .,
t Gy (1Y), t>6,

(43)
where

d,

GIYd:N(t | X) = J gTYS;zN (ys | X)d)’s + J g;Ys:z;N (ys | X)dys
0, %
s—=1
C
=I'r(d* +a,)C b
( +a1) N,S%(n+bl)(}’l+bl +Wh,s)Wh’5

X {(n +b+ W) [’7<X> +l~2t1 InT, +l~2,2 InT,

—(d"+ay)
—(n+b)) ln6+lna2]

- Wi [q(z) + Rtl InT, + th InT,

—(d"+ay)
—(n+b1)lnt+lna2] }

The Bayesian point predictor of Y ,.y, 1 <s<m, under
the squared error loss function is the mean of the predictive
density, given by

00
YS:E:N :J ysg;ﬂ:w( s |X)dy5, (45)
0

where g3 . (v, 1Y) is given as in (41).

The Bayesian predictive bounds of 100(1-a«)% ET
interval for Y o, 1 <s<m, can be obtained by solving the
following two equations:

s [0 — o
Gy, (Ler 1Y) = S andGy | (Upr|Y)=1-2,  (46)

where G . (t1Y) is given as in (43), and Ly; and Uy

N

denote the lower and upper bounds, respectively.

7. Simulation Study

In this section, we present a simulation study to compare the
performance of the classical ML and Bayesian estimation
procedures under different Type-II unified PHCS. Extensive
computations were performed using the statistical software
maple.

Firstly, we show how we generate Type-II unified PHC
data from Pareto distribution. For given values of #, m, T,
T,, and R=(R,,--,R,,). We will use the transformation
which was suggested by Balakrishnan and Aggarwala in
[28] to generate Type-II progressive censored data from
Pareto distribution. Let the generated Type-II PC data is (
Yimms Y2,mm '”’ym,m,n)’ ifym,mn <T,, wesetR, =0 and use
the transformation which was suggested by Ng et al. in
[29] to generate R, order statistics from left truncated
Pareto distribution with truncated value Vimn- NOW, we m
Type-II progressive censored data and R,, order statistics

as the fOHOWiIlg (yl,m,n’ Yomms s Ymmn> YV 1,00 ym+Rm,n)'
Then, we determined the termination time of the experi-
ment and the corresponding observed Type-II unified PHC
data as shown in Section 2.
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TasLk 6: The different Type-II unified HPCS with (m, k) = (9, 6) and different choices of T, and T,.

Schemel

Scheme2

Scheme3

Scheme4

(t 1) =(2,4)
T* = Xpom
d =6
Y =(1.2,2.1,2.6,2.7,2.9,4.8)
R=(0,0,2,0,0,7)
(R,,R,)=(0,0)
(t1, 1) =(3,6)
T =t,
d =7
Y =(1.22.1,2.62.72.94.85.7)
R=(0,0,2,0,0,2,0)
(Ris R ) =(0,4)
(ti 1) =(6,12)
T* = X
d =9
Y =(1.22.12.62.7,2.9,4.8,5.7,7.0,7.4)
R=(0,0,2,0,0,2,0,0,2)
(R;sR,)) =(0,0)
(t1, 1) = (10,20)
T" =t
d =9
Y =(1.2,2.1,2.6,2.7,2.9,4.8,5.7,7.0,7.4)

R=(0,0,2,0,0,2,0,0,0)
(iz,l , f%z) =(2,0)

TaBLE 7: The ML and Bayesian estimates of A based on the different Type-II unified PHCSs from real data.

~

Sch. A

>)

BS
Ip NIP

Ay
ABE

>)

BL
1P NIP IP NIP

0.3831 0.3504 0.3192
0.4320 0.3964 0.3780
0.5140 0.4641 0.4569
0.4898 0.4493 0.4408

W N =

0.3108 0.2718 0.3458 0.3142
0.3620 0.3378 0.3919 0.3730
0.4280 0.4143 0.4586 0.4505
0.4177 0.4043 0.4446 0.4355

We simulate Type-II unified PHCS for different combi-
nations for a sample of size n =50, with different values of
m =2k, and T, = 2T, from the Pareto distribution. For con-
venience, we consider the true values of the unknown
parameters as A =1 and 0 = 3.

For the point estimate, we computed the ML estimate
and Bayesian estimates of A and 6, under SELF, LLF
(with €=0.5), and GELF (with w=0.5) using informative
prior (IP) and non-informative priors (NIP) values for
the mean square error (MSE) and the estimated bias
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TaBLE 8: The 95% and 99% confidence intervals estimates of A based on the different Type-II unified PHCSs from real data.

95% 99%

Sch. 0 Ap ~ Ap
ML IP NIP Ao IP NIP
LB UB LB UB LB UB LB UB LB UB UB
1 0.2494 0.7597 0.1362 0.6639 0.1037 0.6539 0.1474 0.8618 0.0973 0.7995 0.0688 0.8041
2 0.3453 0.9182 0.1774 0.7020 0.1520 0.7052 0.2308 1.0328 0.1339 0.8299 0.1100 0.8456
3 0.3453 0.9182 0.2186 0.8005 0.1972 0.8237 0.2308 1.0328 0.1683 0.9395 0.1468 0.9785
4 0.3113 0.7802 0.2209 0.7575 0.2016 0.7721 0.2175 0.8740 0.1728 0.8834 0.1534 0.9100
TaBLE 9: The ML and Bayesian estimates of 6 based on the different Type-II unified PHCSs from real data.
O

Sch. Omr 055 Oe O

1P NIP 1P NIP IP NIP
1 1.2000 1.0093 0.9623 0.9092 0.8674 1.0009 0.9499
2 1.2000 1.0093 0.9623 0.9092 0.8674 1.0009 0.9499
3 1.2000 1.0551 1.0317 0.9501 0.9292 1.0501 1.0251
4 1.2000 1.0522 1.0284 0.9475 0.9262 1.0471 1.0217

TaBLE 10: The 95% and 99% confidence intervals estimates of 0 based on the different Type-II unified PHCSs from real data.
95% 99%
5 0 5 6
Sch. B B
‘ O 1P NIP Oan Ip NIP
LB UB LB UB LB UB LB UB LB UB LB UB

1 0.4985 1.3143 0.5297 1.1950 0.3840 1.1937 0.3126 1.3189 0.3126 1.1990 0.1676 1.1987
2 0.4985 1.3143 0.5297 1.1950 0.3840 1.1937 0.3126 1.3189 0.3126 1.1990 0.1676 1.1987
3 0.6346 1.3158 0.6842 1.1962 0.6056 1.1956 0.4961 1.3192 0.4961 1.1992 0.4009 1.1991
4 0.6297 1.3156 0.6792 1.1961 0.6022 1.1954 0.4944 1.3191 0.4944 1.1992 0.4030 1.1991

(EB) for each estimate. We construct also the average
confidence length (ACL) and the coverage probabilities
(CP) of the 90% and 95% asymptotic confidence intervals
and Bayesian credible intervals for A, and 6y, using 1,000
simulations.

We take the different censoring schemes as follows:

(1) Scheme 1 R, =R, =n—-m/2,R;=0 for all i # k, m.

(2) Scheme 2 R, =R, =n—-m/2,R;=0 for all i # 1, m..

The average estimates, MSE and EB for ML and Bayesian
estimates of A and 6, have been reported in Tables 1 and 2,

respectively, also, Tables 3 and 4 are present the ACL of 90
% and 95% confidence intervals with corresponding CP for

A and 6, respectively.

8. Numerical Example

In this section, we use the real data set to show the perfor-
mance of the inferential results established for the Pareto
distribution based on the Type-II unified PHSC, in addi-
tion to comparing ML and Bayesian estimates through
Monte Carlo simulations. This real data set contains the
failure times (in hours) of one plane’s ac system from a
pair of real data sets collected by Bain and Engelhardt
[30]. Moreover, Guo and Gui [31] demonstrated that these
data sets closely matched the inverse Pareto distribution.
For further proceeding, before using these data, we ran
Kolmogorov-Smirnov (KS) goodness of fit tests to see if
they followed the Pareto distribution or not. For these data
sets, the KS test statistics with their related p-values are
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TasLE 11: Bayesian point predictor with 95% and 99% ET prediction intervals for Yqu] forg=1,--, ﬁj, with j=1,--, d*,ﬁtl, and fltz.

95% 99%
sh.j g 4 P NIP < P NIP
a:R; LB UB LB UB a:R; LB UB LB UB
3001 5.22 1.883 8.561 1.695 9.417 7.830 3.305 12354 2975 13.590
2 7.61 4271 10.948 3.843 12043 10217 5.692 14.741 5123 16.215
6 1 8.33 4.993 11.671 4.494 12.838 10939 6.415 15464 5773 17.010
2 1219 8.851 15.529 7.966 17082 14798 10273 19322 9246  21.255
1 31809 14750 21427 13275 23570 20696 16172 25221 14555  27.743
4 2224 18903 25581  17.013  28.139 24849 20325 29374 18292 32311
52679 23449 30127 21104 33139 29396 24871 33920 22384  37.312
6 3363 30295 36972 27265  40.669 36241 31716 40765 28545  44.842
7 6251 59169 65847 53252 72431 65116 60591  69.640 54532  76.604
30001 7.39 4.046 10724 3.642 11.796 9.993 5.468 14517 4921 15.969
2 1090 7.557 14234 6801 15658  13.503 8.979 18.028 8.081 19.830
6 1 1258 9.242 15.920 8318 17512 15189 10664  19.713 9.598 21.684
2 1888 15546 22224 13992 24446 21493 16968 26017 15271 28619
2 b 1 1178 8.444 15.122 7.600 16.634 14391 9.866 18.915 8.880 20.807
2 1716 13822 20499 12440 22549 19768 15244 24293 13719 26722
32307 19726 26404 17754  29.044 25673  21.148 30197  19.033 33217
4 3068 27337 34014 24603 37416 33283 28759  37.808 25883  41.589
3001 9.04 5.706 12384 5136 13622 11.653 7.128 16.177 6.415 17.795
2 1443 11093 17.770 9.983 19547  17.039 12514 21563 11263  23.720
s 6 1 1044 7105 13.783 6.395 15161  13.052 8.527 17.576 7.675 19.334
2 1541 12070 18747  10.863  20.622 18016 13492 22541 12142  24.795
9 1 1666 13325 20002 11993 22003 19271 14747 2379 13272  26.175
2 2615 22815 29492 20.533 32441 28761 24236 33286 21813  36.614
31 2313 19791 26468 17811  29.15 25737 21212 30261  19.091 33287
2 3814 34798 41475 31318 45623 40744 36220 45269 32598  49.796
6 1 1779 14453 21131  13.008 23244 20400 15875  24.924 14288 27417
4 2 2671 23369 30046  21.032 33051 29315 24790  33.839 22311  37.223
f, 1 3114 27800 34477 25020  37.925 33746 29222 38271 26299  42.098
2 3699  33.648 40325 30283 44358  39.594 35070 44119 31563  48.530

more than 0.05, so we can assume that these data sets fol-
low Pareto distribution at a 0.05% level of significance.
This real data are ordered in Table 5.

We will use these data to generate the Type-II unified
PHCS, suppose m=9, k=6, R;=2 for i=3,6,9, and R; =0
otherwise with different values of T, and T, with T, =2 T),.
Table 6 shows different Type-II unified PHCSs.

After generating the Type-II unified PHC data with the
different unified PHCS, we ran KS goodness of fit tests for all
Type-II unified PHC data to see if they followed the Pareto
distribution or not. For all these Type-II unified PHC data sets,
the KS test statistics with their related p-values are more than
0.05, so we can assume that these data and all generated Type-

IT unified PHC data sets from it follow Pareto distribution at a
0.05% level of significance.

Based on the Type-II unified PHCS and two different
choices IP and NIP priors, the ML and Bayesian estimates
for the unknown parameters A and 6 are presented in
Tables 7 and 8. Moreover, the 95% and 99% asymptotic con-
fidence intervals and the credible intervals are presented in
Tables 9 and 10. Finally, Tables 11 and 12 present the point
predictor with 95% and 99% Bayesian prediction bounds of
Y.,y from the future progressively censored sample of size
€ =10 from a sample of size N = 20 with progressive censor-
ing scheme S = (0,2,0,2,0,2,0,2,0,2) for four different choices
of censoring schemes.
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TaBLE 12: Bayesian point predictor with 95% and 99% ET prediction intervals for Y, for s=1, ---, 10.
95% 99%
Sch. s v 1P NIP v 1P NIP
5:10 LB UB LB UB 5:10 LB UB LB UB

1 1.225 0.629 2.026 0.389 3.037 1.343 0.484 2.185 0.231 3.694
2 1.573 0.740 3.088 0.479 5.541 2.532 0.600 3.665 0.310 8.146
3 2.438 0.873 5.082 0.591 11.350 7.103 0.744 6.832 0.417 21.238
4 4.613 1.018 8.538 0.720 23.780 19.710 0.906 13.182 0.548 57.920

) 5 12.188 1.193 16.670 0.881 62.358 59.551 1.105 30.852 0.720 214.386
6 32.653 1.382 34.263 1.062 174.841 151.749 1.320 77.551 0.921 878.949
7 111.072 1.633 96.664 1.290 789.276 431.175 1.595 290.979 1.181 6816.226
8 322.752 1.956 311.634 1.536 4.3E+03 1.0E+03 1.940 1.3E+03 1.467 6.9E+04
9 1.4E+03 2.547 2.9E+03 1.856 4.4E+03 3.3E+03 2.570 2.2E+04 1.839 6.0E+06
10 4.8E+03 3.582 5.6E+04 2.504 5.7E+04 8.6E+03 3.683 9.3E+05 2.497 6.2E+06
1 1.206 0.700 1.860 0.484 2.545 1.187 0.598 1.908 0.363 2.732
2 1.431 0.797 2.612 0.566 4.036 1.454 0.698 2.782 0.441 4.653
3 1.793 0.913 3.885 0.667 6.960 1.995 0.819 4.345 0.539 8.782
4 2.373 1.040 5.853 0.780 12.137 3.163 0.954 6.914 0.653 16.897

) 5 3.790 1.194 9.924 0.921 25.074 6.966 1.120 12.597 0.799 39.717
6 7.234 1.362 17.479 1.079 54.221 17.287 1.302 24.036 0.966 99.035
7 21.806 1.586 39.621 1.279 168.944 59.018 1.538 61.060 1.184 378.186
8 69.039 1.873 99.508 1.502 599.893 179.077 1.833 174.902 1.430 1.7E+03
9 427.945 2.388 591.669 1.803 7.7E+03 881.013 2.358 1.3E+03 1.766 3.3E+04
10 2.0E+03 3.269 6.2E+03 2.135 8.0E+03 3.3E+03 3.257 1.9E+04 2.139 3.5E+04
1 1.200 0.764 1.733 0.565 2.238 1.180 0.686 1.743 0.467 2.303
2 1.379 0.851 2.295 0.642 3.258 1.367 0.775 2.348 0.542 3471
3 1.641 0.953 3.184 0.734 5.067 1.656 0.880 3.334 0.633 5.649
4 2.000 1.063 4.458 0.835 7.939 2.094 0.995 4.793 0.735 9.305
5 2.660 1.195 6.877 0.959 14.269 3.082 1.133 7.660 0.863 17.860

3 6 3.871 1.338 10.937 1.096 26.567 5.320 0.261 12.676 0.261 35.781
7 7.978 1.526 21.416 1.268 66.594 14.177 0.388 26.261 0.328 99.524
8 20.791 1.762 45.575 1.457 185.146 41.922 0.262 59.676 0.262 312.094
9 135.939 2.175 198.062 1.710 1.5E+03 250.632 2.118 291.317 8.937 3.1E+03
10 7.5E+02 2.857 1.4E+03 1.992 1.5E+03 1.2E+03 2.783 2.4E+03 1.970 3.2E+03
1 1.200 0.758 1.744 0.562 2.250 1.179 0.681 1.753 0.467 2.306
2 1.383 0.845 2.314 0.637 3.266 1.369 0.769 2.361 0.540 3.449
3 1.650 0.947 3.213 0.728 5.058 1.654 0.874 3.347 0.629 5.550
4 2.010 1.059 4.500 0.830 7.878 2.063 0.989 4.797 0.730 9.016

4 5 2.651 1.195 6.943 0.954 14.051 2.896 1.131 7.634 0.857 16.999
6 3.762 1.343 11.034 1.093 25919 4.621 1.288 12.564 1.000 33.356
7 3.762 1.343 11.034 1.093 25919 11.211 1.491 25.852 1.186 90.282
8 18.076 1.791 45.946 1.468 176.052 32.499 1.742 58.240 1.398 273.941
9 121.989 2.232 200.630 1.740 1.4E+03 212.132 2.180 281.921 1.694 2.6E+03
10 7.2E+02 2.969 1.4E+03 2.051 1.4E+03 1.1E+03 2.906 2.2E+03 2.035 2.7E+03
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Since R; =0, then y, = 1.2 is not removed from censored
data in all Type-II unified PHCS, and since 0,,; =y, so that
0, = 1.2 in all four Type-II unified PHCS.

9. Conclusions and Discussion

From Tables 1 and 2, we observe that the MSEs of the Bayes-
ian estimates based on the LINEX, GE, and SE loss functions
are smaller than those of the ML estimates. Furthermore, the
MSEs and EBs of all estimates decrease with increasing m
and k when T, and T, are fixed. Also, the MSEs and EBs
of all estimates decrease with increasing T, and T, when
m and k are fixed. Moreover, a comparison of the results
for the informative priors with the corresponding ones for
non-informative priors reveals that the former produces
more precise results.

From the results in Tables 10 and 11, we notice that the
point predictor of mean is between the upper and lower
bounds of the prediction intervals. Additionally, as we would
expect, a comparison of the results for the informative prior
with the corresponding ones for non-informative prior
reveals that the former produces more precise results,
because the interval length in the informative prior case is
short than in non-informative case. Moreover, the 95% pre-
diction intervals seem to be more precise than the 99% pre-
diction intervals, Finally when we use the same value of T,
and T, but increasing k and m. , the Bayesian prediction
bounds become tighter as expected since the duration of
the life-testing experiment is longer in this case.
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