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ABSTRACT

While there are >2 million publicly-available human
microarray gene-expression profiles, these profiles
were measured using a variety of platforms that each
cover a pre-defined, limited set of genes. Therefore,
key to reanalyzing and integrating this massive data
collection are methods that can computationally
reconstitute the complete transcriptome in partially-
measured microarray samples by imputing the
expression of unmeasured genes. Current state-of-
the-art imputation methods are tailored to samples
from a specific platform and rely on gene-gene
relationships regardless of the biological context of
the target sample. We show that sparse regression
models that capture sample-sample relationships
(termed SampleLASSO), built on-the-fly for each new
target sample to be imputed, outperform models
based on fixed gene relationships. Extensive
evaluation involving three machine learning
algorithms (LASSO, k-nearest-neighbors, and
deep-neural-networks), two gene subsets (GPL96–
570 and LINCS), and multiple imputation tasks
(within and across microarray/RNA-seq datasets)
establishes that SampleLASSO is the most accurate
model. Additionally, we demonstrate the biological
interpretability of this method by showing that, for
imputing a target sample from a certain tissue,
SampleLASSO automatically leverages training
samples from the same tissue. Thus, SampleLASSO
is a simple, yet powerful and flexible approach for
harmonizing large-scale gene-expression data.

INTRODUCTION

High-throughput gene expression technologies––especially
microarray (1) and RNA-sequencing (RNA-seq) (2)––have

revolutionized our ability to capture and understand the
large-scale cellular context of many biological systems in
humans and several model organisms (3,4). Fortunately,
due to community-wide norms and funding requirements,
nearly all of the resulting transcriptomes have been
deposited in publicly-available repositories (5–8). For
example, as of 29 January 2020, there are >2 million human
microarray samples from >24k datasets along with about
half as much human RNA-seq data (>583k samples from
∼12k datasets) contained in the NCBI Gene Expression
Omnibus (GEO) database (7,8).

The purpose of these publicly-available data is to enable
other researchers to use published datasets to reproduce
original findings, reuse datasets in new ways to answer new
questions (9), or combine thousands of datasets to build
integrative models (10) towards precision medicine (11).
However, a major hurdle in realizing these goals is the fact
that microarray profiles have been measured using a number
of different platforms that each measure a different number
of pre-defined genes (ranging from a few hundred genes
to ∼20k genes). For instance, the most popular genome-
scale platform Affymetrix Human Genome U133 Plus 2.0
Array (GEO ID: GPL570) accounts for only 22% of the
>2 million samples. The next most popular Affymetrix
Human Genome U133A Array (GEO ID: GPL96) accounts
for another 11% of the samples, but only covers <12k genes.
Therefore, it is a significant challenge to gain insights about
the full complement of genes in the human genome across
the diversity of biological samples and unique experimental
conditions in existing microarray data.

In addition to these researcher-submitted microarray
datasets, concerted effort has also been put into defining
a reduced set of genes that can be measured and then
be used to accurately recover the expression of all the
other genes (12,13). The most prominent example of this
effort is the Library of Integrated Network-Based Cellular
Signatures (LINCS) microarray program (14), which has
shown that measuring 978 ‘landmark’ genes, costing only
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Figure 1. Overview of gene expression imputation. (A) Schematic of the
problem of ‘imputing the expression of unmeasured genes’. A training
dataset is used to fill in the expression values of genes from partially-
measured samples. The six methods (B) and summary of the data (C) used
in this study. The methods are named using a combination of the machine
learning algorithm and biological signal that the method uses.

$5 per sample (15), is sufficient to then use to impute the
expression of all other (tens of thousands of) genes. There
are currently 1.3 million microarray samples in the LINCS
data repository capturing the effect of numerous chemical
and genetic perturbations on gene expression (14).

With either of these massive data collections––the >1
million public transcriptomes from various microarray
platforms or the 1.3 million LINCS profiles––restricting
analysis and integration to the measured genes common to
all platforms/samples will result in a tremendous loss of
valuable data. Therefore, effectively leveraging the full data
compendia on a genome-scale necessitates computational
methods that can use the expression levels of the measured
genes in a partially-measured microarray sample to impute
the expression of all unmeasured genes in that sample
to reconstitute a complete transcriptome (Figure 1A). A
few previous studies have indeed proposed methods to
solve this problem in various settings. Sparse regression
models that use gene-gene correlation signals have been
shown to be effective in imputing gene expression in

samples from the GPL96 (<12k genes) microarray platform
based on samples from the GPL570 (whole-genome)
platform (16). Others have developed methods that use gene
correlations based on low-rank regression (17) and deep
neural networks (18,19), specifically for the LINCS dataset.
These methods rely on training machine learning models
that map the relationship between fixed sets of measured
and unmeasured genes in a specific setting, be it sparse gene-
based regression for the GPL570-96 setting (16) or deep
learning for the LINCS setting (18,19). Methods have also
been proposed to address the problem of identifying the
best reduced set of genes to measure to enable subsequent
imputation of all other genes, again within the scope
of specific large datasets (12,13,20). However, all these
methods lack the flexibility for broad adoption since public
datasets come from many different expression-profiling
technologies, with each measuring the expression of a
different subset of genes in the genome. All current methods
are hard to adapt for imputing unmeasured gene-expression
in an arbitrary experiment since they require training
completely new models for every microarray platform (or
every new reduced gene set design), which, in turn, requires
very large datasets for model-training.

Leveraging gene–gene correlations in data was an
important component of gene expression imputation that
focussed on the related-yet-distinct ‘missing value’ problem
(Supplementary Figure S1), concerned with recovering the
expression values of individual genes that were lost within
a single dataset due to arbitrary technical error in samples,
i.e. filling arbitrary empty cells within a larger data matrix
(21–23). Many methods have been proposed to tackle
this problem (24–30), and, in general, imputing missing
values has been shown to improve downstream tasks
such as clustering, classification, co-expression network
building, and differential expression (31–34). Although
these seminal works on the missing-value problem guide
imputation methods today, the fact that we can now
leverage information from >100k samples at a time to
improve the imputation of unmeasured genes requires a
rethinking of imputation strategies. Thus, it is critical that
new imputation methods select only the most relevant
samples to the target sample, as gene–gene correlations
change across different biological contexts (35).

In this study, we demonstrate that using a sparse-
regression method that leverages information from the most
similar samples provides more accurate predictions than
other methods while also providing a highly interpretable
underlying model. Current state-of-the-art imputation
methods train machine learning models that capture the
relationship of the predetermined set of measured genes to
each predefined unmeasured gene (or set of unmeasured
genes). Then, during imputation in an expression sample
with the same measured/unmeasured genes, these methods
use the pretrained models to impute the expression of
the unmeasured genes. We propose a variant of this
approach that we call SampleLASSO in which, for every
new expression sample to be imputed, a new sparse
regression model is trained on-the-fly that captures the
relationship of this expression sample to all others in the
training set based on the genes measured in that given
sample. We compare our method to four other imputation
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methods based on three different algorithms––k-nearest
neighbors, regularized linear regression, and deep neural
networks––that leverage gene-gene or sample-sample
relationships (Figure 1B). All these methods are evaluated
on imputation within the same-technology (microarray
and RNA-seq), as well as using RNA-seq data to impute
microarray data. The evaluation is carried out for two
different, practical unmeasured gene settings: (i) a
high number of measured genes and low number of
unmeasured genes (GPL96–570 gene subset) and (ii) a
small number of measured genes and large number of
unmeasured genes (LINCS gene subset) (Figure 1C).
Extensive evaluations using multiple accuracy metrics
within a rigorous temporally-split and dataset-preserving
scheme showed that the flexible sample-based imputation
method (SampleLASSO) always shows competitive
performance with the best performing methods, and in
particular is always the best performing method when
using data from one expression platform to impute data
in another expression platform. We also demonstrate the
biological interpretability of this method by showing that,
for imputing a given sample from a certain tissue, the
SampleLASSO model automatically up-weights training
samples from the same tissue type.

MATERIALS AND METHODS

Data

We used gene expression data from both microarray
and RNA-seq technologies. For the microarray data,
we downloaded all human samples from the Affymetrix
Human Genome U133 Plus 2.0 Array from NCBI GEO (8)
as raw CEL files and performed background subtraction,
quantile transformation, and summarization using fRMA
(36) based on a custom CDF (37) mapping probes to Entrez
gene IDs. This yielded 108 205 samples with 19 702 genes.
For the RNA-seq data, we downloaded all 133 776 TPM-
normalized human samples from ARCHS4 (5), and further
processed the data by converting ENST IDs to Entrez
gene IDs for only the genes found in the microarray data.
Genes that could not be mapped this way were discarded
from both microarray and RNA-seq data. This yielded a
total of 16 955 genes. Finally, the RNA-seq data was then
transformed using the inverse hyperbolic sine (archsinh)
function.

We additionally downloaded preprocessed data for 10
gene expression platforms contained in the SEEK database
(38). For each gene expression platform in SEEK, we
constrained the data to only include genes common to
all experiments associated with the platform, and if an
experiment contained any samples with missing values, that
entire experiment was removed. More information on data
processing is provided in Section 1.2 of the Supplemental
Material.

Validation scheme

Subsetting genes. To evaluate the imputation methods,
we chose to split genes into measured and unmeasured
sets to represent two very different practical scenarios
(Figure 1C). First, we considered the situation in which

we have a large number of measured genes that we
could use to impute a smaller number of unmeasured
genes. This scenario presents itself in the problem of
using the 11 678 genes measured in the older human
microarray platform Affymetrix Human Genome U133A
Array (i.e. GPL96) to then impute the expression of an
additional 5 277 genes that are only present in the newer
genome-scale platform Affymetrix Human Genome U133
Plus 2.0 Array (i.e. GPL570) (16). This gene-split is referred
to as the GPL96–570 gene subset in this work. Second, we
considered the situation in which we have a small number
of measured genes that we could use to impute a large
number of unmeasured genes. For this scenario, we used
964 ‘landmark’ genes from LINCS as the measured genes
to impute the expression of all the other genes in the
genome-scale Affymetrix Human Genome U133 Plus 2.0
Array (15 991 unmeasured genes) (14,18). This gene-split
is referred to as the LINCS gene subset in this work.

To determine the set of unmeasured genes to impute
in the data from multiple platforms downloaded from
the SEEK database, we first found genes that were both
common among all ten platforms in SEEK and also
contained in the 16 955 genes from the Affymetrix Human
Genome U133 Plus 2.0 Array and ARCHS4 data we
processed. We used a file that contains the number of
PubMed articles a gene was mentioned in (39) to break this
set of genes up into three categories; highly-, moderately-,
or scarcely-studied genes. We then chose 30 genes from
each of these three sets, resulting in the same set of 90
unmeasured genes to be imputed for all the platforms
contained in the SEEK database. Each platform in SEEK
had a different set of measured genes which was determined
by using genes common between that platform and the 16
955 genes from the Affymetrix Human Genome U133 Plus
2.0 Array and ARCHS4 data we processed, but excluded
any gene in the set of the 90 genes used in the unmeasured
set (Supplementary Table S1).

Splitting samples. We divided the expression samples into
training, validation, and testing sets. The training data was
used to fit the models, the validation data was used for
hyperparameter tuning, and the testing data was used in
the final evaluations of the models (shown in all the figures
in the main text). To mitigate data leakage, we ensured
that entire datasets were assigned to splits, thus keeping
all expression samples from the same experiment (dataset)
together in the same split. The data was also temporally
split, with the oldest expression samples being placed in
the training and validation sets, and the newest samples
going into the test set. To speed up hyperparameter tuning,
which consisted of training >500 000 individual models,
we further subsetted the validation set by taking 10% of
the expression samples from each experiment in the full
validation set (or at least two expression samples, if the
number of samples in an experiment was <20) (see Section
1.2 in Supplemental Material and Supplementary Figure
S2).

For the analysis of imputing data from the SEEK
database, we used the same training data for every platform:
the training data set from the Affymetrix Human Genome
U133 Plus 2.0 Array described above. For each platform in
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SEEK, we generated a test set from 90 randomly selected
samples contained in that platform to ensure that both
sample- and gene-based methods had the same number of
examples to predict during testing.

For all imputation methods, we standardized each
feature in the training set by subtracting the mean and
dividing by the standard deviation of the given feature.
Correspondingly, each feature in the validation and test sets
was standardized using the mean and standard deviation
obtained from the training set.

Imputation methods

In this study, we evaluated imputation methods using four
distinct machine-learning algorithms: k-nearest neighbors
(KNN), least absolute shrinkage and selection operator
(LASSO), a fully-connected feedforward deep neural
network (DNN), and a conditional generative adversarial
network (GAN).

KNN is a machine learning algorithm that predicts
the target variable for every new example based on the
target variables of the k most similar examples in the
training data. To impute a given target variable, we used
a weighted average of the measured target variable from
the k most similar examples based on Euclidean distance,
with the weight equal to the inverse of the distance. KNN
imputation is a widely-used imputation method for gene
expression and provides a strong baseline (12,18,22,24).

LASSO is a linear regression method in the family of
least-squares optimizers (40). LASSO builds a sparse model
for a given target variable using the following cost function:

minβ

1
2N

||Xβ − y||22 + α||β||1 (1)

where N is the number of training examples, β is the vector
of learned parameters, X is the training data, y is the
target variable, α is the hyperparameter that determines
the extent of L1-regularization (||β||1). L1-regularization
prevents overfitting by setting many of the elements of
β to 0. While a variety of least-squares optimizers have
been applied to the gene expression imputation problem
(22,25,41,42), LASSO is the method most suited when the
number of features is large (12,18,43). In this study, we used
the KNN and LASSO implementations contained in the
Python package scikit-learn (44).

A DNN is a multi-layer feedforward neural network with
bespoke architectures designed for each machine learning
task. A GAN is a deep neural network consisting of two
main parts: a ‘generator’ that generates imputed values
and a ‘discriminator’ that attempts to discriminate between
imputed values and the ground truth expression values. For
both the DNN and GAN models, we used architectures from
recently published works that evaluated the utility of these
models for imputing gene expressions using the LINCS
landmark genes; namely the D-GEX model for DNN (18)
and the GGAN model for GAN (19). The DNN and GAN
models were trained using Nvidia Tesla k80 GPUs and
implemented using the Python package Keras (45) with
a Tensorflow backend (46). For more information on the
deep learning methods, see Section 1.3 of the Supplemental
Material.

We used these four algorithms––KNN, LASSO, DNN,
GAN––to leverage two distinct types of signals––gene–
gene similarities (across samples) and sample–sample
similarities (across genes)––for imputing the expression of
unmeasured genes in a new partially-measured sample,
resulting in six methods referred to in this study as
SampleKNN, GeneKNN, SampleLASSO (proposed here),
GeneLASSO, GeneDNN and GeneGAN. For intuitive,
pictorial schematics of the methods, see Supplementary
Figures S3-S7 in Section 1.3 of the Supplemental Material.

SampleKNN and GeneKNN are the most straightforward
and popular implementation of KNN for gene expression
imputation. For a new partially-measured expression
sample to be imputed, SampleKNN works by first finding
the k most similar samples in the training set based on
the expression of all measured genes, and then imputing
the expression of each unmeasured gene with the weighted
average of that gene’s expression in the most similar
training samples. Thus, the major biological signal used is
the similarity between samples (across genes). Conversely,
GeneKNN works on a gene-by-gene basis. For each gene
that is missing (unmeasured) in a new sample, the method
first finds the k measured genes most similar in their
expression pattern across all the samples in the training
set, and then imputes the expression of the unmeasured
gene with the weighted average of the expression of
those k genes in that new sample. Thus, the major
biological signal used is the similarity between genes (across
samples).

GeneLASSO is the traditional, widely adopted means
of implementing LASSO for gene expression imputation.
Here, using the fully-measured training set, a separate
sparse regression model is trained for each unmeasured
gene, to predict its expression based on a linear combination
of all the measured genes. Then, given a new partially-
measured sample, the expression of every unmeasured
gene is imputed using that gene’s pre-trained model, with
the predicted expression being equal to the sum of the
expression of the measured genes in the new sample
weighted by the model coefficients. Akin to GeneKNN,
the main source of biological signal for GeneLASSO is
gene–gene expression similarities. As an alternative to
GeneLASSO, which requires information about which
genes are unmeasured in a new sample and a pre-trained
model for each of those genes, in this study, we propose
a simple alternative called SampleLASSO. Given a new
partially-measured sample, SampleLASSO builds a single
model on-the-fly that predicts that sample’s expression
profile based on a sparse linear combination of all the
samples in the training set only using the subset of genes
measured in the new sample. Here, for every sample
to be imputed, the coefficients of the trained model in
essence finds the relationship of that sample to all samples
in the training set. Then, all the unmeasured genes are
imputed using this trained sample-specific model. The main
source of biological signal in SampleLASSO, thus, comes
from sample similarities. We note a method similar to
SampleLASSO has been reported before (called LS array)
(25). However, the implementation of that method was
focused on the missing value problem and has never been
applied to the unmeasured gene problem.
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GeneDNN and GeneGAN use deep learning to predict
the expression of (a fixed set of) unmeasured genes using a
single model that captures complex, nonlinear relationships
between the unmeasured genes and the measured genes
using the training set. Thus, the main biological signal
in GeneDNN and GeneGAN is also from gene-gene
relationships.

Hyperparameter tuning

For both KNN and LASSO, there is only one
hyperparameter that needs to be tuned; k: the number
of most similar training examples to consider in KNN
and α: the parameter that sets the strength of the L1-
regularization term in LASSO. Although there are many
hyperparameters to tune in a DNN or GAN, we fixed most
parameters based on optimal values found in the previously
published works (18,19), and just tuned the optimizer and
learning rate. Hyperparameter tuning was done using the
validation set data (Section 1.4 in Supplemental Material,
Supplementary Figures S9–S15, and Supplementary Table
S2), and the optimal hyperparameters were then used
for final evaluation using the test set. We note that, for
GeneDNN and GeneGAN, we used all the ∼13k samples
in the validation set for hyperparameter tuning as: (i) this
most closely mimics the setup in the original papers and (ii)
deep learning models additionally use the validation set to
determine which epoch (i.e. how many passes through the
data the model goes through) yields the best model. For
the analysis using the SEEK data, the best hyperparameter
across all the tasks and gene subsets using the Affymetrix
Human Genome U133 Plus 2.0 Array and ARCHS4 data
was used for all ten platforms. For more information on
hyperparameter tuning, see Section 1.4 of the Supplemental
Material.

Evaluation metrics

A commonly used metric for evaluating gene expression
imputation methods is Normalized Root Mean Square
Error (NRMSE). The NRMSE for a gene (gi ) is given by:

NRMSE (gi ) = RMSE (gi )
Mean (gi )

=
√∑S

j=1

(
ĝi, j − gi, j

)2
/S

∑S
j=1 gi, j/S

(2)

where RMSE is the root mean square error, S is the number
of samples, and ĝi, j , gi, j are the imputed and real expression
values, respectively, for the ith gene in the jth sample.

In addition to NRMSE, we also report evaluation results
using the Spearman correlation coefficient and the Mean
Absolute Error (MAE) in Section 2.2 of the Supplemental
Material.

Interpreting SampleLASSO models

We evaluated the interpretability of SampleLASSO models
by examining if the β-coefficients of a model trained for
a particular sample recapitulated that sample’s tissue-of-
origin by assigning high positive β values to samples in the

training set from the same tissue relative to samples from all
other tissues.

Specifically, for a given target sample s that we built a
SampleLASSO model for, we calculated a z-score, zs,T, for
each tissue T in this annotated set based on the β values of
training samples from that tissue:

zs,T =
(∑

j :ti ssue( j )=T β j

)
/ |T| − μs

σs/
√|T| (3)

where |T| is the number of labeled samples for tissue T,
β j is the value of the β-coefficient from the SampleLASSO
model for the jth sample, and μsand σs are the mean and
standard deviation of the β-coefficients of all samples in the
training set that have any tissue label.

To perform this analysis we used a large set of expression
samples that were manually-curated to their tissue-of-origin
(>15k samples) (47). However, due to the initial temporal
split of the data into training, validation, and test sets,
all the labeled expression samples were in the original
training set. Hence, just for this interpretability analysis, we
separated out a subset of the tissue-labeled samples in the
original training set into a new manually-curated test set.
We created this subset so that it spanned six tissues that were
sufficiently diverse and were labeled to at least 10 samples
from at least three different datasets in both the training
and the test sets. This resulted in the new test set having
222 expression samples from 29 different datasets. The
full training set consisted of all samples from the original
training set, expect we removed any sample that was part
of the same experiment as any test set sample. Of these
77 893 training samples, 11 618 samples had a manually
curated tissue label, with 4397 expression samples from 120
different datasets having a label pertaining specifically to the
six tissues the analysis was carried out for (Table S4). To
calculate μs and σs, we used any sample that had a tissue
label, regardless of tissue type, allowing us to use 11 618
samples for these calculations. A SampleLASSO model was
trained for each manually labeled test sample and used in
the z-score analysis above (Equation 3).

RESULTS

In this study, we compare imputation methods that use
four distinct machine learning algorithms: least absolute
shrinkage and selection operator (LASSO), k-Nearest
Neighbors (KNN), a fully-connected feedforward neural
network (DNN), and a conditional generative adversarial
network (GAN) (Figure 1B). Combining these algorithms
with the source of the data signal––gene–gene or sample–
sample relationships––resulted in six imputation methods:
SampleLASSO, GeneLASSO, SampleKNN, GeneKNN,
GeneDNN and GeneGAN. These methods are evaluated
in two settings with different sets of unmeasured genes
(Figure 1C): (i) the GPL96–570 gene subset, which uses
a relatively large number of genes (∼11 000) to impute
the expression of a smaller number of genes (∼5000) and
(ii) the LINCS gene subset, which uses a relatively small
number of genes (∼1000) to impute the expression of a
large number of genes (∼16 000). We consider imputation
using data from the same technology (using microarray
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Figure 2. Performance of imputation methods for microarray data. Boxplots
showing the performance of the six imputation methods (SampleLASSO,
GeneGAN, GeneDNN, GeneLASSO, SampleKNN, GeneKNN) across two
gene subsets (A: GPL96-570 and B: LINCS), trained and imputed on
microarray data. The evaluation metric is NRMSE, with lower values
indicating better performance, and the methods are ordered by the median
value.

to impute microarray, and RNA-seq to impute RNA-seq)
as well as across technologies (using RNA-seq to impute
microarray data). We evaluate methods using both the
scale-free regression error metric (normalized root mean
squared error; NRMSE), as well as Spearman correlation
and mean absolute error. We also evaluate the performance
of the imputation methods on data from ten additional gene
expression platforms downloaded from the SEEK database
(38). Lastly, we examine the model coefficients learned by
SampleLASSO for biological interpretability.

We first evaluated the performance of the six imputation
techniques using microarray data to impute microarray
data (the microarray data here all comes from the
Affymetrix Human Genome U133 Plus 2.0 Array)
(Figure 2). For the GPL96–570 gene subset task,

SampleLASSO is the best performing model, whereas for
the LINCS gene subset, GeneGAN is the best performing
method. For both gene subsets, both KNN methods
perform relatively poorly. For the GPL96–570 gene subset,
SampleLASSO outperforms GeneGAN 92% of the time,
GeneLASSO 91% of the time, GeneDNN 95% of the time,
SampleKNN 100% of the time, and GeneKNN 100% of the
time. For the LINCS gene subset, these percentages are
25%, 91%, 77%, 98% and 100%, respectively. Statistical
tests and effect sizes between SampleLASSO and the other
methods can be found in Supplementary Table S3.

Although microarray platforms like the Affymetrix
Human Genome U133 Plus 2.0 Array are able to quantify
the expression of nearly all protein-coding genes, RNA-
seq technology enables the quantification of nearly all
cellular transcripts from both annotated and unannotated
genes. Hence, it would be valuable to use RNA-seq data
to predict the expression of genes missing in microarrays,
enabling (i) re-analysis of novel genes in experimental
settings captured in the vast number of microarray datasets
and (ii) joint analysis and integration of RNA-seq and
microarray data based on a common set of genes. We
evaluated the performance of using ARCHS4 RNA-seq
data to impute Affymetrix Human Genome U133 Plus
2.0 Array microarray data using the GPL96–570 and
LINCS gene subsets (Figure 3). SampleLASSO is the best
performing method for both gene subsets. For the GPL96–
570 gene split, SampleLASSO outperforms GeneGAN 71%
of the time, GeneLASSO 71% of the time, GeneDNN 91% of
the time, SampleKNN 80% of the time, and GeneKNN 70%
of the time. For the LINCS gene split, these percentages
change to 56%, 62%, 76%, 76% and 84%, respectively. The
Wilcoxon ranked-sum test between SampleLASSO and the
other methods showed that the performance increase of
SampleLASSO was always statistically significant (P-value
<< 0.001).

We also evaluated the methods using RNA-seq data to
impute RNA-seq data (the RNA-seq data here all comes
from the ARCHS4 database) (Figure 4). We note that using
RNA-seq data to impute RNA-seq data does not have as
many obvious applications as the microarray setting since
RNA-seq technologies do not require pre-determining a
set of genes to measure, and thus have high gene coverage.
For this task, one of the deep learning methods is the best
performing method for both gene subsets. For the GPL96–
570 gene split, SampleLASSO outperforms GeneGAN 40%
of the time, GeneLASSO 41% of the time, GeneDNN 39% of
the time, SampleKNN 93% of the time, and GeneKNN 98%
of the time. For the LINCS gene split, these percentages
change to 31%, 62%, 13%, 84% and 100%, respectively.
Statistical tests and effect sizes between SampleLASSO
and the other methods can be found in Supplementary
Table S3. For all three imputation tasks and both gene
subsets, we find similar results when measuring imputation
accuracy using Spearman correlation and mean absolute
error (Supplementary Figure S16–S18), except for the
RNA-seq to microarray imputation task on the LINCS
gene subset, where for Spearman correlation GeneGAN and
GeneLASSO both outperform SampleLASSO.

When imputing gene expression values from one
platform or technology to another, the imputation error
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Figure 3. Performance of imputation methods for cross-technology
imputation. Boxplots showing the performance of the six imputation
methods (SampleLASSO, GeneGAN, GeneDNN, GeneLASSO,
SampleKNN, GeneKNN) across two gene subsets (A: GPL96-570
and B: LINCS) using RNA-seq data to impute microarray data. The
evaluation metric is NRMSE, with lower values indicating better
performance, and the methods are ordered by the median value.

stands to be lowered by jointly normalizing the data in an
appropriate way before imputation. This is not an easy task
as the distribution of the unmeasured genes for the samples
to be imputed is inherently not known. However, to get
a sense of how much even applying basic normalization
helps the RNA-seq to microarray imputation task, we used
the known ground truth values for the unmeasured geneset
to jointly quantile normalize all of the data together;
a similar normalization strategy was applied in recent
imputation studies (18,19). Performing this joint quantile
normalization of the two datasets results in the expected
decrease in imputation error over the no-normalization
case (Supplementary Figure S19).

We additionally looked at the performance of the
imputation methods as a function of the mean expression

Figure 4. Performance of imputation methods for RNA-seq data. Boxplots
showing the performance of the six imputation methods (SampleLASSO,
GeneGAN, GeneDNN, GeneLASSO, SampleKNN, GeneKNN) across two
gene subsets (A: GPL96-570 and B: LINCS) using RNA-seq data to
impute RNA-seq data. The evaluation metric is NRMSE, with lower
values indicating better performance, and the methods are ordered by the
median value.

and variance of the unmeasured genes. For each
unmeasured gene, we placed it into a low, medium or
high bin based on its mean expression and variance in
the context of the known expression values across all the
samples (Supplementary Figures S20–S25). Although the
relative performance of the imputation methods does not
change too much when looking at the different categories
of mean expression and variance, it can be seen in some
cases that SampleLASSO performs particularly well for
genes with low mean expression and high variance, which
is the hardest category of genes to impute.

As stated before, since there are millions of microarray
samples from dozens of gene expression platforms, each
with a different subset of measured genes, it is critical that
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Figure 5. Performance of imputation methods on ten expression platforms.
Boxplots showing the performance of the six imputation methods
(SampleLASSO, GeneGAN, GeneDNN, GeneLASSO, SampleKNN,
GeneKNN) across ten gene expression platforms. The evaluation metric is
NRMSE, with lower values indicating better performance. The horizontal
dashed line indicates the median value of SampleLASSO.

a good imputation method can accurately impute gene
expression values in all these different settings. To evaluate
this practical application, we tested the six imputation
methods on their ability to impute gene expression values
in data from ten platforms (obtained from the SEEK
database) (38) (Figure 5, Supplementary Figure S26). We
note that this analysis of imputing expression values across
many different platforms has not been conducted in any of
the recent studies on gene expression imputation.

For this analysis, we choose a set of 90 genes common
to all platforms, and containing highly-, moderately-, and
scarcely-studied genes, as the set of unmeasured genes. For
all ten platforms, we used the same 78 319 training samples
from the Affymetrix Human Genome U133 Plus 2.0 Array
data. For each of the 10 platforms, the set of measured

genes was determined by taking the genes common to a
given platform and the Affymetrix Human Genome U133
Plus 2.0 Array data, excluding any gene that was in the set
of 90 unmeasured genes. It can be seen that SampleLASSO
is the best performing method across all ten platforms,
whereas both deep learning models perform quite poorly.
For more information on the analysis using the SEEK data,
see Section 2.5 of the Supplemental Material.

Although reducing the error of imputation methods
is of the utmost importance, the applicability of an
imputation method is also greatly increased if the model
offers biological insight into how the predictions were
generated. For instance, SampleKNN offers immediate
interpretability via the biological/experimental contexts
of the k-nearest training samples picked by the method,
however it is not very accurate in imputing unmeasured
genes. Since we devised SampleLASSO with this desirable
property in mind, we tested if this new method also offers
biological interpretability in addition to providing very
accurate imputation. Since gene expression samples have
clear signals pertaining to their tissue-of-origin (35), we
focused on testing if the SampleLASSO model trained for
a new sample from a particular tissue up-weighted training
samples from that same tissue relative to training samples
from other tissues.

To perform this analysis we used a large set of expression
samples that were manually labeled to their tissue-of-origin
(47). Due to limited labeled tissues and their representation
in our data, the analysis was restricted to six sufficiently-
diverse tissues that had at least 10 samples from at least
three different datasets in both the training set and the test
set (Supplementary Table S4). Then, for each test sample,
we trained a SampleLASSO model and used the model
coefficients (β-coefficients) to calculate a z-score for each
of the six tissues that represents the aggregate β-coefficients
corresponding to training samples just from that tissue
relative to the background distribution of β-coefficients
of all labeled training samples (not just samples labeled
from the six tissues). Thus, a large positive z-score for a
particular tissue means that samples from that tissue were
more informative than others. See Materials and Methods
for more details. Implementing this analysis on the entire
labeled test set, we observe that for most test samples, the
strongest signal captured by SampleLASSO comes from
training samples from the same tissue as the sample being
imputed (Figure 6, Supplementary Figure S27).

To aid in reproducibility, we have publicly released all
the processed data that we used on Zenodo (https://doi.
org/10.5281/zenodo.3971092) as well as all the code to re-
generate the results and figures on GitHub (https://github.
com/krishnanlab/Expresto). In addition, we also provide
a user-friendly function that performs imputation using
SampleLASSO given a file of expression data. The function
will return the imputed expression values as well as a list
of the most utilized samples from the training set (see
Supplementary Table S5 for an example).

DISCUSSION

In this study, we propose a simple, new method termed
SampleLASSO for imputing the expression of unmeasured
genes in partially-measured gene-expression profiles. The

https://doi.org/10.5281/zenodo.3971092
https://github.com/krishnanlab/Expresto
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Figure 6. SampleLASSO captures biologically relevant information.
Biological interpretability was evaluated using expression samples labeled
with tissue-of-origin to determine if SampleLASSO up-weights training
samples of the same tissue as the test sample in the sparse model. The
rows represent the 222 tissue-labeled samples (GSMs) in the test set. The
black horizontal lines separate test samples from different tissues. The
columns correspond to the tissue type of the training samples. The colors
of the heatmap represent the z-scores. Calculated per test sample (row),
the z-score per tissue (column) corresponds to the normalized aggregate
of the model coefficients of all the training samples from that tissue. See
Materials and Methods for more details. The diagonal blocks correspond
to the case where the z-scores were calculated for the same tissue type as
the tissue-of-origin of the test sample.

fundamental benefit of imputing unmeasured genes in
samples from a partially-measured platform is the ability
for researchers to reanalyze the data from all these samples
on a genome-scale. Thus, important common tasks such
as building co-expression networks, differential expression
analysis and gene set enrichment will now include the
full complement of genes in the genome. This benefit
is particularly evident for data in the LINCS database,
where samples only measure expression from ∼1000 genes.
An additional major benefit comes from the ability to
perform integrative analysis of data from multiple platforms
with maximum gene coverage. This increase in coverage
is critical for data-integration efforts or big data-driven
machine learning models that pull together data across
many platforms. These efforts will be severely stifled when
they are forced to only include genes common to all
platforms, resulting in a huge loss of information. For
example, for combining all the data in the SEEK database,
with imputation, we can build a gene-expression set that

contains the expression of 19 124 genes (the number of
genes in the platform with the highest gene coverage),
whereas if we only included genes common to all the
platforms, that expression set would only contain the
expression of 6017 genes.

SampleLASSO is a sparse regression model that trains
a machine learning model on-the-fly for every expression
profile that needs to have expression values imputed.
We demonstrate that SampleLASSO is a highly accurate
method for imputing unmeasured genes based on an
extensive evaluation on three different imputation tasks
(within and across technologies), two imputation settings
that differ in the number of measured genes by an
order of magnitude, and across multiple gene expression
platforms. SampleLASSO’s strength comes from its ability
to effectively leverage information from samples from the
same biological context.

In addition to helping estimate the performance
of imputation methods, our analyses in different
imputation settings highlight various data
standardization/normalization scenarios. When using
microarray data to impute microarray data, the training
data and validation/testing data (including both measured
and unmeasured genes) are quantile normalized to the
same distribution. When using RNA-seq data to impute
RNA-seq data, samples only undergo within-sample
normalization (using TPM) without any between-sample
normalization. When using RNA-seq data to impute
microarray, the training set data is not jointly normalized
but the validation/testing data are. The fact that microarray
data has a much lower imputation error than the RNA-seq
also points to RNA-seq profiles having very different data
distributions due to not being (quantile) normalized across
samples, coming from many different sequencing platforms,
and having a broader dynamic range than microarray data.
While we have performed an analysis showing that jointly
normalizing RNA-seq and microarray data improves
imputation (Supplementary Figure S19), future work
is required to examine the effect of data normalization
and transformation and to develop strategies to perhaps
transform data just based on measured genes and, upon
imputation, recast the unmeasured genes into the original
data space (see Section 2.3 in the Supplemental Material
for a further discussion on this topic).

The performance of the various imputation methods in
the cross-technology imputation task, where the influence
of data transformation is most evident, highlights how
each method works to impute gene expression. SampleKNN
performs poorly because, for a given microarray sample
to impute, it finds the closest RNA-seq samples, which
come from a different data distribution. On the other
hand, GeneKNN has relatively good performance because
it works completely within the training data (RNA-
seq) to find the genes nearest to a particular gene and
then uses these gene relationships for imputation within
the microarray data. Even though GeneLASSO similarly
captures gene relationships only using the training data
(RNA-seq), the mapping in the form of model coefficients
does not transfer to microarray samples as easily as nearest
neighbors. Similar issues, in addition to potential overfitting
to the training set, thwart the performance of GeneDNN
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(Supplementary Figure S28), although the additional
complexity of GeneGAN helps deep neural networks to
better transfer information from one technology to the
other. SampleLASSO’s top performance in this setting
stems from having the unique property of learning a
supervised model that, in addition to learning meaningful
sample relationships, naturally captures the scaling factors
required to closely map the RNA-seq data distribution to
the microarray data distribution.

Our results indicate that the deep learning models show
good performance for imputation in the LINCS subset
using microarray data to impute microarray data. This
is to be expected as LINCS is the application for which
these methods were optimized. The deep learning methods
additionally show superior performance on the task of
using RNA-seq data to impute RNA-seq data. This could
be due to having more training examples for this task
compared to the microarray to microarray task. The deep-
learning methods further benefit from minimal variation
in the RNA-seq data across platforms due to the uniform
processing of the samples in the ARCHS4 database.

Nevertheless, deep-learning-based imputation
techniques have a number of practical drawbacks. Foremost
among them is the very large number of hyperparameters,
in addition to other aspects of model optimization such as
regularization and dropout, that need to be tuned to build
an accurate model. This drawback is further amplified by
the fact that these optimal parameters are likely to change
depending on the platform or technology in question. Deep
learning models are also hard to scale in terms of model
size, with the number of weights growing nonlinearly with
increasing layer number and layer size. Additionally, the
current state of the standard hardware is such that only
∼32GB of a model can fit into the memory of a GPU, and
anything more requires the utilization of multiple GPUs.
For example, this is why methods such as SampleDNN or
SampleGAN could not be implemented, as in these cases
the input layer would be comprised of >70 000 units (i.e.
the number of units equals the number of samples in the
training set), and even a neural network with just one
hidden layer of 9000 units would be over double the size of
a GeneDNN model with three hidden layers of 9000 units
each in the LINCS gene subset setting.

The analysis using the SEEK data––which has not been
carried out in any other study on imputation and which
reflects the real world task of imputing data from many
expression platforms––highlights a few more limitations
of the deep learning methods. First, the time it takes to
get imputed expression values from deep learning methods
is determined by the size of the training set, and once
the model is trained, predicting test set values is relatively
fast. Therefore, there was no difference in runtime for the
deep learning models whether we imputed 10 000 samples
or just 90, and this runtime ended up being >20 h for
GeneDNN and >40 h for GeneGAN per platform using
expensive GPU hardware. In contrast, SampleLASSO took
just 4 h per platform in SEEK using only one processor
on one computational node. As each SampleLASSO model
is independent of the others, this is an ‘embarrassingly
parallel’ task and can be greatly sped up by running on
many CPUs at once.

Secondly, in the SEEK data analysis, the deep learning
methods perform noticeably poorly for almost all platforms.
This is likely due to the fact that, since we are only imputing
90 genes, deep learning methods no longer benefit from the
multi-task learning that happens when many thousands of
genes are all predicted at once. In contrast, SampleLASSO
and GeneLASSO train a model for every sample or gene,
respectively. This is an important real world consideration
as a researcher only may wish to add a limited number
of ‘genes of interest’ to a given set of microarray samples,
and SampleLASSO allows for a much quicker exploratory
analysis of combining datasets across platforms.

The performance of the deep learning methods
on the SEEK data could be improved if the model
hyperparameters were optimized for each platform. This
is not realistic in practice as there are numerous ways
of combining data from expression platforms, and the
computational time and the technical expertise required
to optimize a deep learning model in a given imputation
setting are not available to most researchers. We also note
that the deep learning methods perform best when the
training and testing data are similar (i.e. analysis shown in
Figures 2 and 4). However, the analysis using the SEEK
data more closely mimics the situation of using RNA-seq
data to impute microarray data where the training and
testing data comes from different distributions. More
broadly, cross-platform imputation is the most meaningful
setting because imputing samples from a platform using
training data of the same platform is not needed as both
training and testing samples will measure the expression
of the same set of genes. In this cross-platform setting,
interesting future work could be in applying domain
adaptation techniques to further decrease the imputation
error.

SampleLASSO is a simple, intuitive, flexible model. The
benefits of SampleLASSO emanate from the fact that a
new machine learning model is trained on-the-fly for each
new target sample that needs to be imputed based on the
set of measured genes in that sample. Any set of genes
can be measured/unmeasured in this setup, obviating the
need for fixed pretrained models. While we acknowledge
that there are many more deep learning architectures
that could be applied to the unmeasured gene expression
problem, we highlight the fact there also exists many ways
to optimize simple and elegant methods like SampleLASSO
by exploring different regularization schemes and shallow
nonlinear algorithms, or by reducing the number of features
using feature selection methods or dimensionality reduction
techniques.

Finally, these benefits come along with SampleLASSO’s
ability to leverage biological information specific to the new
target sample, enabling easy interpretability. We specifically
evaluated SampleLASSO’s interpretability on a large-
scale using samples labeled to various tissues of origin.
This analysis shows that, when imputing a sample from
a specific tissue, the SampleLASSO model up-weights
training samples from the same tissue in majority of the
cases (Figure 6 and Supplementary Figure S27). The rest
of the cases could be due to high tissue heterogeneity (as in
blood) or factors other than tissue-type (e.g. disease status,
drug dosage) being the dominant signal.
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In conclusion, we propose SampleLASSO, a simple
method for imputing the expression of unmeasured
genes. Extensive evaluations and analyses demonstrate
that SampleLASSO is accurate, flexible, and interpretable.
We have made all the data and code from this study
freely available on Zenodo and GitHub (https://github.
com/krishnanlab/Expresto) to aid in reproducing all our
findings. Using a convenient function in our code,
researchers can also use SampleLASSO to readily impute
unmeasured genes in their samples of interest in any of
the following practical settings: (i) complete the expression
profile of publicly-available microarray samples from any
platform to make them comparable to the human whole-
genome microarray, (ii) predict the expression of genes
absent in standard microarrays (e.g. most non-protein
coding genes) using RNA-seq to impute microarray
samples and (iii) fill in and effectively use genome-scale
chemical and genetic perturbation expression data from
LINCS based on the measured landmark genes.
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