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Abstract

High resolution, system-wide characterizations have demonstrated the capacity to identify genomic regions that undergo
genomic aberrations. Such research efforts often aim at associating these regions with disease etiology and outcome.
Identifying the corresponding biologic processes that are responsible for disease and its outcome remains challenging.
Using novel analytic methods that utilize the structure of biologic networks, we are able to identify the specific networks
that are highly significantly, nonrandomly altered by regions of copy number amplification observed in a systems-wide
analysis. We demonstrate this method in breast cancer, where the state of a subset of the pathways identified through these
regions is shown to be highly associated with disease survival and recurrence.
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Introduction

Biologic phenotypes emerge as a consequence of genes

interacting through complex networks. Oncogenesis has been

shown to be dependent on biologic networks that control processes

such as apoptosis, senescence, proliferation, and angiogenesis

[1,2]. However, it is clear that current knowledge of which

processes influence diverse cancer phenotypes is incomplete. This

is especially true when it comes to understanding processes

associated with disease outcome.

A complex collection of genomic alterations occur during tumor

cell evolution, including mutations, translocations, and copy

number alterations. For example, genome-wide analysis of breast

tumors by numerous techniques have reproducibly demonstrated

recurrent patterns of copy number alteration (CNA)

[3,4,5,6,7,8,9,10,11]. The expression of genes within these altered

segments has been demonstrated to be correlated with the copy

number state of the region [3,9,12,13,14,15,16,17,18,19]. How-

ever, it is unclear whether these recurrent patterns represent the

most important set of CNAs or represent only a subset of key

regions.

Patterns of copy number alteration have proven valuable in

classification of cancer subtypes and can serve as predictors of

patient outcome [19]. These alterations target genes that influence

networks that provide the tumors with a selective advantage over

cells of normal composition. Given their association with outcome,

it is likely they also influence processes that drive clinical

phenotypes and response to interventions.

Identifying the processes targeted by the regions identified

through system-wide analysis is complex. For example, copy

number-altered regions contain large numbers of genes. There is

also a tremendous degree of between-individual heterogeneity in

the inventory of regions found to be altered.

Work by others to identify processes underpinning complex

traits has combined inherited variants and network analysis to map

multifactorial, heterogeneous disease phenotypes [20]. In this

work, the authors extend traditional gene mapping approaches by

including putative gene interactions to address heterogeneity.

Others have examined multidimensional data sets that include

different genome-scale measurements simultaneously in the

context of pathways [21,22,23].. They apply statistical method

to measure pathway enrichment and use gene-expression data to

assess variation of pathway activity. Through such analyses they

hypothesize new cell functions.

In the work presented here, we compliment and extend these

approaches to systematically analyze somatic CNAs to identify

biologic networks underpinning cancer phenotypes. We demon-

strate the method using the breast cancer data set of Chin et al

[24]. We identify altered pathways differentially targeted by copy

number aberrations.

Similar to previous approaches, we addresse the heterogeneity

of patterns by recognizing that differing patterns of CNA may

represent alternative routes that cancer cells may take to alter the

same core set of common biologic processes. The apparent

heterogeneity in map location associated with CNAs may simply

reflect the fact that the genes comprising a given network are
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distributed throughout the genome. We therefore test whether

individual canonical pathways are non-randomly targeted across

copy number change regions. In contrast to previous approaches,

we leverage existing network structure as opposed to de novo

creating networks. The network interaction structure for these

canonical networks is then leveraged for mapping phenotypes. We

utilize previously described methods [25] to determine whether

altered state of non-randomly altered processes can predict patient

outcome.

Results

Chin et al. have previously reported genome-wide copy number

and gene expression analysis of 145 primary breast cancer tumors

[19]. These alterations were determined using genome BAC array

CGH [26,27,28,29] comprised of 2464 BACs selected at

approximately mega base intervals along the genome as described

previously [26,28]. Utilizing this data set and the process described

in Materials and Methods, the gene content of each segment

described in Chin et al. was identified.

Canonical biologic network structure information and gene

content was obtained from public sources [30,31,32].A total of 565

canonical pathways were examined. These pathways represent

collections of interactions that are subsets of larger biologic

networks curated to capture specific functions. Therefore, their

gene content is not unique. The gene content of these pathways

ranges dramatically. For example, as the pathway ‘‘degradation of

the RAR and RXR by the proteasome [33]) contains only 2 genes

while IL12 Signaling Pathway’’ [34,35,36])contains 80.

To account for heterogeneity of gene involvement when analysis

is performed using a network model we define a new statistical

metric (described in equations (2.5) and (2.6) in Materials and
Methods). Significance for each pathway across samples was

assessed using the Fisher’s Omnibus [49] and adjusted for multiple

comparisons using the Bonferoni method.

Applying the methods to the data provided by Chin et al., we

identify pathways in which the genes altered by CNAs are highly

significantly over-represented when compared to random expec-

tations (Table S1).

To illustrate the diverse over-representation patterns for a given

network we present the CNA events associated with the pathway

‘‘CDC25 and CHK1’’ [37] (Figure 1). In the figure, gene

amplification is denoted through a purple square and gene

deletion through black squares.

As Figure 1 demonstrates, no single gene within the pathway

appears to be the differential target of CNA across the 18 breast

cancer samples shown… or when examined across the remaining

127 individuals in the study.

On the other hand, we can see that the pathway, as a unit, is

targeted in almost every subject in the panel (the entire panel of

subjects for this pathway is included in Table S2). Note, the metric

(see Materials and Methods) compensates for pathway size.
As such, to obtain a significant p-value, larger pathways need to

accumulate a larger number of gene amplifications or deletions.

We next assessed whether the networks identified by over-

representation of CNA are associated with disease outcome. Using

pathway activity and pathway consistency scores [26], we clustered

the individuals according to their pathway metrics and performed

survival analysis. When we stratify the patients to two groups, we

can draw the survival curves and check to see if they separate the

population in a significant manner (Figure 2).

Iterating over the collection of hundreds of pathways, we find 29

pathways that meet significance criteria of p,0.05 (Table S3).

However when adjusting for multiple testing using the Bonferroni

method only two pathways significantly targeted by genomic

alterations are also highly associated with survival;’’‘‘Hypoxic and

oxygen homeostasis regulation of HIF-1-alpha’’ [38,39,40], and

Glycosaminoglycan degradation [refs].

An alternative approach to adjusting for multiple comparisons

for assessing significance is to validate findings those pathways that

show marginal significance across data sets. Two public data sets

with expression data and disease outcome were selected from the

Gene Expression Omnibus database (http://www.ncbi.nlm.nih.

gov/geo) [41] The first data set (GSE2990) [42] contained 189

individuals. The second (GSE3494) [43] contained 251 individ-

uals. Gene expression in both datasets utilized the Affymetrix

platform for determining gene expression state. Of the original 29

pathways observed to be significantly associated with survival in

Chin et al. [19], 8 were observed to be significant in GSE2990 and

8 were observed to be significant in GSE3494. A total of 4

pathways were observed to be significant in all three data sets.

Concordance among the datasets is more than would be expected

by chance alone.

Discussion

The above results suggest that genes in CNA non-randomly

target processes important for oncogenic state. In the work

Figure 1. Copy Number alterations in 18 subjects in the ‘‘CDC25 and CHK1’’ pathway. Purple rectangles signify gene amplification and
black squares signify deletion. Each column represents a randomly chosen subject with a total of 18 subjects. Each row represents a different gene of
the pathway genes. Different subjects target the ‘‘CDC25 and CHK1’’ pathway through alternating genomic strategies. The pathway as a unit,
however, is targeted throughout the population.
doi:10.1371/journal.pone.0014437.g001
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presented here, we provide a means for objectively identifying the

biologic processes that may be the target of these alterations.

Moreover, the pathways over-represented in these segments show

differences in activity and consistency that is related to cancer

outcome.

The total number of pathways identified as non-randomly

targeted is striking. One possible explanation is the lack of

independence of the gene content associated with each pathway.

Hierarchical clustering of the pathways utilizing the p-value

associated with the non-random targeting (Table S4) confirms that

pathways with related names commonly cluster with high

correlation (r.0.5, data not shown). Inspection of the pathway p-

values across individuals shows tremendous variability (Table S4).

This suggests diverse underlying molecular mechanisms driving

oncogenesis. Unfortunately, no obvious pattern of clustering of

individuals emerges from analysis of pathway-specific variability.

CNA have been previously demonstrated to show association

with patient outcome [44,45,46,47]). In the Chin et al. [19]

individual copy number altered segments showed association with

survival and disease recurrence, but performed unevenly. When

taken as a set, they found that alteration of any of what they

identified as ‘‘recurrent amplicons’’ was associated with reduced

survival duration (p,0.04) and distant recurrence (p,0.01).

The results obtained from pathway-based analysis of the same

data set produce a striking improvement and suggest that

pathways may represent a better way to evaluate recurrent

alterations. Two pathways show a highly significant association

within Chin et al. alone and 4 pathways show significance across

multiple data expression datasets. Because of the high dimension-

ality of systems-wide data, there is always a danger of over fitting.

As such, results from an individual study should be viewed

skeptically. However, the significant concordance across multiple

provides independent validation.

The increased reproducibility and magnitude of the effect

associated with pathway state compared with that observed in the

direct examination of ‘‘recurrent’’ regions may be attributable to

several factors. At a mechanical level, examination of data at the

pathway level permits the information from different regions to be

integrated across the network. The fact that any given recurrent

region is amplified is no longer the critical predictor. What

emerges instead is the importance of sets of altered regions whose

individual members hit different parts of a targeted pathway.

Pathways pre-aggregate the effects of multiple genes. As such, it is

possible to detect multigene interactions that influence cancer

phenotypes but which, if not aggregated in a pathway, might fail to

meet the test of statistical significance in a small dataset.

CNA is only one factor that could be driving pathway

involvement in phenotypes. Many other genomic mechanisms

(e.g. individual gene mutations, epigenetic activation/silencing)

can influence the state of the pathway. As such, the pathways

identified here represent a subset of those likely involved.

Conceptually, it is likely that because the pathway is the

underlying unit of the phenotype, focusing on pathways increases

signal and reduces noise. Genomic alterations that accumulate

during oncogenesis and disease progression occur at random. The

observed coherence likely arises because certain processes must be

altered to arrive at the given phenotype. Apparent genomic

heterogeneity, ‘‘noise’’, arises because there are multiple ways a

pathway can be changed. All of these ways are ‘‘signal’’ from the

perspective of a pathway.

Figure 2. Kaplan-Meier survival curve of the ‘‘CDC25 and CHK1’’ pathway (P-value = 0.04). This pathway, which has been highlighted
through its highly significant p-value as targeted by genomic alterations, is highly significant in its ability to stratify patients’ prognosis. The figure
demonstrates how significant genomic alterations indicate a pathway’s significance as a stratification tool.
doi:10.1371/journal.pone.0014437.g002
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It is possible to speculate that analysis similar to those performed

for copy number alteration to pathway (above) may prove useful

for other genome analyses such as genome-wide mutational

screens or association studies. For example, the complex

mutational patterns seen in the 1672 genes characterized in

human and breast cancer [48] are all observed to mutate genes in

one or more of 6 canonical pathways state identified from gene

expression data which universally differentiates tumor from

normal [25]. Similarly, complex, low odd-ratios haplotype

associations patterns may reflect heterogeneous routes to alter

common pathways. The above observations have several practical

implications in considering next-generation intervention strategies.

First, the networks provide a basis for designing combinatorial

therapies. Examination of the networks, and their activity states,

provides a rational means of determining which combination of

genes need to be targeted in order to alter the state of critical

nodes. It is also interesting that not all alterations in pathways

states influence outcome. This observed difference in effect on

outcome, which may reflect the result of natural experiments by

the tumor, may also prove important in prioritizing which genes

and interactions might be most productively targeted to improve

outcome.

Materials and Methods

Mapping Entrez Gene to Golden Path
NCBI’s Entrez Gene database contains 36470 human records,

25441 of them annotated as protein-coding. For each gene in this

set we used a variety of methods to find its location Golden Path

genome sequence. Version (hg18) of the genome database contains

extensive annotations which we used wherever possible. In some

cases we used BLAT to find genomic locations.

The positions of approximately 18,342 (,54%) genes were

annotated directly in Golden Path’s refLink and refGene tables.

While this is the most straightforward reference, it leaves 18,128

genes unmapped, 6,757 (,18.5%) of them protein-coding.

In cases where a direct gene annotation was not available, we

searched Golden Path’s annotations for the locations of associated

sequences from a variety of sources, listed below in order of

preference:

– mRNA accessions from Entrez Gene’s ‘‘gene2accession’’ table

– cross-referenced accessions from the HUGO database

– cross-referenced accessions from the uniSTS database

– primary representative sequence from associated UniGene

cluster

– mRNA sequences from associated UniGene cluster

– EST sequences from associated UniGene cluster

Accessions were gathered from each of these sources in turn,

and then looked up in various Golden Path annotation tables

(all_mrna, stsMap, clonePos, and all_est). A locally-built database

of mRNA and refseq BLAT results (assembled by Robert Clifford)

was also searched, providing some additional matches. The

resulting genomic locations of the search sequences were

aggregated, and accepted as the gene’s position if the locations

fell within a 3 mb region (3 mb being a somewhat arbitrary cutoff

based on the largest observed refLink-based gene mapping of

approximately 2.3 mb). If a chromosome annotation was available

from Entrez Gene, HUGO, or uniSTS, genomic positions were

only included if they were on the same chromosome. A known

chromosome annotation was required in the case of UniGene

mRNA and EST sequence lookups.

In cases where accession annotations were available but the

positions were not found, we performed our own BLAT searches.

This was necessary for certain classes of accessions which do not

appear in the Golden Path database (e.g. the ‘‘XM_’’ series of

predicted refseqs). If a chromosome annotation was available for

the gene, a BLAT search was run only against that chromosome,

otherwise all chromosomes were searched. Results were aggre-

gated and accepted as the gene’s position if they fell within a

10 mb or smaller region. This is a less strict requirement than

used in the accession-based mapping system, yet it can provide at

least a general position, much more specific than a cytogenetic-

based coordinate (the only mapping information available for

some Entrez Gene entries). If plausible matches were found on

multiple chromosomes, the gene mapping was rejected as

ambiguous.

BLAT results are annotated with one of four categories of

match types, so the annotations may be excluded later if they are

considered too broad. The four categories are:

1. A single perfect match for the query sequence was found.

The ideal mapping result.

2. More than one perfect match for the query sequence was

found.

3. A single near-perfect match (at least 95% but less than 100%

identity) was found.

4. Multiple near-perfect matches were found.

Preferential treatment was given to perfect refseq matches in the

results – i.e. a perfect BLAT match to a refseq was considered the

gene’s genomic position, regardless of the presence of other near-

perfect matches in the results.

If mapping failed by any of the above methods a few crude

methods of last resort were attempted:

1. if a gene was positioned on an NCBI genomic contig

sequence(NC_* series accession, via EG’s ‘‘gene2refseq’’ table),

and a neighboring gene on the same chromosome, arm,

and band could be found in Golden Path, the relative

distance between the two genes in the NCBI sequence

was applied to the Golden Path coordinates to

approximate

its position.

2. If a gene had only a cytogenetic location available, coordinates

of Golden Path-mapped genes with the same cytogenetic

location were aggregated and a union of their position

generated. The resulting mappings are extremely broad but

at least point to a general molecular region which may still be

useful in some circumstances.

Mapping BACs to Golden Path
The second dataset to be mapped to Golden Path consisted of

the set of BACs used in the CGH arrays from Chin et al [24]. As

with the Entrez Gene mapping process, the Golden Path

annotation database contains an ideal table for our purposes,

‘‘bacEndPairs’’, holding the genomic positions of BACs whose end

sequences have both been mapped. However, only approximately

39% of the BACs in our set contain an entry in this table. The

‘‘fishClones’’ table provided mappings for an additional 6% of the

BACs. For the remainder we used BAC-related annotations as a

basis for mapping.

Cancer Networks Alterations
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The NCBI clone registry provided a major source of BAC

annotations. From it, we extracted BAC-related accession, end

sequence, STS and chromosome information. The registry also

provided cross-connections to uniSTS, from which we gathered

additional related accessions. We searched for the resulting

sequences in Golden Path’s all_mrna, clonePos, stsMap, and

all_ests tables. We also took special note of any matches for BAC

end sequences. In addition to the clone registry, we also used

annotations from the UCSF 2.0 arrays (data from http://cancer.

ucsf.edu/array/analysis/), as well as GenBank records referencing

BAC names in the title block. Genome mappings were accepted

for the BACs if they were no longer than 500 kb in length, and

mappings to ambiguous chromosomes were rejected.

For BACs which could not be found using NCBI clone registry

or UCSF array annotations, we attempted a surrogate-based

mapping approach. Chin et als [1] CGH array annotations

provided rough genomic positions (in megabases) whose coordi-

nates aligned most closely with an older genome build, hg16. For

each BAC, we extracted sequence IDs from hg16 which were

annotated as being near this position. Sets of sequences were

extracted from each of the all_mrna, stsMap, and all_est

annotation tables. For mRNAs and STSs, we used sequences

located within plus or minus 5 kb of the target location. For ESTs,

we took sequences within plus or minus 1 kb of the target position.

These extracted sequences were used as surrogates for the BACs,

and looked up in hg18, searching (in order of preference) mRNAs,

STSs, and ESTs. This approach was used to generate hg18

positions for approximately 8.7% of the BACs.

For BACs that could not be mapped to hg18 using any of the

above methods, a second pass was performed to find generate

approximate positions based on interpolated neighboring BAC

locations. For each BAC, we tried to find flanking BACs with hg18

mappings. We then applied relative offsets to the hg18 positions

based on the spacings in the hg16 positions. This was only

required for approximately 1.4% of the BACs.

BAC preprocessing. Two sets of modified genomic positions

are generated for each BAC, which we refer to as expanded and

extended coordinates.

Expanded coordinates are an attempt to compensate for the

many cases where BAC mapping and end-sequence information is

incomplete. They are intended to ensure that all BACs cover a

minimum amount of the genome, and that fully-mapped BACs do

not crowd out BACs having less complete mapping annotations.

This involves expanding mapped BAC coordinates up to

approximately 165kb, which is our observation of the median

size of BACs where both end sequences have been mapped.

Coordinates are not expanded in cases where both end sequences

have been mapped, or if existing mapping information spans

100kb or more. If a single end sequence mapping is known, the

expansion is made away from the anchored end, otherwise the

coordinates are expanded equally in either direction. Collisions

during expansion between closely-mapped BACs are detected and

resolved by a multi-pass process where the available intervening

space is assigned equally between BACs. If expansion in one

direction causes a collision with a neighboring BAC, appropriate

compensatory expansion is attempted in the other direction, unless

that end is fixed by the presence of a known end sequence.

Extended coordinates build upon the expanded mappings by

dividing unassigned regions of the genome between neighboring

BACs. This provides pseudo-tiling coverage of the genome,

allowing any given region to be associated with the most

appropriate BAC in the set. Generating extended coordinates

requires expanded coordinates to be calculated first, to allow the

most equitable assignment of intervening regions.

Expanded and extended coordinates are computed dynamically

based on the BAC membership of the CGH array being worked

with. While the hg16-based CGH arrays were intended to sample

the genome at regular intervals, their computed positions in hg18

are not as neatly spaced. For these purposes the BACs were

arranged as we observed them in hg18.

There are cases where BAC coordinates overlap. In cases where

a BAC is computed to lie entirely within a larger BAC, the smaller

BAC receives the same final coordinates as the larger BAC (it is

essentially considered a duplicate). In cases where a BAC partially

overlaps with another, the coordinates in the overlap region are

left unchanged, and no expansion or extension is performed on the

end with the overlap.

Associating BACs with genes
There are three basic types of intersections between gene and

BAC coordinates:

1. The gene’s mapping falls entirely within the BAC’s mapping.

2. The gene’s mapping lies partly within the BAC’s mapping and

partly outside.

3. The gene’s mapping is larger than the BAC’s mapping.

This can happen for genes with very broad cytogenetically-

derived gene mappings.

Gene-to-BAC associations of the first type are trivial to calculate.

The latter two cases require some additional steps to determine

whether a gene should be associated with a BAC or not.

Associations are generally rejected if the length of the BAC

mapping is less than one-third the length of the gene mapping.

This prevents associations from being formed based on insubstan-

tial overlaps. If the extended set of BAC coordinates is being used,

an association is rejected unless at least 50% of the gene’s

coordinates lie within the BAC’s coordinates. Since in extended

mode BACs tile the genome completely, this step ensures that

genes in border regions will be assigned to one BAC exclusively.

Specific associations of BACs and their genes has been previously

described in Chin et al. [24].

Identifying Genes in Copy Number Altered Regions. In order

to identify the genes in the copy number altered regions it was

necessary to translating BACs coordinate used in the comparative

genomic hybridization (CGH) assays into genome coordinates.

This involved mapping the Entrez Gene database and the CGH

BACs to a common coordinate space (Golden Path human

genome build hg18), and then overlaying the results. These

processes are described in the supplemental material [19].

Mapping Genes to Pathways
We determined the list of genes used in each pathway in by

query of the Pathway Interaction Database [49].

p-value for a pathway’s genomic alterations in a specific
sample

Each pathway network has been taken as a set of genes. That is,

for each pathway, and according to (2.4), we listed the genes which

are members of the pathway.

To determine the probability that a pathway is to be hit by

exactly k hits, we first calculate the probability that the pathway is

randomly hit 0, 1, . . . ,k times. With G genes quantified in a given

platform (for example, a platform that covers the entire genome

will cover roughly G = 24,000), and Ni genes in a pathway i (Ni is

usually between 10–70 genes) we get:

Cancer Networks Alterations
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G~genes in genome

Ni~number of genes in pathway i

Mi~total number of altered genes in sample j

ki,j~number of genes altered in pathway i in sample j

ð2:4Þ

The probability of randomly hitting zero to ki,j genes, given that Mj

genes are altered in sample jis the hypergeometric cumulative

distribution function:

Pi,j~
Xki,j

q~0

Mj

q

� �
G{Mj

Ni{q

� �

G

Ni

� � ð2:5Þ

The associated p-value is therefore defined as:

P-value of pathway i in sample j~pvali,j~1{pi,j ð2:6Þ

p-value for a global pathway targeting across a
population

To be able to statistically quantify genomic targeting of a

pathway across a population of subjects we need to iterate across

the p-values defined in (2.5). This is in effect a combination of one

sided binomial tests. This has been solved by different techniques,

including Fisher’s Omnibus [50], which we are using here. This

test statistics for pathway i is expressed here as:

Fi~{2
X

j log(pvali,j) ð2:7Þ

and the corresponding p-value is:

P-value for pathway i across population~pvali~1{x2 Fi,2dð Þ
ð2:8Þ

where x2 is the Chi-square cumulative distribution function and d

are the number of degrees of freedom (number of samples).

Supporting Information

Table S1 Bonferroni correction was applied on the p-values

calculated using the Fisher Omnibus test in order to address the

problem of multiple comparisons. The value for significance was

assign to be 8.83461025, which is 0.05/566 (when 566 is the

number of pathways). Table S1 shows all 566 pathways calculated

from Chin’s dataset with the p-value calculated via Fisher

Omnibus test. In addition, every p-value was adjusted and

pathway significance was reassigned.

Found at: doi:10.1371/journal.pone.0014437.s001 (0.65 MB

DOC)

Table S2 Table S2 shows the entire panel of subjects for the

following pathway ‘‘cdc25 and chk1 regulatory pathway in

response to DNA damage’’. This pathway is composed of 9 genes.

This table shows the copy number alterations across 145 breast

cancer patient: 21 indicates deletion, 1 indicates amplification and

0 indicates of no significant change.

Found at: doi:10.1371/journal.pone.0014437.s002 (0.19 MB

DOC)

Table S3 Table S3, presented here, shows all pathways that

found to be significant using Kaplan-Meier survival analysis. All of

the pathways presented here were found to be significantly

targeted through copy number alteration using the Fisher

Omnibus test (after correction). All 29 pathways were tested in

two more public datasets obtain from GEO (http://www.ncbi.

nlm.nih.gov/geo). A - activity, C - consistency.

Found at: doi:10.1371/journal.pone.0014437.s003 (0.05 MB

DOC)

Table S4 The table details the Fisher’s Omnibus value for each

pathway. Columns 3 and onward give the detailed p-value

obtained through the Hypergeometric function, as it has been

calculated per patient, per pathway.

Found at: doi:10.1371/journal.pone.0014437.s004 (1.56 MB

XLS)
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