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Human glutamate dehydrogenase isozymes (hGDH1 and 
hGDH2) have been known to be inhibited by palmitoyl-CoA 
with a high affinity. In this study, we have performed the cas-
sette mutagenesis at six different Cys residues (Cys59, Cys93, 
Cys119, Cys201, Cys274, and Cys323) to identify palmi-
toyl-CoA binding sites within hGDH2. Four cysteine residues 
at positions of C59, C93, C201, or C274 may be involved, at 
least in part, in the inhibition of hGDH2 by palmitoyl-CoA. 
There was a biphasic relationship, depending on the levels of 
palmitoyl-CoA, between the binding of palmitoyl-CoA and the 
loss of enzyme activity during the inactivation process. The in-
hibition of hGDH2 by palmitoyl-CoA was not affected by the 
allosteric inhibitor GTP. Multiple mutagenesis studies on the 
hGDH2 are in progress to identify the amino acid residues 
fully responsible for the inhibition by palmitoyl-CoA. [BMB 
Reports 2012; 45(12): 707-712]

INTRODUCTION

Glutamate dehydrogenase (GDH) is found in all organisms and 
catalyzes the oxidative deamination of glutamate to 2-oxoglu-
tarate. While this enzyme does not exhibit allosteric regulation 
in plants, bacteria, or fungi, its activity is tightly controlled by a 
number of compounds in mammals (1-3). Unique to the animal 
structures, there is a 48-residue “antenna” that protrudes above 
this NAD+-binding domain (4-6). In the human, GDH exists in a 

housekeeping isozyme encoded by the GLUD1 gene and a neu-
ral and testicular tissue-specific isozyme encoded by the GLUD2 
gene (7-9). Although the two GDH isozymes (hGDH1 and 
hGDH2) are highly homologous (showing a 97% amino acid 
identity), they differ markedly in their regulatory properties such 
as heat stability and allosteric regulation by ADP, L-leucine, and 
GTP (10-12). 
　Glutamate dehydrogenase is inhibited by palmitoyl-CoA and 
the inhibition is further enhanced by α-ketoglutarate and malate 
(13-15). Palmitoyl-CoA inhibition is the most primitive form of 
allosteric inhibition and appears to also be dependent upon oth-
er allosteric regulators (14, 16). For instance, allosteric modifiers 
such as ATP, GTP, and leucine decrease inhibition of glutamate 
dehydrogenase by palmitoyl-CoA (14, 16). Thus, the palmi-
toyl-CoA binding site may be apparently in the vicinity of the site 
of these allosteric modifiers (14). The site-directed mutagenesis 
at R463 residue, known to be involved in the binding of ADP, 
dramatically reduces ADP activation as well as palmitoyl-CoA in-
hibition (16). Kawaguchi & Bloch (13) found that palmitoyl-CoA 
converts liver glutamate dehydrogenase to enzymatically in-
active dimeric subunits and that the inhibitor binds tightly to 
these subunits. Removal of the inhibitor from the palmi-
toyl-CoA-dimer complex fails to regenerate enzyme activity. In 
contrast, palmitoyl-CoA does not alter the quaternary structure of 
any of the malate dehydrogenases and binds only weakly to 
these enzymes (14).
　Previous studies have reported that palmitoylated proteins 
have no clear consensus sequence for the palmitoylation and 
palmitate is transferred onto variably located cysteine residues of 
proteins, either enzymatically by a variety of enzymes known as 
protein fatty acyl transferases or spontaneously from palmi-
toyl-CoA (17-23). Cysteine residues are obvious target for mod-
ification of several reasons; their relative rarity and the avail-
ability of reasonably specific reagents provide an opportunity for 
unambiguous modification, and cysteine side-chains are fre-
quently involved in enzyme catalysis (24). In the human gluta-
mate dehydrogenase, there are six Cys residues at the positions 
of 59, 93, 119, 201, 274, and 323. However, the palmi-
toyl-CoA-modified residues of GDH have not been reported in 
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Fig. 1. Electrophoretic analysis of wild-type hGDH2 and Cys mutants. 
(A) Western blotting of wild-type hGDH2 and Cys mutants in crude 
extracts of E. coli. In each lane, 60 μg of protein from cell extracts
were used. Lane 1, wild-type; lane 2, C59A; lane 3, C93A; lane 4, 
C119A; lane 5, C201A; lane 6, C274A; lane 7, C323A. (B) SDS- 
PAGE analysis of the purified wild-type hGDH2 and Cys mutants. 
Lane 1, low molecular weight marker proteins; lane 2, wild-type; 
lane 3, C59A; lane 4, C93A; lane 5, C119A; lane 6, C201A; lane
7, C274A; lane 8, C323A.

Fig. 2. Palmitoyl-CoA inhibition curves of wild-type hGDH2 and Cys 
mutants. Data points represent mean values from at least three ex-
perimental determinations and are expressed as percentage of baseline 
activity (no palmitoyl-CoA added). GDH activity was measured in the 
standard assay mixture in the presence of increasing concentrations of 
palmitoyl-CoA. Data points represent mean values from three ex-
perimental determinations and are expressed by a relative activity. 
Wild-type (▲-▲), C59A (■-■), C93A (Δ-Δ), C119A (□-□), C201A 
(○-○), and C274A (●-●).

any species. In the present study, we have performed the cas-
sette mutagenesis at all Cys residues (Cys59, Cys93, Cys119, 
Cys201, Cys274, and Cys323) to identify palmitoyl-CoA binding 
sites within hGDH2.

RESULTS AND DISCUSSION

Construction and analysis of Cys mutants
Mammalian GDHs are inhibited by palmitoyl-CoA (13-18). 
Previous studies have showed that cysteine residues of proteins 
spontaneously can be palmitoylated by palmitoyl-CoA (17-23) 
and that cysteine residues may be present at the active site of the 
mammalian GDHs (24-26). Previously, we reported that chem-
ical modification or site-directed mutagenesis of Cys323 residue 
causes a loss of hGDH activity (26) and that Cys119 played an 
important role in the regulation of hGDH isozymes by ADP-ribo-
sylation (30). However, the palmitoyl-CoA-modified residues of 
GDH have not been identified in any species. In the present 
study, we performed the cassette mutagenesis at six different Cys 
residues (Cys59, Cys93, Cys119, Cys201, Cys274, and Cys323) 
to identify palmitoyl-CoA binding site within hGDH2. All six 
cysteine mutant proteins constructed in the present study were 
efficiently expressed in E. coli as soluble proteins (Fig. 1). 
Analysis of crude cell extracts by Western blotting showed that 

the plasmids encoding Ala substitution of the six Cys residues di-
rected the synthesis of proteins that interacted with monoclonal 
antibodies against GDH at almost identical levels to the wild 
type hGDH2 (Fig. 1A). The mutant proteins could also be puri-
fied to homogeneity by the same method used to purify of wild 
type hGDH2 (Fig. 1B).

Palmitoyl-CoA inhibition of wild-type hGDH2 and Cys mutants
Incubation of the wild-type hGDH2 with increasing concen-
trations of palmitoyl-CoA resulted in a progressive decrease in 
enzyme activity (Fig. 2). Among the Cys mutants, the efficiency 
(kcat/Km) of the C323A mutant was only ∼10% of that of the 
wild-type hGDH2 and no further inhibition studies by palmi-
toyl-CoA was performed with this mutant. Our results showed 
that the C119A mutant showed almost identical inhibitory pat-
tern with the wild-type hGDH2 by palmitoyl-CoA, suggesting 
that Cya119 is not involved in the inhibition of hGDH2 by pal-
mitoyl-CoA (Fig. 2). In contrast, the C59A, C93A, C201A, or 
C274A change reduced some, but not all, of the inhibitory prop-
erties of hGDH2 by palmitoyl-CoA (Fig. 2). These results suggest 
that C59, C93, C201, or C274 residue may be involved, at least 
in part, in the inhibition of hGDH2 by palmitoyl-CoA. However, 
it also seems likely that none of the residues at C59, C93, C201, 
or C274 in hGDH2 can be solely responsible for the binding of 
palmitoyl-CoA. Therefore, additional amino acid residues should 
be responsible for the inhibition of hGDH2 by palmitoyl-CoA.
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GTP (μM) K3 (μM)

WT C59A C93A C119A C201A C274A
0.0 1.82 2.15 2.60 1.98 2.47 2.31
0.4 1.77 2.09 2.57 2.00 2.42 2.30
0.8 1.84 2.10 2.62 2.04 2.40 2.33
1.2 1.80 2.11 2.61 2.08 2.41 2.31
1.6 1.80 2.20 2.59 1.99 2.50 2.36
2.0 1.79 2.09 2.62 1.99 2.49 2.29

Table 1. Effects of GTP on the inhibition of wild-type hGDH2 and Cys mutants by palmitoyl-CoA. K3 values were determined by non-re-
gression analysis of as described in Materials and Methods. The palmitoyl-CoA concentration was constant (5 μM) while the GTP con-
centration was held varied as indicated. The data represent mean values for three independent experiments

Fig. 3. Stoichiometry of palmitoyl-CoA inactivation for wild-type hGDH2 
and Cys mutants. These results were obtained by incubating wild-type 
hGDH2 or Cys mutants with palmitoyl-CoA at various ratios for 3 min 
in the assay buffer at 25oC. After 3 min, aliquots were withdrawn and 
remaining activities were measured by adding the standard assay 
mixture. Data points represent mean values from three experimental 
determinations and are expressed by a plot of ratio of velocity in the 
presence of palmitoyl-CoA (v) to velocity in the absence of palmi-
toyl-CoA (vo) versus molar ratio of palmitoyl-CoA to hGDH2. Wild-type 
(▲-▲), C59A (■-■), C93A (Δ-Δ), C119A (□-□), C201A (○-○), and 
C274A (●-●).

Stoichiometry of palmitoyl-CoA inactivation for wild-type 
hGDH2 and Cys mutants
Correlation between palmitoyl-CoA binding and enzyme activity 
is shown in Fig. 3. There was a biphasic relationship, depending 
on the levels of palmitoyl-CoA, between palmitoyl-CoA binding 
and the loss of enzyme activity during the inactivation process. 
At lower levels, palmitoyl-CoA would linearly decrease hGDH2 
activity, extrapolating to a stoichiometry of 1.2 mol of palmi-
toyl-CoA incorporation per mol of enzyme subunit. However, 
higher levels of palmitoyl-CoA did not produce additional linear 
inhibition of hGDH2 activity up to a stoichiometry of approx-
imately 2 mol of palmitoyl-CoA binding per mol of enzyme 
subunit. The biphasic results may due to the formation of for-
mation of micelles having a lower affinity for the enzyme at high 
concentration of palmitoyl-CoA as reported by other inves-

tigators (28). Further studies, therefore, are necessary to elucidate 
how many cysteine residues per molecule of enzyme subunit are 
required for the complete inactivation of hGDH2 by palmi-
toyl-CoA.

Effects of GTP on the inhibition of wild-type hGDH2 and Cys 
mutants by palmitoyl-CoA
In contrast to plants and fungi, animals perform α-oxidation of 
medium and long chain fatty acids mainly in the mitochondria, 
while the very long chain fatty acids are catabolized in the 
peroxisomes. Therefore, it has been proposed that the antenna 
evolved to link fatty acid and amino acid catabolism in the 
mitochondria. While we do not yet know the location of the pal-
mitoyl-CoA-binding site, it is tempting to speculate that the bind-
ing of palmitoyl-CoA might be related to the antenna domain 
and inhibited by affecting the conformational changes associated 
with the opening and closing of the catalytic cleft (4, 5). 
According to the previous reports, allosteric modifirers such as 
ATP, GTP, and leucine decrease inhibition of bovine GDH by 
palmitoyl-CoA (14). Thus, the palmitoyl-CoA binding site might 
be apparently in the vicinity of the site of these allosteric 
modifiers. In this study, we further investigated the effects of 
GTP on the inhibition of the Cys mutants by palmitoyl-CoA. The 
data in Table 1 shows that inhibition of hGDH2 by palmi-
toyl-CoA was not affected by the allosteric inhibitor GTP. K3 val-
ue, the affinity for palmitoyl-CoA binding, was not changed by 
the presence of GTP for both wild-type hGDH2 and Cys mutants 
(Table 1), indicating that inhibition by palmitoyl-CoA was com-
plete in the absence or presence of GTP. These results are con-
trast to those obtained from bovine GDH, where GTP reduced 
inhibition of bovine GDH by palmitoyl-CoA (14). These discrep-
ancies are not clearly explained, but probably may be due to the 
different sensitivity to GTP inhibition between GDH isotypes (2, 
3, 10-12).
　Palmitoyl-CoA is the acyl donor for protein palmitoylation and 
inhibits several enzymes including bovine liver glutamate de-
hydrogenase (29) and bovine liver methylmalonyl semialdehyde 
dehydrogenase (14). The results presented here show that palmi-
toyl-CoA inhibits hGDH2 with a high affinity suggesting that 
hGDH2 may be vulnerable to inhibition by palmitoyl-CoA at 
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physiological condition. The cysteine residues at positions of 
C59, C93, C201, or C274 may be involved, at least in part, in 
the inhibition of hGDH2 by palmitoyl-CoA. The sulphydryl 
group of a cysteine has an ionization constant pKA of 8.5, which 
makes the formation of a thiolate under the cytosolic conditions 
of the cell (pH 7.2-7.4) unlikely. However, in the context of a 
peptide or a protein, proximal polar or charged side chains can 
notably modulate the pKa of a cysteine and, therefore, its poten-
tial to form a thiolate. Indeed, the pKa of a cysteine can be re-
duced by as much as six orders of magnitude to a value of 3 
(30), which makes the formation of thiolates highly likely. The 
dependence of the pKa on the position of a cysteine in a protein 
could also explain the peculiar observation that autoacylation 
targets the same cysteines that are acylated in vivo (31, 32).
　However, we still do not exactly know the binding site(s) of 
palmitoyl-CoA for the inhibition of hGDH2. Multiple muta-
genesis studies on the hGDH2 are in progress in our laboratory 
to identify the amino acid residues fully responsible for the regu-
latory properties by palmitoyl-CoA. The fact that GDH is in-
volved in amino acid catabolism, is fatty-acylated (33), and in-
hibited by palmitoyl-CoA shows the importance of GDH as a 
metabolic cross-talk between amino acid and fatty acid catabolic 
pathways.

MATERIALS AND METHODS

Materials
NADH, 2-oxoglutarate, ADP, and isopropyl b-D-thiogalactopyr-
anoside (IPTG) were purchased from Sigma Chemical Co. 
Human GDH2 genes (pHGDH2) have been chemically synthe-
sized and expressed in E. coli as soluble proteins in our labo-
ratory as described elsewhere (34). ADP-Sepharose, and 
Resource-Q were purchased from Amersham Pharmacia Biotech. 
Restriction enzymes were purchased from New England Biolabs. 
Pre-stained marker proteins for Western blot were purchased 
from NOVEX. Low molecular weight protein marker for 
SDS/PAGE was purchased from Bio-Rad. All other chemicals and 
solvents were reagent grade or better.

Bacterial strains
Escherichia coli DH5a was purchased from Invitrogen and used 
as the host strain for plasmid-mediated transformations for cas-
sette mutagenesis. E. coli PA340 (thr-1 fhuA2 leuB6 lacY1 
supE44 gal-6 gdh-1 hisG1 rfbD1 galP63 D(gltB-F)500 rpsL19 
malT1 xyl-7 mtl-2 argH1 thi-1; kindly provided by Dr. Mary K.B. 
Berlyn, E. coli Genetic Stock Center, Yale University) lacked 
both GDH and glutamate synthase activities (35) and was used 
to test plasmids for GDH activity. E. coli BL21 (DE3) (36) was 
used for high level expression of the recombinant GDH.

Construction of mutants
To make hGDH2 mutant proteins (C59A, C93A, C119A, C201A, 
C274A, and C323A), amino acid substitutions at six different Cys 
sites were constructed by cassette mutagenesis of synthetic 

hGDH2 gene (pHGDH2) as described elsewhere (15, 26, 34). 
Plasmid DNA was digested with restriction enzymes to remove 
the flanking fragment that encodes target amino acid. The flank-
ing fragment was replaced with synthetic DNA duplex contain-
ing a substitution on both DNA strand at six different Cys sites. 
Mutagenic oligonucleotides were annealed, ligated, and trans-
formed into DH5α and resultant mutant plasmids were identified 
by DNA sequencing using plasmid DNA as a template.

Expression and purification of Cys mutant proteins
Fresh overnight cultures of DE3/pHGDH2 mutant was used to in-
oculate 1 L of LB containing 100 μg of ampicillin per ml. 
DE3/pHGDH2 mutant was grown at 37oC until the A600 reached 
1.0 and then IPTG was added to a final concentration of 1 mM. 
After IPTG induction, DE3/pHGDH2 mutant was grown for an 
additional 3 h at 37oC and then harvested by centrifugation. Cell 
pellets were suspended in 100 ml of 100 mM Tris-HCl, pH 7.4/1 
mM EDTA/5 mM dithiothreitol and lysed with a sonicator. 
Cellular debris was removed by centrifugation and the mutant 
proteins were purified by ADP-Sepharose column followed by 
FPLC Resource-Q column as described elsewhere (15, 26, 34). 
The purified mutant proteins were analyzed by SDS-PAGE and 
the western blot analysis as reported elsewhere (37, 38). 

Inhibition of hGDH2 by palmitoyl-CoA 
Inhibition studies were determined with the purified proteins un-
less otherwise indicated. GDH activity was measured spec-
trophotometrically in the direction of reductive amination of 
2-oxoglutarate by following the decrease in absorbance at 340 
nm as described before (34). All assays were performed in tripli-
cate and initial velocity data were related to a standard assay 
mixture containing 50 mM triethanolamine, pH 8.0, 100 mM 
ammonium acetate, 0.1 mM NADH, and 2.6 mM EDTA at 25oC. 
One unit of enzyme is defined as the amount required to oxidize 
1 μmol of NADH per min at 25oC. 
　Effects of mutagenesis on different palmitoyl-CoA inhibitions 
of hGDH2 were examined by incubating the wild type and mu-
tant enzymes with palmitoyl-CoA at various concentrations in 
the assay buffer at 25oC. At intervals after the initiation with pal-
mitoyl-CoA, aliquots were withdrawn for the assay of hGDH 
activity.
　The K3 value was determined with the following equation de-
scribed by Shemisa and Fahien (39), which is appropriate for 
both full and partial inhibitors:

1/(V1 − v) = 1/( V1 − V2) + K3/( V1 − V2)[M] 
　where V1 is the velocity in the absence of effector, v is the ve-
locity in the presence of effector, V2 is the velocity in the pres-
ence of saturating concentrations of effector, [M] is the concen-
tration of effector, and K3 is the concentration of effector neces-
sary to obtain V = (V1 + V2)/2. Data were analyzed by fitting the 
(V1 - v) vs [M] curves by non-linear regression to obtain K3.

Statistical analysis 
The significance of the effect of palmitoyl-CoA on the activities 
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of hGDH2 was analyzed by an unpaired two-tailed t test. Unless 
otherwise mentioned, each experimental point represents the 
mean of triplicate determinations from different preparations. At 
some points, error bars were omitted in the figures for the pur-
pose of clarity.
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