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Abstract: In continuation of our antecedent work against COVID-19, three natural compounds,
namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the
most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral
compounds. This was performed via a multi-step in silico method. At first, a molecular structure
similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7),
and favored thirty compounds. Subsequently, the fingerprint study performed with respect to
PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203,
204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7
favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities.
Then, in silico toxicity studies were performed for the promising compounds and revealed that
all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments
were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against
Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2
main protease.

Keywords: COVID-19; main protease; molecular fingerprints; structural similarity; docking; MD
simulations; MM-PBSA

1. Introduction

The WHO mentioned on 8 February 2022 that SARS-CoV-2 caused confirmed infec-
tions estimated by 396,558,014 people all over the globe and resulted in the death of an
additional 5,745,032 [1]. The spreading of this notorious virus dramatically in addition
to the shortage of effective treatment, mandates the utilization of new fast and efficient
drug design strategies [2]. Computer-aided (computer-based, computational, or in silico)
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strategies in drug discovery represent quick and reliable approaches that could predict the
bioactivity of any compound reducing the waste of effort, [3,4] time, and money. Computer-
aided drug discovery approaches include molecular docking [5–7], molecular dynamic
simulations [8], QSAR [9], pharmacophore modeling [10,11], ADMET [12,13], DFT [14],
drug molecular design [15,16], and toxicity prediction [17–19]. These approaches target the
enhancement of drug activity besides the discovery of new ligands [20].

Humans always depended on nature around them as the main source of food and
medicine [21,22]. The compounds isolated from natural sources showed various bioactivities
like anticancer [23–27], antileishmanial [28,29], antibacterial [30–32], neuro-protecting [33,34],
antioxidant [35], and antiviral activity [36,37].

Viral proteases are successfully utilized as promising antiviral targets. For instance,
the aspartyl protease and the serine proteases were effective targets for antivirals against
human immunodeficiency virus and hepatitis C virus, respectively [38]. The vital role
of Mpro during the replication of SARS-CoV-2 is to activate a group of sixteen functional
and non-structural proteins through the separation of the two overlying polyproteins
(pp1a and pp1ab). Consequently, the inhibition of Mpro will cause definite damage to the
virus [39]. Additionally, the structure and the sequence of viral main protease (Mpro) and
human proteases are quietly different [40]. These properties suggest Mpro as a target for
anti-COVID-19 drug discovery [41,42].

Our team used the computer-aided drug discovery approaches in the discovery of
potential natural COVID-19 inhibitors several times. Four isoflavonoids with inhibitory
potential against hACE2 and viral main protease have been selected among fifty-nine
compounds [43]. Similarly, the anti-COVID-19 activity of fifteen guanidine alkaloids was
screened in silico against five essential COVID-19 proteins [44]. Recently, our team utilized
multistage in silico filtration techniques to point out the most potent natural inhibitor
among a big group of compounds against certain COVID-19 enzymes. For instance, among
a group of 310 natural antivirals, vidarabine was found to be the most promising natural
inhibitor of SARS-CoV-2 nsp10 [45]. Similarly, the most relevant semisynthetic SARS-CoV-2
papain-like protease inhibitor has been chosen among 69 candidates [46].

PRD_002214,N-[(5-Methylisoxazol-3-yl)carbonyl]alanyl-L-valyl-N~1~-((1R,2Z)-4-(ben
zyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-L-leucinamide, also called
inhibitor N3, is an irreversible peptide-like inhibitor of the main protease (MPRO) of SARS-
CoV-2. The chemical structure of PRD_002214 was obtained from the RCSB Protein Data
Bank entry 6LU7 which shows the ligand in complex with the main protease [47].

In this work, a collection of 310 naturally originated antiviral compounds has been
screened using different computational methods to detect the most potent naturally derived
Mpro inhibitor. The utilized methods included molecular structures similarity study with
PRD_002214, a fingerprint study against PRD_002214, the molecular docking against
Mpro PDB ID: 6LU7, in silico toxicity studies, and molecular dynamic (MD) simulation
experiments (Figure 1).

Figure 1. The utilized computational methods.
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2. Results and Discussion
2.1. Structural Similarity Detection

Structural similarity is a computational method that identifies the similarity of two
compounds based on structural molecular properties (descriptors) [48]. Recently, this
method has become a considerable and effective method in the field of drug design [49]. The
applied molecular descriptors included hydrogen bond donors (HBA) [50], hydrogen bond
acceptors (HBD) [51], partition coefficient (ALog p) [52], molecular weight (M. Wt) [53],
molecular fractional polar surface area (MFPSA) [54], and number of rotatable bonds [55],
rings, and aromatic rings [56].

The degree of molecular similarity between two molecules depends on the similarity
coefficient (metric) which is used to compute a quantitative score for the degree of simi-
larity based on the weighted values of structural descriptors. The similarity between two
molecules is the inverse function of the distance between them in descriptor space [57].
When there are two or more reference ligands, the shortest distance to a reference ligand is
used. In this work, Euclidean distances between the rank-ordering of different descriptors
are calculated to determine descriptor similarity where Euclidean distances represent the
shortest distance between two points [58]. Structural similarity studies between the 310 an-
tiviral compounds (Supplementary Materials Figure S1) and the co-crystallized ligand
PRD_002214 (Figure 2) of Mpro PDB ID: 6LU7 have been applied by the software Discovery
Studio depending on the previous descriptors.

Figure 2. The chemical structure of PRD_002214.

The antiviral compounds were examined in six groups (Figure 3) and a similarity
check was performed for each group separately using PRD_002214 as a reference. The
distance between PRD_002214 and the tested compounds is illustrated in Figure 3. The
results favored thirty compounds that have good structural similarity with PRD_002214
(Figure 4). The values of molecular properties for compounds are listed in Table 1.

The selected 30 antiviral compounds are isolated from different natural sources in-
cluding plants, marine organisms, and microbes, and were reported to exhibit promising
antiviral activities. Sources and antiviral potentialities of the selected compounds are
summarized in Table 2.
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Figure 3. Results of the structural similarity of the antiviral compounds and PRD_002214. The
green sphere is PRD_002214, the red sphere is a similar compound, and the blue sphere is a dis-
similar compound. (A) first 50 compounds, (B) second 50 compounds, (C) third 50 compounds,
(D) fourth 50 compounds, (E) fifth 50 compounds, and (F) sixth 60 compounds.
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Figure 4. The filtered 30 compounds obtained from the molecular similarity technique.
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Table 1. The calculated molecular properties of compounds having structural similarity with
PRD_002214.

Comp. ALog p M. Wt HBA HBD Rotatable Bonds Rings Aromatic Rings MFPSA Minimum Distance

3 2.91 313.348 4 3 6 2 2 0.239 1.802
7 0.857 546.629 9 3 11 5 1 0.223 1.053

17 3.911 444.522 4 2 11 3 3 0.183 1.382
49 3.714 481.647 5 1 7 5 2 0.11 1.682
50 3.387 465.604 5 2 6 5 2 0.132 1.689
85 0.436 446.404 10 5 5 4 2 0.373 1.801
94 3.743 372.412 6 1 7 3 2 0.192 1.804
95 2.879 388.411 7 2 7 3 2 0.235 1.671
96 3.513 444.431 9 0 10 4 2 0.225 1.515
97 3.474 442.415 9 0 9 4 2 0.226 1.586

128 −0.546 798.738 20 10 16 5 2 0.407 0.703
129 −0.925 756.702 19 11 14 5 2 0.425 0.795
130 −0.699 770.728 19 10 15 5 2 0.396 0.704
131 0.484 624.587 15 9 11 4 2 0.414 0.726
132 0.484 624.587 15 9 11 4 2 0.413 0.725
156 2.489 464.635 6 5 5 4 0 0.236 0.888
157 1.195 480.634 7 6 5 4 0 0.27 0.884
158 1.137 480.634 7 6 5 4 0 0.266 0.886
180 3.176 944.185 12 5 13 3 1 0.232 0.674
184 4.986 836.071 8 6 11 4 2 0.23 0.623
203 −0.499 503.583 10 4 8 3 0 0.268 1.002
204 −0.091 517.61 10 3 9 3 0 0.237 0.999
210 3.874 512.638 6 1 13 3 2 0.188 0.902
237 3.511 557.073 9 2 8 4 0 0.235 1.025
248 3.607 605.642 7 3 7 4 0 0.156 1.038
264 5.732 470.598 6 2 10 2 1 0.172 0.723
276 3.062 557.03 10 1 19 1 0 0.24 0.717
277 1.804 754.797 14 5 6 4 2 0.295 0.604
278 2.745 811.868 15 6 6 4 1 0.288 0.692
280 −0.367 480.523 5 7 10 3 3 0.359 0.649

PRD_002214 2.453 680.791 8 5 18 3 2 0.273 -

Table 2. Natural sources and antiviral activities of the most similar antiviral compounds.

No. Name and Type Source Antiviral Activity

3 Moupinamide, an alkaloid Mollinedia sp. [59] Showed in silico inhibition against Mpro 6Y84
and the spike protein 6LXT) [60]

7 Homoharringtonine, an alkaloid Cephalotaxus genus [61] Inhibited the replication of SARS-CoV-2
(in vitro) with an EC50 value of 2.55 µM [62]

17 Aurantiamide acetate, a dipeptide Pongamia glabra flowers [63] and
Aspergillus sp [64]

In vitro inhibited the replication of Influenza A
virus in MDCK cells [65]

49 Emetine, an alkaloid Cephaelis ipecacuanha roots [66]

Inhibited SARS-CoV-2 replication in vitro with
an EC50 of 0.46 µM [62]
Inhibited SARS-CoV-2 protein synthesis and
interaction of viral mRNA [67]

50 Psychotrine, an alkaloid Cephaelis acuminata [68] Inhibited COVID-19 Mpro in silico
(∆G = −3.5 kcal. mol−1) [69]

85 5-O-Methylgenistein-7-glucoside, an
isoflavonoid Ulex europaeus [70] Inhibited herpes simplex virus (HSV)

in vitro [70]

94 Arctigenin, a lignan Arctium lappa [71]

In vivo inhibited influenza virus through
interferon production [72]. Inhibited Spring
viraemia of carp virus (SVCV) through
inhibition of autophagy [73]

95 Trachelogenin, a lignan Ipomoea cairica [74] Inhibited the entry of hepatitis C virus through
CD81 [75]

96 Rhinacanthin-F, a lignan
Rhinacanthus nasutus [76] Inhibited of influenza virus type A [76]

97 Rhinacanthin-E, a lignan
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Table 2. Cont.

No. Name and Type Source Antiviral Activity

128
Luteosides A, B and C
phenylpropanoid glycosides Markhamia lutea [77]

Showed an in vitro inhibition of respiratory
syncytial virus [77]129

130

131 Verbascoside, a phenylpropanoid
Verbascum olympicum [78] and
Markhamia lutea [77]

Inhibited in vitro herpes HSV-1, HSV-2 [79] and
a respiratory syncytial virus [77]

132 Isoverbascoside, a phenylpropanoid In vitro inhibited the respiratory syncytial virus
[77]

156 Ponasterone A, a triterpenoidal saponins
Podocarpus macrophyllus [80]
Acrostichum aureum [81]

Inhibited HIV-1 gene expression in mammalian
cells [82]

157 Pterosterone, a triterpenoidal saponins Exhibited an inhibition against (HIV-1) infection
as CCR5 inhibitors [83]

158 Ecdysterone, a riterpenoidal saponins Diploclisia glaucescens [84] Inhibited HIV-1 in vitro [70]

180 Didemnin A, a peptide (depsipeptide) Caribbean tunicate
Trididemnum solidum [85]

Inhibited Coxsackie virus and equine rhinovirus
in vitro [85]
Inhibited both RNA and DNA viruses and
HSV-2 in vitro [86]

184 Kahalalide E, a peptide Marine Mollusk Elysia rufescens [87] Inhibited HSV-2 in vitro [88]

203 Mycalamide A, an alkaloid
of the genus Mycale [89]

Inhibited SARS-CoV-1 in vitro with an IC50 of 0.2
µg kg−1 [90] and at a concentration of 5 ng/disc
it stopped HSV-1 and Polio type I viruses [91]

204 Mycalamide B, an alkaloid At a concentration of 2 ng/disc, it stopped
HSV-1 and Polio-1 viruses [91]

210 Hennoxazole A, an alkaloid A sponge Polyfibrospongia sp [92] In vitro inhibited HSV-1 (IC50 of 0.6 lg/mL) [92]

237 Solenolide A, a diterpene Marine Octocoral of the Genus
Solenopodium [93]

In silico inhibition of Mpro PDB Id: 6LU7 with a
binding free energy of −10.8 kcal. mol−1 [94]

248 Thyrsiferol, a triterpene The red algae Laurencia thyrsifera [95]
In vitro inhibited VSV and HSV-1 at levels of
0.l-0µg/well and slight activity against A59
coronavirus [96]

264 Usneoidol Z a meroterpene Brown Seaweed Cystoseira usneoides
[97,98]

In vitro inhibited HSV-l/CV-I at concentrations
of 20 and 10 µg/disk, respectively [98]

276 Punaglandin-1, an eicosanoid The octocoral Telesto riisei [99] Inhibited HSV in vitro [70]

277 Rifamycin B, a macrolide The bacterium Amycolatopsis
rifamycinica [100]

Inhibited (in vitro) murine sarcoma virus
through cell transformation inhibition [101]

278 Streptovaricin B, an ansamycin Streptomyces spectabilis, an
actinomycete [102]

Stopped poxviruses replication through the
inhibition of mRNA synthesis in early
stages [101]

280 Distamycin A, an oligopeptide Streptomyces netropsis [103]

Inhibited transcription and replication of
different viruses [104] and inhibited the
post-replicative mRNA synthesis of vaccinia
virus [105]

2.2. Structural Fingerprint Study

The fingerprints technique was applied using Discovery Studio software to identify
the molecular structures (2D) of the similar 30 antiviral compounds in a binary format
against PRD_002214. The examined descriptors were HBA and HBD [106], charge [107],
hybridization [108], positive and negative ionizable groups [109], halogens, aromatics, or
none of the above, and the ALogP category [110] of atoms. The study (Table 3) showed that
the antiviral compounds 7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277,
and 278 were the most favorite.
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Table 3. Degree of fingerprint similarity between the antiviral compounds and PRD_002214.

Comp. Similarity SA SB SC

PRD_002214 1 1116 0 0
7 0.683 772 15 344

128 0.648 926 313 190
130 0.651 889 249 227
156 0.652 818 139 298
157 0.654 824 143 292
158 0.644 819 156 297
180 0.718 1509 987 −393
184 0.800 1372 599 −256

203 0.654 755 39 361
204 0.644 780 95 336
210 0.666 748 7 368
237 0.676 868 168 248
264 0.681 725 −52 391
276 0.665 859 176 257
277 0.758 1026 237 90
278 0.724 1207 550 −91

SA: The bits number that was computed in the antiviral compounds and PRD_002214. SB: The bits number that
was computed in the antiviral compounds but not PRD_002214. SC: The bits number that was computed in
PRD_002214 but not in the antiviral compounds.

2.3. Docking Studies

Docking studies were proceeded to inspect the binding free energies (∆G) and the
binding modes [111–116] of the antiviral compounds against Mpro PDB ID: 6LU7 (Table 4)
with PRD_002214 as a reference. Eight compounds (128, 130, 156, 180, 184, 203, 204, and
278) exhibited the most a-like binding mode and the highest binding energies.

Table 4. The computed values of ∆G of the antiviral compounds and the co-crystallized ligand
against Mpro.

Compound ∆G (kcal. mol−1) Compound ∆G (kcal. mol−1)

7 −25.20 204 −33.03
128 −29.53 210 −28.41
130 −32.99 237 −23.75
156 −29.09 264 −25.85
157 −24.19 276 −21.66
158 −26.98 277 −24.08
180 −34.15 278 −29.00
184 −30.15 PRD_002214 −31.31
203 −31.20

Starting with PRD_002214, it showed eight hydrogen bonds in addition to four hy-
drophobic reactions. In detail, the first pocket of Mpro was occupied by the 2-oxopyrrolidin-
3-yl moiety that was involved in two hydrogen-bonding interactions with His163 and
Glu166. The 2-acetamido-3-methylbutanamido)-N-ethyl-4-methyl pentanamide moiety was
buried in the second pocket with four hydrogen-bonding interactions with Gln189, Glu166,
and Thr190 together with three hydrophobic interactions with Met165 and His41. The ben-
zyl acetate moiety was suited in the third pocket of the receptor engaging in two hydrogen
bonds with His164 and His41. Moreover, the 5-methylisoxazole-3-carboxamide moiety
occupied the fourth pocket forming a hydrophobic interaction with Ala191 (Figure 5) [117].
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Figure 5. The binding pattern of PRD_002214 inside the 6LU7 active site of Mpro PDB ID: 6LU7
active site.

The antiviral compound, 130 was engaged in six hydrogen bonds, three hydrophobic
interactions, and one electrostatic attraction. Firstly, the methyl-3-(4-hydroxy-3-methoxyph
enyl)acrylate moiety was fitted in the first pocket making two hydrogen bonds with
His 163 and Thr26 and one electrostatic interaction with Cys145. Furthermore, the 6-
methyltetrahydro-2H-pyran-3,4,5-triol moiety was engaged in two hydrogen-bonding
interactions inside the second pocket with His 164 and Met165 in addition to hydropho-
bic interactions (three) with Met49 and His41. Additionally, compound 130 was in-
volved in two hydrogen bonds with Glu166 in the third pocket. Finally, the (3R,4R)-
3-(hydroxymethyl)tetrahydrofuran-3,4-diol was buried in the fourth pocket (Figure 6).
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Figure 6. The binding pattern of compound 130 inside the Mpro PDB ID: 6LU7 active site.

The antiviral compound 184 (affinity value of −30.15 kcal/mol) revealed the engage-
ment in many H-bonding as well as hydrophobic interactions in the different pockets
of the main protease active pocket. At first, the 2-acetamido-N-((1-(isopentylamino)-1-
oxopropan-2-yl)propanamide moiety was involved in four hydrogen bonds with Glu166,
Asn142, and His 163 in the first pocket. Likely, the 2-formamido-N,4-dimethyl pentanamide
moiety made two hydrogen bonds with Gln189 in the second pocket. Moreover, compound
184 was buried in the second pocket through the formation of one hydrogen bond with the
amino acid Met165 and two hydrophobic interactions with the amino acid Met49 using its
1H-indole moiety (Figure 7).
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Figure 7. The binding pattern of compound 184 inside the Mpro PDB ID: 6LU7 active site.

The antiviral compound 278 exhibited a ∆G of −29.00 kcal. mol−1. It was combined
with receptor protein through five hydrogen bonds and four hydrophobic interactions as
shown in Figure 8. Basically, the 7-hydroxy-5,9-dimethyl-6H-naphtho [2,1-d][1,3]dioxin -6-
one occupied the first pocket of COVID-19 main protease with two hydrophobic interactions
with Pro168 and Ala191. The macrocyclic structure of the tested compounds occupied the
other three pockets of the target receptor engaging in five hydrogen bonds with Glu166,
His164, Cys145, Gly143, and Gln189. Moreover, it formed two hydrophobic interactions
with Met165 and His41.
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Figure 8. Binding mode of compound 278 inside the active site of Mpro PDB ID: 6LU7.

The detailed binding modes of compounds 128, 156, 180, 203, and 204 are displayed
in the Supplementary Materials (Figures S2–S6, respectively).

2.4. Toxicity Models

In this experiment, the toxicity profiles of the favored eight antiviral compounds (128,
130, 156, 180, 184, 203, 204, and 278) were examined by seven toxicity models (illustrated
in Table 5) in the Discovery Studio software version 4.0 [118,119].
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Table 5. Toxicity models of the antiviral compounds and the reference drug.

Comp. 128 130 156 180 184 203 204 278 Simeprevir

FDA rodent carcinogenicity Non-Carcinogen

Median carcinogenic potency
(TD50), mg/kg/day 2.871 1.854 5.663 8.687 3.037 7.360 12.564 12.946 2.014

Rat maximum tolerated dose,
g/kg body weight 2.382 1.277 0.137 0.002 0.021 0.018 0.029 0.020 0.003

Rat lethal dose (LD50)
g/kg body weight 4.282 5.717 10.020 0.274 4.897 0.141 0.324 0.166 0.209

Rat chronic lowest observed
adverse effect level (LOAEL),

g/kg body weight
0.040 0.017 0.017 0.001 0.012 0.001 0.001 0.001 0.002

Ocular irritancy Mild Mild Moderate Moderate None Mild Mild Mild Mild

Skin irritancy Mild Mild Moderate Mild None Mild Mild None None

All the examined antiviral compounds were estimated as non-carcinogenic in the FDA
rodent carcinogenicity model. Additionally, all antiviral compounds except 130 showed
TD50 values more than simeprevir where the values were ranging from 2.871 to 12.946 g/kg
body. Furthermore, all antiviral compounds except 180 showed rat maximum tolerated
dose values higher than that of simeprevir, the values were ranging from 0.018 to 2.382 g/kg
body weight. Compounds 128, 130, 156, 180, 184, and 204 revealed oral LD50 values in
a range of 0.274 to 10.020 g/kg body weight, higher than that of simeprevir (0.209 g/kg
body weight). On the other hand, compounds 203 and 278 showed oral LD50 values of
0.141 and 0.166 g/kg body weight, respectively which were lower than that of simeprevir.
Compounds 128, 130, 156, and 184 showed LOAEL values ranging from 0.012 to 0.040 g/kg
body weight while simeprevir exhibited 0.002 g/kg body weight. Finally, all the antiviral
compounds showed mild to moderate irritancy except 184 which showed no irritancy in
both models (Table 5).

2.5. Molecular Dynamics

Molecular dynamics (MD) simulation has provided many valuable insights into the
binding of drugs to their targets. This includes accurate evaluation of the binding strength
between a ligand and its target, studying the nature of macromolecules, and characterizing
the effect of certain mutations on the resistance profile of many drugs [120,121]. In this test,
three compounds (130, 184, and 278) that exhibited good binding mode against Mpro were
nominated for MD simulation studies.

2.5.1. RMSD, RMSF, and RDF Analysis

To endorse our virtual screening approach so far, five MD simulation experiments
were conducted on the free Mpro, co-crystallized ligand-Mpro, 130-Mpro, 184-Mpro, and 278-
Mpro. Interestingly, the calculated RMSD for the free Mpro exceeded 4.8 Å while the RMSD
of the co-crystalized ligand-Mpro reached nearly 2.2 Å. As expected, the RMSD of 130-Mpro

and 184-Mpro reached only 1.7 and 2.1 Å, respectively. In contrast, the 278-Mpro complex
had the highest RMSD value among the four ligands, reaching about 2.7 Å (Figure 9). The
complex 130-Mpro showed the least RMSD value which is a good indicator of its ability to
further restrict the flexibility of Mpro compared to the co-crystalized ligand. Furthermore,
its ability to stabilize the Mpro is attributed to the strong binding mode between the Mpro

and compound 130.
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Figure 9. RMSD analysis for the MD simulations for the native enzyme (green), PRD_002214 (yellow),
130 (blue), 184 (orange), and 278 (brown).

Similar results were obtained when calculating the RMSF values for all the residues of
the five systems where the native enzyme showed a significantly higher level of residues
fluctuation during the simulation compared to the co-crystalized ligand and the three lead
compounds (Figure 10). It is worth mentioning that the high flexibility of Mpro as shown
by higher values for RMSD and RMSF is consistent with its intended function to process
the resulting polyprotein from the replication cycle of the virus. Accordingly, the ability of
compound 130 to produce lower values for RMSD and RMSF highlights its potentiality as
a potent Mpro inhibitor.

Figure 10. The RMSF analysis for the MD simulations for the native enzyme (orange), PRD_002214
(blue), 130 (brown), 184 (yellow), and 278 (green).

In addition to RMSD and RMSF calculations, the radial distribution function (RDF)
was also computed to provide extra insights into the binding of the Mpro and the three
selected compounds. RDF can explore the distance relationship (atom to atom) between
two types of molecules (ligand, and receptor). The average density of ligand to protein
(Mpro) surface in the stable period was computed by analyzing the RDF of each ligand
to Mpro surface [122]. The gmx rdf program was utilized to explore the RDF of the three
ligands to the surface of the Mpro, and the results are demonstrated in Figure 11. All
of the RDF for the three ligands with the Mpro showed distinct peaks at 0.22~0.34 nm,
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a distance that enabled the three hits to form strong hydrogen bonds and hydrophobic
interactions. Furthermore, among the three complexes, the 130-Mpro complex reached the
highest peak nearly at 0.25 nm, followed by 184-Mpro and then 278-Mpro which reached
their maximum peaks at 0.23 nm and 0.34 nm, respectively. To this end, the RDF also
proves the ability of the three compounds to predominantly distribute at a distance that
allows strong interactions with the Mpro and also highlights the superiority of compound
130 over compounds 184 and 278. In conclusion, the RDF calculations are highly matched
with RMSD and RMSF calculations, endorsing the obtained results from the docking step.

Figure 11. Radial distribution function (RDF) for the three ligands (130, 184, and 278) on the surface
of the Mpro enzyme.

2.5.2. Binding Free Energy Calculations Using MM-PBSA Approach

The binding free energies between the four ligands (co-crystallized reference and the
three retrieved lead compounds) with Mpro were computed from all the conformations in
the saved trajectories utilizing the MM-PBSA approach. The g_mmpbsa package generated
by Kumari et al. [123] was utilized to compute all the MM-PBSA binding free energy types
(van der Waals, electrostatic, polar solvation, and SASA energies) for the four complexes of
Mpro with the four ligands (Table 6). The calculated binding energy showed a significant
higher binding affinity for 130 and 184 compared to the co-crystalized ligand and 278 which
is consistent with the obtained results of both docking and MD simulations.

Table 6. Interaction energies and the binding free energy for the four complexes.

Complex ∆E Binding (kj/mol) ∆E Electrostatic (kj/mol) ∆E Vander Waal (kj/mol) ∆E Polar Solvation (kj/mol) SASA (kJ/mol)

130 −286.9 ± 10.2 −139.1 ± 9.8 −245.7 ± 12.3 125.2 ± 8.1 −27.3 ± 0.9

184 −271.8 ± 8.9 −131.1 ± 9.1 −238.9 ± 8.5 124.9 ± 6.2 −26.7 ± 1.1

278 −236.6 ± 10.4 −111.8 ± 11.3 −205.6 ± 9.4 102.1 ± 10.7 −21.3 ± 0.8

PRD_002214 −252.5 ± 9.1 −119.5 ± 8.7 −226.7 ± 10.9 114.2 ± 7.4 −20.5 ± 1.2
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3. Method
3.1. Molecular Similarity Detection

Molecular Similarity detection was performed for the antiviral compounds using
Discovery Studio software as described in the Supplementary Materials.

3.2. Molecular Fingerprint Detection

Molecular fingerprint detection was performed for the antiviral compounds using
Discovery Studio software as described in the Supplementary Materials.

3.3. Docking Studies

Docking studies of the antiviral compounds were carried out for the antiviral com-
pounds against SARS-CoV-2 main protease PDB ID: 6LU7 using MOE.14 software [124–127]
as shown in the Supplementary Materials.

3.4. Toxicity Studies

In silico toxicity profiles were calculated for the antiviral compounds using Discovery
Studio 4.0 [128–130] as shown in the Supplementary Materials.

3.5. MDS

All molecular dynamics (MD) simulations were performed for the antiviral com-
pounds using the GROningen MAchine as shown in the Supplementary Materials.

4. Conclusions

Herein, it was concluded that luteoside C (130) was found to be the most potent in-
hibitor of Mpro among a collection of 310 natural antiviral compounds depending on a multi-
phase in silico approach. The molecular structures similarity study against PRD_002214,
the ligand of the target enzyme, favored thirty compounds. Then, the fingerprint study
against PRD_002214 elected the most similar sixteen compounds. The molecular docking
against Mpro PDB ID: 6LU7 and toxicity studies favored eight compounds. The MD simula-
tions experiments were carried out and revealed the superiority of 130 as the most potent
inhibitor of Mpro. Although the in vitro and in vivo examinations against COVID-19 are
not accessible for our team, we depended on extensive well-structured in silico studies
to offer all scientists who have the facilities the chance of strongly potential SARS-CoV-2
inhibitors. Our research is an important initial step that could be very helpful in the journey
of finding a cure.

Supplementary Materials: The chemical structures of the tested compounds, detailed method in
addition to the toxicity report can be downloaded at: https://www.mdpi.com/article/10.3390/ijms2
3136912/s1.
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