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Purpose: The purpose of this study was to engineer deep learning (DL) models that can
identify myopic maculopathy in patients with high myopia based on optical coherence
tomography (OCT) images.

Methods: An artificial intelligence (AI) system was developed using 2342 qualified OCT
macular images from 1041 patients with pathologic myopia admitted to the Affili-
ated Eye Hospital of Wenzhou Medical University (WMU). We adopted an ResNeSt101
architecture to train five independent models to identify the following five myopic
maculopathies: macular choroidal thinning, macular Bruch membrane (BM) defects,
subretinal hyper-reflective material (SHRM), myopic traction maculopathy (MTM), and
dome-shaped macula (DSM). We tested the models with an independent test dataset
that included 450 images obtained from 297 patients with high myopia. Focal loss was
used to address class imbalance, and optimal operating thresholds were determined
according to the Youden Index. The performance was quantified using the area under
the receiver operating characteristic (AUC), sensitivity, specificity, and confusion matrix.

Results: For the identification of myopic maculopathy, the AUCs of receiver operat-
ing characteristic (ROC) curves were 0.927 to 0.974 for 5 myopic maculopathies. Our AI
system achieved sensitivities equal to or even better than those of junior retinal special-
ists (56.16–99.73%). The diagnosis of it is also interpretable that we provide visual expla-
nations clearly via heatmaps.

Conclusions:We developed a convolutional neural network (CNN)-based DL AI system
for detection and classification of myopic maculopathy in patients with high myopia
using OCT macular images. Our AI system achieved sensitivities equal to or even better
than those of junior retinal specialists.

Translational Relevance: This AI system can be widely applied in sophisticated situa-
tions in large-scale high myopia screening.

Introduction

As medical imaging expands around the world at
an unprecedented rate, more and more data require
human expertise to interpret and classify. Inmany clini-
cal specialties, there is a relative shortage of special-
ists to provide a timely diagnosis. For example, the
extensive application of optical coherence tomography
(OCT) has not been matched by the available ophthal-
mologist to make interpretation of the scans and

refer patients to appropriate treatment centers. Artifi-
cial intelligence (AI), especially deep learning (DL),
shows great potential for identifying, localizing, and
even quantifying pathological features1 in image-based
ophthalmic research.2 As reported by Gu et al.,3 Lin
et al.,4 and Phene et al.,5 a series of applications of
AI systems have achieved outstanding performances
in keratopathy, glaucoma, and cataract on the basis
of images. Sogawa et al.6 and Li et al.7 have demon-
strated that AI has a great value in identifying high
myopia-related lesions in OCT images. For example,
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retinoschisis and myopic choroidal neovascularization
(mCNV) are highly dependent on OCT for accurately
diagnosing. However, retinal disorders of pathologic
myopia (PM) are still challenging to be diagnosed by
OCT images, and AI has not reached its full potential
for screening PM-related retinal damage.

Myopia and high myopia are estimated to affect
around 49.8% (5 billion) people and 10.0% (1 billion)
of theworld population by 2050, respectively.8 With the
progression of high myopia, a proportion of patients
suffered from vision-threatening retinal damage, such
as posterior staphyloma and maculopathy, diagnosed
as PM.9 According to theMeta-Analyses of Pathologic
Myopia (META-PM) classification, a photographic
grading system based on the fundus photographs,10
PM may be more precisely defined as diffuse choroidal
atrophy and other more severe conditions or the
presence of mCNV or lacquer cracks.11,12 The limita-
tions of the META-PM classification were obvious as
the system did not include myopic traction maculopa-
thy (MTM) and dome-shaped macula (DSM), which
were common PM lesions and considered necessary
components for the myopic macular classification.
Given this, we adopted and modified the OCT-based
classification of myopic maculopathy introduced by
Fang et al.11 in this study. There are five subclassifica-
tions corresponding to different morphologies of OCT
images: macular choroidal thinning, macular Bruch
membrane (BM) defects, subretinal hyper-reflective
material (SHRM), MTM, and DSM. (1) Macular
choroidal thinning is defined as choroidal thickness
<62 μm at the subfovea11; (2) BM defects are charac-
terized by a lack of the outer retinal layers, choriocap-
illaris, and the middle-sized choroidal vessels layer in
the OCT images13; (3) SHRM is characterized by the
deposition of hyper-reflective material in the subreti-
nal space on OCT images and is commonly observed
in fibrosis, hemorrhage, choroidal neovascularization
(CNV), exudate, and vitelliform material14; (4) MTM
is an umbrella term to define a group of retinal disor-
ders caused by traction force, including maculoschi-
sis, lamellar or full-thickness macular hole, and foveal
detachment15; (5) DSM is defined as an inward protru-
sion of the retinal pigment epithelium (RPE) with a
maximal height >50 μm above a line connecting the
RPE on both sides outside of the DSM.16 Of these, the
first three cover all the categories of the META-PM,
and the latter two compensate for the above deficiency
of the system.11 These five types of myopic maculopa-
thy are essential to be identified promptly. Additionally,
regular follow-up is necessary for providing dependable
guidance in early treating and judging the prognosis.17
However, the uneven distribution of medical resources
and relatively insufficient number of fundus doctors

lead to a dilemma of screening the patients at high
risk.

In this paper, we developed an AI system to
identify the fivemyopic maculopathy changes (macular
choroidal thinning, macular BM defects, SHRM,
MTM, and DSM) in patients with high myopia. After
that, we test the models on an independent test dataset
that was collected from clinical work. The test perfor-
mance of the AI system was compared with that of
human ophthalmologists in the affiliated eye hospi-
tal of Wenzhou Medical University (WMU, Wenzhou,
China).

Methods

In this study, OCT images from patients with PM
were retrospectively collected in two affiliated eye
hospitals of WMU (Wenzhou and Hangzhou) from
2016 to 2021. High myopia was defined as a refrac-
tive error (RE) <−8.0 diopters (D) or an axial length
(AxL) ≥ 26.5 mm according to the Ministry of Health
and Welfare in Japan.18 Eyes with ocular disorders
other than PMwere excluded, such as posterior uveitis,
diabetic retinopathy, retinitis pigmentosa, congenital
stationary night blindness, and retinal vein occlusion
(detailed standards seen in Supplementary Material).
The studywas conducted in accordancewith theDecla-
ration of Helsinki and approved by theResearch Ethics
committee of the Affiliated Eye Hospital of WMU.
Signed informed consent documentation was obtained
from all participants.

Data Collection for Algorithm Generation

OCT was performed using the Spectralis HRA
OCT (Heidelberg Engineering, Heidelberg, Germany)
instrument. Horizontal and vertical slices through the
fovea are important for detecting myopic maculopathy.
The OCT scanning protocols included simultaneously
horizontal and vertical slices through the fovea, and the
scan length was 6 mm and 8 mm. Through repeated
scanning, the fovea can be located by the fixation point
of the fundus and the tomographic features of the
fovea. OCT images of patients with multiple follow-
ups were not duplicated. Both horizontal and vertical
lines were included for AI development in most cases,
whereas sometimes only one line was chosen in a few
cases due to the poor image quality or failure of cross-
ing the fovea.

We initially screened 1594 eyes of 1090 patients with
PM who were examined at the Affiliated Eye Hospital
of WMU in Hangzhou from May 2016 to May 2020.
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Among these eyes, 55 eyes were excluded for other
eye diseases. In the end, 2342 qualified OCT images
obtained in 1041 patients were selected for AI develop-
ment. These images were split into training and valida-
tion images in a 4:1 ratio. To test the AI system in a real
clinical setting, 450 images obtained from 297 patients
with high myopia recruited in the Affiliated Eye Hospi-
tal of WMU in Wenzhou from June 2020 to January
2021 were selected as an independent dataset according
to the same criteria. The previous training and valida-
tion dataset did not use the test dataset.

For each patient, we obtained the diagnoses from
four clinical experts, two of whom were retina special-
ists and two attending ophthalmologists. For each
OCT scan, the two retina specialists, respectively,
provided five separate decisions for the five classifi-
cations according to the recognized diagnostic crite-
ria (see Supplementary Materials). Then, a standard
diagnosis was defined for each image if the two retina
specialists assigned it the same disease. When there was
disagreement, the results were confirmed by a discus-
sion between the two retina specialists and another
senior specialist. The diagnoses specified by the attend-
ing ophthalmologists were only used to compare the
performance of the AI system.

Deep Learning Methods Development

Our framework uses an ensemble of five classifica-
tion model instances (see Fig. 1) to identify macular
choroidal thinning, macular BM defects, SHRM,
MTM, and DSM. Model development was done on
a PyTorch platform. We used a convolutional neural
network (CNN) architecture named ResNeSt101 to
construct five independent binary classifiers. The

output of each myopic macular lesion classifier ranged
from 0 to 1, representing the probability of the
existence of each classification. Transfer learning can
improve the performance of AI system based on
limited biomedical images.

Due to the class imbalance between positive and
negative classes, we adopted the Focal Loss strategy as
a loss function during training for BM defects, SHRM,
MTM, and DSM detection. Focal Loss is put initially
forward to ease both the imbalance between positive
and negative samples and the imbalance of hard and
easy samples. In the training process, we adapted it to
focus on a sparse set of hard examples and the classes
with fewer images than the other. The two factors of
Focal Loss were manually set according to the distri-
bution of our training set.

The raw OCT images were preprocessed before
being used in the training time. First, we cropped
the regions of interest from the original images and
resized them to the same size. Then, the images were
all normalized according to the mean and variance of
the pretraining dataset. During each training epoch,
the same number of new variations of original images
were produced and took as the inputs of the network.
This online random augmentation helped our system
generalize better while the number of training images
was limited and made our system more robust. The
set of transformations included horizontal flipping,
rotation, cropping, contrast and brightness variation,
and contrast limited adaptive histogram equaliza-
tion. These transformations were adopted with certain
probabilities at each time. The batch size was set to
32 while training the network. The Adam optimizer
was used with an initial learning rate of 0.001, and
set the sizes of all the input images to 342 × 342.

Figure 1. Workflow of the AI system. Workflow of our AI system. Vertical or horizontal macular OCT images from a high myopia eye were
independently subjected to the AI system as the input. Images were processed by five rounds of categorization. The positive diagnoses with
corresponding heat maps and a highlighted output label for the case of macular choroidal thinning were given as the output. AI, artificial
intelligence.
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We optimized the hyperparameters on the validation
dataset and selected the models with the best area
under the receiver operating characteristics (AUCs) in
each category as the final models.

ResNet101 has been proven to perform better than
most mainstream CNN architectures in the ImageNet
classification challenge. ResNeSt is a novel variant of
ResNet with split attention networks, which enables
attention across different feature maps. Specifically, a
squeeze-and-excitation operation was performed on
each cardinal group, and the implementation of the
overall network architecture was optimized to be
computationally efficient.

Gradient-weighted Class Activation Mapping
(Grad-CAM) was used to visualize the activation
regions on a single input image. This approach is
achieved by computing the gradients and use them as
the weights of feature maps.

Evaluation of the AI System

The overall process of our AI system is shown
in Figure 1. Each input image was first preprocessed
and then taken into five independent models. The
system provided the interpretation results like a real
human expert does. The performance of the AI system
was evaluated by sensitivity, specificity, and AUCs.
Heatmaps were also shown to help us intuitively
visualize how the AI system worked. This was done
by gradient-based localization on the feature maps
produced in the process of network inference.

Statistical Analysis

Receiver operating characteristic (ROC) curveswere
analyzed and plotted with the Python packages of
matplotlib 2.2.3 and scikit-learn 0.19.2. The AUCs of
ROC curves, sensitivity, and specificity were used to
assess the performance of the AI models, and the 95%
confidence intervals (CIs) represented theWilson Score
intervals for sensitivity, specificity, and Delong inter-
vals for the AUCs, which were calculated with the R
packages of Hmisc_4.2–0 and pRoc_1.15.3.

Results

Demographics and Baseline Characteristics
of the Datasets

The 2342 images obtained from 1041 patients (1539
eyes) for AI system development consisted of 1903
(81.25%) images showing macular choroidal thinning,
437 (18.66 %) images showing macular BM defects,

Table 1. Demographics and Baseline Characteristics of
the Datasets

Characteristics
Development

Dataset Test Dataset

No. of patients 1041 297
No. of eyes 1539 390

Right 822 (53.41%) 261 (66.92%)
Left 717 (46.59%) 129 (33.08%)

No. of images 2342 450
Age, years 56.16 ± 14.81 54.38 ± 14.18
Gender

Male 330 (31.70%) 106 (35.69%)
Female 711 (68.30%) 191 (64.31%)

Axial length, mm 29.98 ± 2.45 29.70 ± 3.03
Spherical equivalent (diopter) −15.54 ± 5.00 −13.71 ± 5.14

Table 2. Number of Images Included in the Training,
Validation, and Test Sets

Training Validation Test

Classification 0 1 0 1 0 1

MCT 315 1522 79 381 71 379
BM defect 1524 349 381 88 315 135
SHRM 1751 122 438 32 381 69
MTM 1480 388 371 93 283 167
DSM 1776 96 445 25 403 47

MCT, macular choroidal thinning; BM, Bruch membrane;
SHRM, subretinal hyperreflective material; MTM, myopic
traction maculopathy; DSM, dome-shaped macula.

The “0”refers to the negative outcomeof the specific classi-
fication; and 1 refers to the positive outcome of the corre-
sponding classification.

154 (6.58%) images showing SHRM, 481 (20.54
%) images showing MTM, and 121 (5.17%) images
showing DSM. This dataset was divided into train-
ing datasets (80%) for each model training and valida-
tion datasets (20%) for parameter adjustment in each
model. In the independent test dataset, 450 images were
obtained from 395 examinations in 390 eyes of 297
patients. Table 1 and Table 2 reveal the details of the
labels in the training, validation and test datasets, and
other basic information.

The Performance of the AI Models

We developed our architecture in the challenging
context of OCT imaging for ophthalmology. Table 3
reveals that our models trained with 2342 available
training images achieved an AUC of 92.7% to 97.4%
for all myopic maculopathy detection. The AUCs of
ROC curves were 0.927 formacular choroidal thinning,
0.938 for BM defect, 0.927 for SHRM, 0.974 for
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Table 3. The Performance of AI Models

Classification Sensitivity Specificity AUC

MCT 0.905 0.887 0.927
BM defect 0.889 0.848 0.938
SHRM 0.739 0.913 0.927
MTM 0.928 0.905 0.974
DSM 0.745 0.940 0.955

MCT, macular choroidal thinning; BM, Bruch membrane;
SHRM, subretinal hyperreflective material; MTM, myopic
traction maculopathy; DSM, dome-shaped macula.

MTM, and 0.955 for DSM. Focal Loss was used as
the final loss function due to a massive imbalance
between the positive and negative samples in each
category. Some examples that were extremely hard for
the models to learn also gained more attention by
adapting the weighting factor of Focal Loss during
the training (index for Focal Loss was seen in Supple-
mentary Materials Table S3). The hyperparameters of
models were optimized according to their performance
on the validation dataset. A huge number of exper-
iments were done during the process, and we only
selected the models with the best performance on the
mentioned dataset. Table 4 reveals that ResNeSt101
architecture (applying split attention networks) outper-
formed ResNet101 (without split attention networks)

Table 4. Compare the Performance of AI Models With
and Without Split Attention Networks
Classification Model Sensitivity Specificity AUC

MCT ResNet101 0.863 0.901 0.929
ResNeSt101 0.905 0.887 0.927

BM defect ResNet101 0.874 0.879 0.934
ResNeSt101 0.889 0.848 0.938

SHRM ResNet101 0.812 0.824 0.892
ResNeSt101 0.739 0.913 0.927

MTM ResNet101 0.904 0.922 0.968
ResNeSt101 0.928 0.905 0.974

DSM ResNet101 0.638 0.948 0.936
ResNeSt101 0.745 0.940 0.955

ResNeSt, ResNet variant applied split attention networks;
MCT, macular choroidal thinning; BM, Bruch membrane;
SHRM, subretinal hyper-reflective material; MTM, myopic
traction maculopathy; DSM, dome-shaped macula.

in accuracy on image classification. The results show
that our system had good generalization on the test
data set, which was completely independent of the
training and test set, and achieved good sensitivity and
specificity, which was comparable to that of junior
retinal specialized ophthalmologists.

Comparison of the AI Models With Human
Retinal Specialists

We defined a gold standard to evaluate our frame-
work to evaluate the performance of the AI system.

Figure 2. ROC curves of the AI system. (A) The performance of the AI system and ophthalmologists for macular choroidal thinning. (B) The
performance of the AI system and ophthalmologists for macular Bruch membrane (BM) defects. (C) The performance of the AI system and
ophthalmologists for subretinal hyperreflective material (SHRM). (D) The performance of the AI system and ophthalmologists for myopic
tractionmaculopathy (MTM). (E) The performance of the AI system and ophthalmologists for dome-shapedmacula (DSM). AI, artificial intel-
ligence; AUC, area under the curve; ROC, receiver operating characteristic.
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Figure 3. Comparison of the AI models with human retinal specialists. (A) Macular choroidal thinning: AI system (sensitivity= 90.50% and
specificity = 88.70%), junior specialists (94.27% and 89.32%), and senior specialists (99.73% and 92.65%). (B) Bruch membrane defect: AI
system (88.90% and 84.80%), junior specialists (68.84% and 95.23%), and senior specialists (98.28% and 95.23%). (C) Subretinal hyperreflec-
tivematerial: AI system (73.90% and 91.30%), junior specialists (88.52% and 93.48%), and senior specialists (96.62% and 97.34%). (D) Myopic
tractionmaculopathy: AI system (92.80%and 90.50%), junior specialists (89.37%and 90.98%), and senior specialists (97.71%and 96.93%). (E)
Dome-shaped macula: AI system (74.50% and 94.00%), junior specialists (73.29% and 95.25%), and senior specialists (94.79% and 99.25%).
Junior specialists: 3 years of ophthalmic clinical experience; and senior specialists: 9 years of ophthalmic clinical experience.

Figure 4. Confusion matrix of (A) macular choroidal thinning, (B) macular Bruch membrane (BM) defects, (C) subretinal hyper-reflective
material (SHRM), (D) myopic traction maculopathy (MTM), and (E) dome-shaped macula (DSM).

The final diagnosis was determined by examining
the patient’s clinical record based on subsequently
acquired information, using unavailable information at
the first patient visit and OCT scan. For each patient,
we obtained the diagnoses from four clinical experts,
two of whom were senior retina specialists (2 attend-
ing ophthalmologists) and two junior retina specialists
(1 fellow and 1 resident). We compared each of their
performances against the gold standard. The perfor-
mance of the AI system was then compared with the
four reviewers using ROC curve plots (see Fig. 2).
The performance of the AI system is further evalu-
ated through the ROC curves plotted in Figure 2

for each myopic maculopathy condition, respectively
(see Fig. 2). Our AI system achieved sensitivities equal
to or even better than junior retinal specialists (56.16–
99.73%) in BM defect, MTM, and DSM detecting
(see Fig. 3 and Fig. 4). When detecting BM defects,
SHRM, MTM, and macular choroidal thinning in
cases with comorbidities, the AI system did better than
retinal specialists (see Supplementary Fig. S2).

Heatmaps

The AI system provided activation maps that
demonstrate that our system made the diagnosis based
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Figure 5. Heatmaps for macular BM defects, myopic macular
retinoschisis, and dome-shapemacular. (A) An example of amacular
BM defects lesion detected by our AI system. (B) An example of
an SHRM lesion detected by our AI system. (C) An example of
MTM lesion detected by our AI system. (D) An example of a DSM
lesion detected by our AI system. AI, artificial intelligence; BM, Bruch
membrane; SHRM, subretinal hyperreflectivematerial; MTM,myopic
traction maculopathy; DSM, dome-shape macula.

on the correct lesion for diagnosis (seen in Fig. 5).
Regions highlighted with warmer colors represented
those areas more critical for the final class deter-
mination. The myopic maculopathy region of inter-
est (ROI) was captured precisely, and results were
compatible with the judgment of the retinal special-
ist. As for the output of choroidal thinning, accord-
ing to the output labels of the algorithm (i.e. choroidal
thinning/no choroidal thinning), once the choroidal
thinning is detected, a highlighted sentence will appear
at the bottom of the OCT image. Choroid with a
normal thickness or indetectable thinness will not be
recognized (seen in Fig. 6).

Figure 6. Typical case in which AI correctly identified choroidal
thinning. Subfoveal choroidal thickness was measured less than
62 μmmanually.

Discussion

AI systems based on CNNs have been widely
used in the field of medical image diagnoses, such as
diabetic retinopathy,19–21 age-related macular degener-
ation (AMD),22,23 and glaucoma.24 In this study, we
implemented a CNN-based DL systems model that
outperformed junior retinal specialty ophthalmologists
in myopic maculopathy recognition. The heatmaps’
output from our AI system can accurately show the
location and characteristics of the lesions, which is
helpful with targeted diagnosis andmay also reduce the
burden of ophthalmologists by providing them with a
reference. Our application cannot only help speed up
the process and reduce the cost of myopic maculopa-
thy diagnosis but also promote long-term follow-up of
patients with high myopia, which may reduce avoid-
able vision loss. It is particularly useful in areas where
a retinal specialist is not available for a variety of
reasons, such as economic problems or allocation of
medical resources. Further and timely referral to a
retinal specialist can be assigned to those abnormalities
that have been detected by the AI system.

In highly myopic eyes, progressive thinning of
the choroid contributes to the progression from the
normal fundus to diffuse atrophy.11 Macular diffuse
choroidal atrophy (MDCA) is significantly associ-
ated with increased severity of high myopia and
the enlargement of chorioretinal atrophy.11 Various
manual methods have been used to achieve accurate
quantitative measurement, but the work is time-
consuming and cannot be used to promote screening.
BM defects are considered as hallmarks of myopic
CNV-related macular atrophy and patchy atrophy.13
As photoreceptors are absent, BM defects represent
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an absolute scotoma psychophysically and indicate a
significantly lower visual acuity.11 Thus, early detection
of BM defect lesions is essential and regular follow-
up should be carried out. Myopic CNV is a typical
SHRM-associated disease, myopic CNV usually leads
to severe vision impairment and needs timely antivas-
cular endothelial growth factor (VEGF) treatment.14
Prompt treatment is not only for the short-term
improvement of visual acuity, but it also contributes
to a decrease in the prevalence of BM defects.13 As
OCT becomes routine, MTM could be recognized
clearly in daily clinical practice. Several studies have
revealed that the natural course of maculoschisis can
be stable generally, and patients have no subjective
symptoms.25,26 Whereas maculoschisis has a risk for
progression to foveal detachment and full-thickness
of the macular hole, leading to substantial visual
impairment.26,27 For these patients, timely surgical
intervention is crucial for the improvement of visual
function.25,26 DSM occurs in 18.5% of the patients
with high myopia28 and correlates positively with the
severity of myopic maculopathy.29 Although BCVA
seems to remain stable over time, DSM increases
the likelihood of developing multiple complications,
including subretinal fluid, myopic CNV, retinoschi-
sis, etc.30,31 When the bulge height of DSM is more
than 400 μm, the occurrence of subfoveal serous
detachment will be more common.31 Thus, detect-
ing DSM is also vital for avoiding vision-threatening
conditions.

Our AI system was used to identify choroidal
atrophy, and the sensitivity was close to the human
ophthalmologists. The derived models may play an
important role in the diagnosis of MDCA in the future.
Moreover, the AI system showed better sensitivities for
BM defect and MTM than junior retinal specialized
ophthalmologists (see Fig. 2). Our AI system achieved
anAUCof 0.927 for SHRMdetecting, and around half
of the patients with SHRM were diagnosed as mCNV
by examining the patient’s clinical record, whereas
others are identified as macular atrophy or hemor-
rhage. Therefore, our AI system is helpful in the refer-
ral of patients with SHRM for further diagnosis and
treatment. Our AI system achieved an AUC of 0.974
for MTM detecting and outperformed human experts
in some cases, which may be a promising tool in
the follow-up of patients with MTM. The heatmaps
showed that our AI model could accurately identify
the features of myopic maculopathy lesions. There
were several cases in which the AI system had better
performance than human experts (see Supplementary
Fig. S2).

In this study, the proposed ResNeSt101 architec-
ture achieved better accuracy thanResNet101 architec-

ture. ResNeSt architecture applies channel-wise atten-
tion on different network branches to leverage their
success in capturing cross-feature interactions and
learning diverse representations.32 The Focal Loss was
reported to have been designed to prevent the vast
number of easy negatives from overwhelming the
detector during training in which an extreme imbalance
exists between foreground and background classes.33
The application of the Focal Loss in our study also
provided an effective solution for cases in which imbal-
anced data were processed during medical AI train-
ing, especially for the macular choroidal thinning
dataset.

However, our study still has some limitations. There
are still a few images that the AI system cannot recog-
nize well. The following may contribute to miscalcu-
lation: poor image quality, microlesions, and lesions
in the forms that are less frequently appeared in the
training set (see Supplementary Fig. S3). Histogram
equalization and denoising were adopted to optimize
the models. First, our model was trained to focus on
myopic maculopathy but not to recognize other retinal
diseases with similar symptoms. Second, the image
quality also affected the accuracy of diagnosis. Due to
the opacity of the refractive medium, the quality of
the OCT image of high myopia sometimes was low.
For example, the detection of SHRM seems to be less
effective. The misdiagnosed images and corresponding
heat maps were carefully reviewed to determine possi-
ble reasons for misdiagnosis. The potential factors of
false-negative diagnosis include (1) low image quality;
(2) micro-lesions, and (3) lesions under the RPE layer.
For example, false-negative diagnosis may occur when
the image quality is relatively low (e.g. Supplementary
Fig. S4A), when atypical micro-lesions are encountered
(e.g. see Supplementary Fig. S4B), or when the lesions
are located under the RPE layer (e.g. see Supplemen-
tary Fig. S4C). Image quality was the main contrib-
utor to false-positive diagnoses (see Supplementary
Fig. S4D). In addition, this study was conducted in two
medical centers, and multicenter research is the next
step to improve the reliability of our AI systems in the
future.

Conclusion

We showed that various myopic maculopathy
lesions (macular choroidal thinning, macular BM
defects, SHRM, MTM, and DSM) could be screened
and identified using our models developed with DL
based on OCT images. While assisted by our AI
system, as it was developed with high sensitivities
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and specificities, the workload of human experts can
be greatly reduced in the large-scale high myopia
screening.
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