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Abstract

Background: Male song sparrows (Melospiza melodia) are territorial year-round; however, neuroendocrine responses to
simulated territorial intrusion (STI) differ between breeding (spring) and non-breeding seasons (autumn). In spring, exposure
to STI leads to increases in luteinizing hormone and testosterone, but not in autumn. These observations suggest that there
are fundamental differences in the mechanisms driving neuroendocrine responses to STI between seasons. Microarrays,
spotted with EST cDNA clones of zebra finch, were used to explore gene expression profiles in the hypothalamus after
territorial aggression in two different seasons.

Methodology/Principal Findings: Free-living territorial male song sparrows were exposed to either conspecific or
heterospecific (control) males in an STI in spring and autumn. Behavioral data were recorded, whole hypothalami were
collected, and microarray hybridizations were performed. Quantitative PCR was performed for validation. Our results show
262 cDNAs were differentially expressed between spring and autumn in the control birds. There were 173 cDNAs
significantly affected by STI in autumn; however, only 67 were significantly affected by STI in spring. There were 88 cDNAs
that showed significant interactions in both season and STI.

Conclusions/Significance: Results suggest that STI drives differential genomic responses in the hypothalamus in the spring
vs. autumn. The number of cDNAs differentially expressed in relation to season was greater than in relation to social
interactions, suggesting major underlying seasonal effects in the hypothalamus which may determine the differential
response upon social interaction. Functional pathway analyses implicated genes that regulate thyroid hormone action and
neuroplasticity as targets of this neuroendocrine regulation.
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Introduction

Testosterone (T) has classically been regarded as a major factor

in the control of vertebrate aggression, at least in reproductive

contexts. However, regulation of aggression may be far more

complex as T manipulations have had variable results on

aggressive behaviors in different species [1,2,3]. Moreover, T

secretion upon social interaction has been observed in some but

not all species (reviewed in [4]), further adding to the complexity of

T’s role in natural aggression. The ‘‘challenge hypothesis’’ [5]

attempts to explain the variable linkage of T and aggression during

the breeding season. It suggests that a correlation between the two

exists only during social instability, such as during establishment of

dominance relationships and/or territorial boundaries, or when

animals are ‘‘challenged’’ by a conspecific male for their territories

and/or mates. The challenge hypothesis has been supported by

studies in over 85 avian species [5,6,7] as well as in over 150 other

vertebrates such as fish [8], reptiles [9,10] and mammals [11]

including humans [12].

Male song sparrows, Melospiza melodia, have been one of the

ideal models for testing the challenge hypothesis and exploring the

underlying mechanisms [5]. The influence of social interaction on

testosterone levels is clearly depicted by a difference in patterns of

systemic testosterone levels in captive vs. free-living song sparrows,
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the latter more likely to be socially instable or be challenged

[reviewed in [13]]. Sedentary populations that reside in western

Washington State, Melospiza melodia morphna, maintain year-round

aggression towards conspecific male territorial intruders, except

for brief period during molt when males show little or no

aggression.

However, there is a difference in their responses to territorial

challenge between seasons at the neuroendocrine level. During the

breeding season, circulating levels of luteinizing hormone (LH)

and testosterone (T) are high, and they increase to even higher

levels upon social interaction [14,15]. In the non-breeding season,

gonads are regressed, circulating LH and T levels are undetect-

able, and remain so even after social interactions [16]. Since males

show behavioral aggression even in the non-breeding season, an

increase of systemic T upon social interaction must not be

necessary to activate aggression in this species; although it may

increase the intensity and persistence of the behavior [17].

Emerging evidence has suggested locally synthesized but not

systemic T and estrogen in the brain play a major role in triggering

aggression in song sparrows during the non-breeding season

[18,19]. The sensitivity of the brain to these hormones may also

increase during the non-breeding season. For example, mRNA up-

regulations of their receptors, ERa and AR, during non-breeding

seasons has been reported in spotted antbirds (Hylophylax n.

naevioides), another species that shows year-round aggression [20].

Release of gonadotropin-releasing hormone (GnRH) at the

hypothalamus will usually lead to a subsequent increase and

release of LH from the pituitary, which will then stimulate the

Leydig cells in the testis to increase T systemically. Recently, our

laboratory found that FOS (also known as c-fos) protein is

differentially expressed in the hypothalamus after territorial

intrusion in breeding vs. non-breeding season. This seasonal

difference was observed in brain nuclei that play a role in

neuroendocrine response, such as the median eminence (site of GnRH

release). Territorial intrusion also induced FOS in other brain

areas that play a role in memory, emotion and behavior including

aggression, but with no differential effect of season [K. Soma, S.

Meddle and J. Wingfield unpublished data]. Expression of the

immediate-early response gene, FOS, is commonly used as an

indicator of functional activation of cells in a particular brain

region. Therefore, these findings imply that brain regions

important for the neuroendocrine response may be selectively

activated by territorial aggression, or at least activated in a

different way, during breeding season. However, the detailed

mechanism driving this seasonal difference in neuroendocrine

response remains unknown.

The main aim of this study was to explore and understand the

mechanisms underlying seasonal differences in the neuroendocrine

response upon social interaction. Basal gene expression was also

compared between two different seasons, breeding and non-

breeding, to discern the differences of expression status without the

territorial challenge. We collected hypothalami from free-living

male song sparrows (Melospiza melodia morphna) in both breeding

and non-breeding seasons after eliciting territorial aggression in

the field by challenge experiments, called simulated territorial

intrusions (STI), and we analyzed gene expression using micro-

array resources of the Songbird Neurogenomics Initiative (SoNG)

[21].

Our results show that territorial aggression is associated with

hypothalamic gene responses, but the profile clearly differs

between the breeding and non-breeding season. We found that

cDNAs that code genes that regulate thyroid hormone and

neuroplasticity are differentially expressed across seasons with or

without territorial intrusion which may contribute to the

regulation of GnRH release. Somewhat surprisingly, fewer genes

responded to territorial challenge in the breeding season compared

to non-breeding season. This suggests the existence of a refined

pathway to quickly respond to territorial intrusions with further

increases in testosterone under challenged conditions in the

breeding season, and points to a possible mechanism underlying

the challenge hypothesis.

Results

Territorial Behavior
Simulated territorial intrusion experiments (STI) were carried

out in the field in western Washington in breeding (spring) and

non-breeding seasons (autumn to winter; called autumn herein).

To quantify the territorial behavior of the birds upon STI, 4

behavioral endpoints were recorded: number of full songs (a

characteristic territorial vocalization), number of flights, closest

approach (meters; m) to the decoy, and time spent within 5-m of

the decoy. Behavioral data obtained from birds during an STI or

control were consistent with previous reports [16]. Birds

responded with increased aggression towards a conspecific

intruder both in spring and autumn (SE and AE) compared to

controls (SC and AC, respectively; Fig. 1). In spring, an STI

increased the number of songs by 2.2-fold (SE, 2566.0 songs; SC,

11.362.4 songs; U(8,8) = 52.5, p,0.05) and the number of flights

by 9.3-fold (SE, 46.564.3 flights; SC, 560.9 flights; U(8,8) = 64,

p,0.01), compared to controls. In autumn, there was decrease in

the basal number of songs compared to spring (AC; 261.6 songs;

U(8,8) = 54, p,0.05 vs. SC) but birds still responded robustly to

Figure 1. Aggressive behavior of sparrows subjected to
simulated territorial intrusion during breeding and non-
breeding season. Male song sparrows (n = 8/group) in their territory
were exposed to a caged conspecific male decoy in addition to a
recorded male song playbacks in breeding season, spring (SE) and non-
breeding season, autumn (AE). As controls (AC, SC), a white-crowned
sparrow decoy and recorded songs were used. Behavior of a subject
was recorded for number of songs, number of flight, closest approach
to the decoy (meters; m), and time spend within 5-m of the decoy.
Kruskal-Wallis 1-way ANOVA followed by Mann-Whitney U test;
significant at * p,0.05, ** p,0.01 between experimental conditions
of the same season, or at { p,0.05 between seasons under same
experimental conditions. Results are shown in mean6SEM.
doi:10.1371/journal.pone.0008182.g001
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STI with a 12.5 fold increase (AE; 2566.9 songs) compared to

controls (U(8,8) = 61, p,0.01, AE vs. AC). STI also increased the

number of flights in autumn (AE, 27.165.8 flights; AC, 661.9

flights; U(8,8) = 61.5, p,0.01); although, it did not reach the same

level as in the spring. Distance of closest approach to the decoy

was decreased in both seasons (U(8,8) = 59.5 for spring; U(8,8) = 58

for autumn; p,0.01) with STI (0.960.6 and 0.860.4 m; SE and

AE, respectively) compared to controls of the same season

(7.362.8 and 1164.4 m; SC and AC, respectively). Time spent

within 5-m of the decoy was increased in both seasons (U(8,8) = 64,

p,0.01) with STI (6.660.9 and 6.660.8 min; SE and AE,

respectively) compared to controls of the same season (0.260.1

and 0.560.2 min; SC and AC).

Identification of Differentially Expressed Genes by
Microarray

To identify genes that are differentially expressed during

territorial aggression in breeding and non-breeding season, bird

hypothalami (with pars tuberalis of pituitary) were collected, RNA

extracted and labeled-cDNA samples were hybridized to a custom-

made cDNA microarray. This array was constructed with cDNAs

derived from zebra finch brain tissues, which had been validated for

use with various songbird species including song sparrows by

comparative genomic hybridization [21]. The detailed description

of this array platform is described previously [21] but briefly, this

spotted cDNA microarray represents 17,214 non-redundant

products of an estimated 11,500–15,000 genes. Some genes were

represented by several cDNA clones from different parts of the

transcript; in these cases, the different cDNAs may measure

different mRNA isoforms from the same gene (e.g. variations in

splicing or start site) having different regulation patterns. Therefore

the initial statistical analyses treated each cDNA spot independently.

Each array was hybridized with the sample from a single song

sparrow along with SoNG’s universal reference derived from zebra

finch brain, for total of 31 hybridizations.

A total of 727 cDNA spots showed significance at p,0.01 for AC vs.

SC, AE vs. SE, AE vs. AC, SE vs. SC, AE vs. SE, or interaction (by cell-

means model followed by individual posthoc tests, see Methods section

for details). The Venn-diagram (Fig. 2) shows the number of significant

cDNA spots in AC vs. SC, AE vs. AE, and interaction (Fig. 2A); and SE

vs. SC, AE v. AC, and interaction (Fig. 2B). For example, 262 cDNAs

were differentially expressed between spring and autumn in birds not

exposed to STI (AC vs. SC; Fig. 2A, p,0.01). Of those, 115 were

down-regulated and 147 were up-regulated in autumn compared to

spring (Table S1). There was also a seasonal effect in the birds that had

been exposed to STI (283 cDNA spots total, Fig. 2A; 143 down-

regulated and 140 up-regulated in AE vs. SE; Table S2). There were

88 cDNAs that were significant (p,0.01) in the interaction of season

and STI (Fig. 2B, Table S5). Among seasonally affected cDNAs, only

25 of the AC vs. SC, and only 24 of the AE vs. SE overlapped with

those affected in the interaction (Fig. 2A). STI had an effect on

expression in both seasons, although the magnitude of the effect was

different in spring and autumn. In spring, 67 cDNAs were significantly

different between control and STI birds in spring (Fig. 2B). Of those, 31

cDNAs were down-regulated and 36 were up-regulated with STI

(Table S3). In autumn, 173 cDNAs were significantly different between

control and STI birds (Fig. 2B, p,0.01). Of those, 77 cDNAs were

down-regulated and 96 were up-regulated with STI (Table S4). Only

one cDNA, annotated as forming binding protein 1-like (FNBP1L), was

differentially regulated by STI in both spring and autumn (Fig. 2B),

although it was regulated in the opposite direction (up in spring and

down in autumn). Among cDNAs affected in the interaction, 21 cDNA

clones overlapped with SE vs. SC significant list, 18 cDNAs overlapped

with AE vs. AC significant list (Fig. 2B).

Hierarchical cluster analysis of all of the 727 significantly

affected cDNA clone spots (Tables S1, S2, S3, S4, and S5) showed

various combinations of gene regulation in the different seasons

and by social interactions (Fig. 3). Where separate cDNA clones

were derived from the same gene, the Pearson correlation analysis

often clustered them together supporting the general reliability of

our array (e.g. 4 TTR cDNAs in the middle panel and 3 CRYM

cDNAs in the right panel of Fig. 3).

To identify affected gene networks and functional pathways,

pathway analysis was performed using IPA 6 (Ingenuity Systems,

Redwood City, CA). Several of prominently affected gene

networks involved genes associated with thyroid hormone action

and neuroplasticity. We focused on these networks because of their

relationship to the control of GnRH secretion. We also saw

evidence of coordinated regulation of these networks in the AC vs.

SC and in the interaction (representative networks shown in Fig. 4).

Table 1 shows representative cDNAs that were affected in these

networks, and will be mentioned in the discussion. The complete

list is available as Tables S1, S2, S3, S4, and S5.

Validation of Microarray Results by Real-Time RT-PCR
Nine genes of functional interest were selected for validation by

quantitative PCR (qPCR) analysis (Table 2). Eight genes showed

differential expression at p,0.01 in the microarray and were of

Figure 2. Venn-diagram of regulated cDNA spots in different
seasons and with simulated territorial intrusions. A) Number of
regulated cDNA spots in autumn compared to spring in either control
or STI groups (AC vs. SC, 262 total; AE vs. SE, 283 total), and those that
showed interaction effect of season and STI (88 total). B) Number of
regulated cDNA spots in STI compared to controls in each season (SE vs.
SC, 67 total; AE vs. AC, 173 total), and those that showed interaction
effect of season and STI. The numbers within the overlapped circle
indicates an overlap of differentially expressed cDNAs. Cell-means
model was used for statistics, significant at p,0.01.
doi:10.1371/journal.pone.0008182.g002
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interest in potential relationship to regulation of GnRH:

glycoprotein hormone alpha chain precursor (CGA), transthyretin

(TTR), mu-crystallin (CRYM), heat shock 70 kDa protein (HSPA2),

zinc finger and BTB domain containing 16 (ZBTB16), and growth

arrest and DNA damage-inducible, beta (GADD45B), vasoactive

intestinal peptide (VIP), and neurensin 1 (NRSN1). In addition, c-

fos (FOS) was also investigated since previous study in our

laboratory showed differential expression upon territorial intrusion

between two different seasons, although it was not significantly

different in the array analysis.

CGA, which showed large decreases in the autumn sam-

ples compared to the spring samples by microarray, also

showed similar effects by qPCR (Table 1; 1-way ANOVA,

F(3,24) = 30.76, p,0.01). The qPCR assay confirmed an especially

large decrease (42.8-fold) in AC vs. SC (Fig. 5A, Tukey’s, p,0.01)

and also a significant decrease (8.3-fold; Tukey’s, p,0.01) in AE

vs. SE.

TTR showed a complex pattern of regulation by microarray,

up-regulated by STI in spring but down-regulated by STI in

autumn (Table 1) and with a large seasonal differences in the

control conditions (AC.SC). With qPCR, the difference in AC vs.

SC was not significant, although there was a trend towards an

increase consistent with the microarray data. However, qPCR did

confirm a significant interaction effect of seasonal and social

factors (2-way ANOVA, F(1,20) = 7.62, p,0.05), with an increase

by 18.1-fold in SE vs. SC and a decrease by 11.0-fold in AE vs. SE

(Fig. 5B, Tukey’s, p,0.05).

In the array, CRYM showed significant seasonal decreases in

both AC vs. SC and AE vs. SE (Table 1). This seasonal effect was

also significant by qPCR (1-way ANOVA, F(3,24) = 5.98, p,0.01)

with 3.1-fold decrease in AC vs. SC (Fig. 5C, Tukey’s, p,0.05).

Conversely, HSPA2 was increased in both AC vs. SC and AE vs.

SE by the microarray (Table 1). A significant seasonal increase was

confirmed for HSPA2 (ANOVA, F(3,24) = 4.25, p,0.05) in AE vs.

SE (2.4-fold, Tukey’s, p,0.05) by qPCR, although the increase

was not significant in AC vs. SC (Fig. 5D).

ZBTB16 showed a seasonal/social interaction effect in the

array data (up-regulated by STI in both seasons but greater

response in spring; Table 1). The qPCR results (1-way ANOVA,

F(3,24) = 6.13, p,0.01) validated the up-regulation response by

STI in spring (2.2-fold; Fig. 5E; Tukey’s, p,0.01) and also

showed a trend towards a decrease in AE vs. SE (although not

significant). The statistical interaction effect fell short of

significance by qPCR (2-way ANOVA, F(1,24) = 3.07, p = 0.093).

GADD45B also showed a seasonal/social interaction effect in the

array data (up-regulated by STI in both seasons but response is

Figure 3. Hierarchical clustering of all differentially expressed cDNA spots. All cDNA spots that passed the cut-off (p,0.01) in the cell-
means model (total of 727 genes) were clustered using Pearson correlation and shown as a heatmap. Up-regulated cDNAs are shown in red, down-
regulated cDNAs are shown in blue compared to a mean of all four groups. Examples of two distinct groups are seen in AC vs. SC comparison (blue
and red line; down- and up-regulation, respectively). Those cDNA spots affected by interactions are also shown as sections (A, B, C). Portion of AC,SC
and section C of the interaction are magnified as a representation of cDNA spots (middle and right panel). Those cDNAs highlighted made cutoff in
each comparisons (squared in green with interaction effect, blue with AC vs. SC). Clustering of different cDNA spots of the same gene (TTR and CRYM)
shows consistency of expression patterns among these cDNAs.
doi:10.1371/journal.pone.0008182.g003

Gene Profiling upon Aggression

PLoS ONE | www.plosone.org 4 December 2009 | Volume 4 | Issue 12 | e8182



greater in spring; Table 1). The qPCR results validated this (1-

way ANOVA, F(3,24) = 16.82, p,0.01) and showed a 3.0-fold

increase in SE vs. SC, a 2.3-fold decrease in AE vs. SE (Fig. 5F),

and a significant interaction effect (2-way ANOVA, F(1,24) = 6.67,

p,0.05). For two other genes, VIP and NRSN1, qPCR failed to

confirm the effects observed by the microarray (Fig. 5G and data

not shown for NRSN1).

Unexpectedly, expression of FOS mRNA was not significantly

affected in the microarray data, although our previous observation

using immunohistochemistry showed an increase of protein expres-

sion in hypothalamic nuclei by STI. To verify these microarray

results, qPCR was performed in addition to the other selected 8

genes. However, FOS was not significantly affected either by season or

STI (Fig. 5H), consistent with the lack of effect in the array analysis.

Figure 4. Representative gene network discovered by Ingenuity Pathway Analysis. A) A network affected in AC vs. SC comparison. Red
represents up-regulation of the gene in autumn control (AC) vs. spring control (SC), whereas blue represents down-regulation. Color intensity
correlates with a degree of fold change. Thyroid hormone (L-triiodothyronine, T3) is highlighted by yellow. White represents genes that were either
not differentially expressed, not been annotated, or not in the custom-made array. B&C) A network affected by interaction (season6STI). The same
network shown with expression fold-changes for SE vs. SC (B) or AE vs. AC (C). Red represents up-regulation of the gene in STIs (SE in B, AE in C) when
compared with controls (SC in B, AC in C), whereas blue represents down-regulation. Same as (A) for the white. When there were multiple cDNA clone
spots per gene, fold change values that were of most significance were selected.
doi:10.1371/journal.pone.0008182.g004
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In summary, in 7 of 9 cases, qPCR generally confirmed most of

the effects observed by microarray. TTR, ZBTB16, and

GADD45B all showed significant or trends of interaction effect

between season and social stimulus, whereas CGA, CRYM, and

HSPA2 showed consistent seasonal effects or trends under both

social conditions.

Discussion

Song sparrows display similar behavioral responses to STIs in

breeding and non-breeding seasons. However, while there is social

activation of the hypothalamo-pituitary-gonad axis resulting in an

increase on testosterone secretion during breeding season, there is

no such response to STIs in the non-breeding season despite very

similar behavioral responses. Mechanisms of how increases in LH

and T occur during territorial aggression exclusively in the

breeding season have not been deciphered to date. Therefore, this

study was designed to decipher potential molecular mechanisms

underlying neuroendocrine responses during territorial aggression

by global gene expression analysis. Our studies detected a large

number of cDNAs (727) that are differentially expressed in the

hypothalamus according to season or STI. For the most part, these

Table 2. Primer sequences used for real-time PCR validation.

Target gene Accession # Forward primer Reverse primer
Product
size (bp)

CGA CK310677.1 59-CAGATCATGGATTGCTATGGG 59-CCCTGCATGAGAAACTCTCC 107

TTR CK302433.1 59-CTGTTGATTCCAAATGCCC 59-CATTAGCAGTGAACACCAC 282

CRYM DV960559.1 59-CCACATCAATGCTGTTGGAG 59-AGAGCAGCATCTCTGGAATC 102

HSPA2 DV959345.1 59-AAGGGCCAGATTCAGGAGAT 59-TGTTGAGCTCTTTGCCATTG 100

ZBTB16 XM_002189445.1 59-TGAAGACAGAGAGCAGAGCC 59-TGAGCCAGTAAGTGCATTCG 178

GADD45B CK304105.1 59-ATCTGCACTGCATCCTCATC 59-CAACAAAGGTTTGAGCCTCC 173

VIP DV958568.1 59-AGAATGCCATTTGATGGAGC 59-AGAGTGGCGTTTGACAGGAC 162

NRSN1 CK303279.1 59-GCACAGCTTCAATTTGGGAG 59-TAAAAGCCGTCCCAGAGATG 108

FOS CK304505.1 59-AGGACTTCTGCACCGACCT 59-GGGCCACTGAAGAGATGAGA 120

ACTB CK307381.1 59-CACAGCTGCCTCTAGCTCCT 59-CAGGACTCCATACCCAGGAA 132

Glycoprotein hormone alpha chain precursor (CGA), transthyretin precursor (TTR), m-crystallin (CRYM), heat shock 70 KDa protein (HSPA2), zinc finger and BTB domain
containing 16 (ZBTB16), growth arrest and DNA-damage-inducible beta (GADD45B), vasoactive intestinal peptide (VIP), neurensin 1 (NRSN1), c-fos (FOS), and b-actin
(ACTB). ACTB was used as internal control.
doi:10.1371/journal.pone.0008182.t002

Figure 5. Validation of microarray results by real-time PCR. Expression of A) glycoprotein hormone alpha chain precursor (CGA), B)
transthyretin (TTR), C) m-Crystallin (CRYM), D) heat shock 70 KDa protein (HSPA2), E) zinc finger and BTB domain containing 16 (ZBTB16), F) growth
arrest and DNA-damage-inducible, beta (GADD45B), G) vasoactive intestinal peptide (VIP), and H) c-fos (FOS) were determined. Results were
calculated in relative RNA amounts using b-actin (ACTB) as internal control and shown as mean fold-change to group with lowest expression value.
n = 527/group, * p,0.05 by ANOVA followed by Tukey’s test as posthoc pair-wise comparisons. Results are shown in mean6SEM.
doi:10.1371/journal.pone.0008182.g005
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727 cDNAs represent non-redundant genes, as 555 have now been

mapped to defined gene models in the zebra finch genome

assembly (Ensembl Release 53, http://www.ensembl.org) and 513

(92% of the mapped genes) of which are unique.

Previous unpublished findings from our laboratory showed that

the protein product of FOS is increased by STI in the spring but

not in the autumn in hypothalamic regions important for

neuroendocrine regulation. Because of this finding, our original

hypothesis was that exposure to an STI will activate more genes in

the hypothalamus in the breeding (spring) than in the non-

breeding season (autumn). However, we found just the opposite -

fewer cDNAs were differentially expressed upon territorial

intrusion in spring than in the autumn. At a significance threshold

of p,0.01, we only detected 67 cDNA spots that were affected by

STI in the spring, but 173 cDNA spots were responsive to STI in

the autumn. In addition, there were even larger differences in

cDNA expression between the spring and the autumn birds

independent of territorial challenge.

The large seasonal difference in number of mRNA transcripts

affected by social interactions suggests that the system may be

optimized in spring for a rapid neuroendocrine response requiring

fewer gene expression changes, and that season-dependent basal

gene/protein expression levels are likely to play a major role in

how the hypothalamus responds to territorial intrusion. We

speculate that photoperiod signals may act on the hypothalamus

to establish this refined pathway, whereas socially-mediated

increases in gonadally derived testosterone may feed back on the

hypothalamus and other brain regions to assist in maintaining it

through the spring.

Moreover, gene responses to territorial challenge in the autumn

may represent functional activation of the hypothalamus relating

to local production of T and estradiol, which are suggested to play

an important role in displaying aggression during the non-

breeding season [18,19], and/or may represent suppression of

neuroendocrine responses, although there was no direct evidence

of this found from the array analysis. The different seasonal

responses to STI could also be linked to parameters associated

with a change of plasticity in the system between the two seasons.

The LH/T signaling pathway is relatively quiescent in the non-

breeding period. However, at this time it may be especially

sensitive (and show increased plasticity) to environmental cues that

will eventually lead to the seasonal differentiation in anticipation of

the ensuing breeding season.

Although our overall conclusions are robust, there are several

caveats to consider. We used microarray platform based on a

different songbird species (zebra finch) to measure gene expression

in the song sparrow. Comparative genomic DNA hybridization

analysis have confirmed that most of the cDNAs on this array are

equally effective for probing either zebra finch or song sparrow

sequences, although a small percentage of probes hybridized

poorly with song sparrow compared to zebra finch [21].

Removing these probes from our analysis (i.e. those showing a

2-fold decrease in signal with song sparrow compared to zebra

finch DNA) did not significantly affect the outcome, supporting the

reliability of the microarray result. We also note that some genes

are represented on this array by multiple non-overlapping cDNA

clones [21] (and see Tables S1, S2, S3, S4, and S5). However, we

generally observed good concordance in the behavior of different

cDNA clones derived from the same gene, and we do not think

this significantly affects our overall conclusions. Importantly we

were able to confirm the microarray data for 7 of 9 probes using

qPCR – a validation rate similar to that observed in other

experiments using SoNG Initiative microarray analysis pipeline

[22,23,24,25].

Another limitation to the present study is that whole

hypothalamus was used instead of specific regions. This could

result in dilution or masking of highly localized patterns of gene

regulation within sub-regions of the hypothalamus. This may

account for the lack of effect on FOS in our studies here, which

contrasts with our previous results where an effect was detected

using immunohistochemistry to examine tissue sections via

microscopy. Alternatively, FOS expression may only be post-

trascriptionally regulated. This underscores importance of further

studies using in situ hybridization for more precise mRNA

localization in tissues that are as complex as hypothalamus.

However, since not all gene-results were validated by qPCR,

results from this microarray experiment should be interpreted with

care. In our interpretations, we focused on genes that showed

consistent trends with different cDNA spots and were discovered

by functional pathway analysis. Thus the discussion will now focus

on genes that showed significant differences, including those that

regulate thyroid hormone action and neuroplasticity, which may,

in turn, regulate GnRH secretion.

Regulation of Thyroid Hormone
In this study, microarray expression analysis in conjunction with

functional pathway analysis and qPCR showed that genes related

to the regulation of thyroid hormones were significantly affected in

both seasonal and STI comparisons. This is of considerable

interest for several reasons. Most seasonal breeders at mid- to

high-latitudes use changes in day length (photoperiod) as a cue to

transition from one life history stage to another, such as from non-

breeding to breeding stages. Thyroid hormones are known to play

an important role in this process [26,27,28]. Exogenous thyroid

hormone treatment has been shown to mimic effects of a long-day,

inducing gonadotropin-releasing hormone (GnRH) secretion by

affecting neuro-glial plasticity at the median eminence (ME) [29].

On the other hand, thyroidectomy inhibits termination of

breeding and prevents gonadal regression after the development

of photorefractorines in birds and rams [30,31]. Down-regulation

of thyroxin binding proteins such as transthyretin (TTR), T4-

binding globulin, and albumin, has been associated with reduced

hypothalamic T4 uptake and reproductive photorefractoriness in

Siberian hamsters (Phodopus sungorus) [32]. More recently, it has

been shown that thyroid-stimulating hormone (TSH) expressed in

the pars tuberalis (PT) of the pituitary gland, induces type 2

deiodinase (DIO2), an enzyme that is critical for conversion of T4

into an active T3 form, in the hypothalamus of Japanese quails,

Coturnix japonica [26].

In our analysis, we observed a large and significant difference in

the basal expression of the CGA mRNA in autumn vs. spring.

CGA protein forms heterodimers with hormone-specific b-

subunits, including luteinizing hormone b (LHb), follicle-stimulat-

ing hormone b (FSHb), and TSHb. Lack of a-subunit will lead to

an inhibition of heterodimer formation and severe hypogonadism

and hypothyroidism will result [33]. Since it has been reported

previously that CGA expression is restricted to the PT of the

pituitary in adult chickens [34] and is not seen in other areas of the

hypothalamus, this expression difference probably occurs at the

level of the PT, which was consistently included in all

hypothalamic samples in this study. TSHb expression is located

in the PT of rats, hamsters, and other mammals [35,36,37].

Therefore, increases of CGA expression in spring vs. autumn may

increase the synthesis of TSH, and subsequently influence in situ

production of T3 by affecting DIO2 in the ME [26] (Fig. 6). T3

affects GnRH secretion [29] leading to LH release by the pars

distalis (PD) of the anterior pituitary (Fig. 6). However, DIO2 was

not significantly affected in this microarray. Thus, further

Gene Profiling upon Aggression

PLoS ONE | www.plosone.org 8 December 2009 | Volume 4 | Issue 12 | e8182



investigation needs to be done using in situ techniques to verify the

expression of DIO2 or consider alternative ways by which an

increase of CGA may lead to elevated release of LH and T. On

this note, LHb has also been found to be expressed in PT of sheep

[38]. Therefore, it may also be possible that LH expression is

directly affected by increased CGA expression (Fig. 6). The

increase of LH upon STI in the breeding season may be largely

due to this difference in basal expression of CGA. VIP, which is

known induce the transcription of CGA in aT3-1 cells, was also

downregulated in AC vs. SC in the array, although this could not

be confirmed with qPCR.

Two other genes related to thyroid hormone function were

significantly affected by season in this study; TTR and CRYM.

Although it was not confirmed by qPCR statistically, TTR was

increased in AC vs. SC. CRYM was decreased in AC vs. SC. TTR

is a transmembrane transporter for thyroid hormone as well as for

retinols. Down-regulation of this gene during reproductive

refractoriness to short days in Siberian hamster was associated

with reduced hypothalamic T4 uptake [32]. Increases of this gene

in autumn in the song sparrow may therefore suggest increased T4

uptake at the hypothalamus. TTR is also known to interact with

T3 in bullfrogs during metamorphosis [39] and is involved in the

efflux of T3 [40] (Figs. 4A and 6). However, the physiological

significance of this is yet unknown, and seems somewhat

contradictory since basal expression of LH is decreased in autumn.

TTR mRNA expression was also increased in white-crowned

sparrow (Zonotrichia leucophrys gambelii) telencephalon in the non-

migratory condition vs. migratory condition [41], but the

physiological relevance of this regulation is also yet unknown.

TTR had interaction effect in the microarray showing up-

regulation by STI in spring and down-regulation by STI in

autumn. The qPCR confirmed this trend and there was a clear

increase of TTR expression by STI in spring by qPCR. In this

case, an increase of TTR leading to increased hypothalamic T4

uptake may at least partially explain the subsequent surge of LH

and T following aggressive interactions. It may be that social

interaction affects thyroid hormone action in a similar way as

changes in photoperiod do.

CRYM is also known as reduced nicotinamide adenine

dinucleotide phosphate (NADPH)-dependent 3,5,39-triiodo-L-

thyronine (T3)-binding protein, and is expressed in retina, brain,

heart and kidney [42]. It binds T3 and thereby increases the

cellular uptake and decreases the cellular efflux rate of T3 and

suggesting a role of this protein to retain T3 in the intracellular

cytoplasm [43]. Higher concentration of this protein in the spring

is consistent with critical activation of thyroid receptor during the

breeding season. Moreover, high mobility group nucleosomal

binding domain 3 (HMGN3), which binds to thyroid hormone

receptor beta in the presence of T3 [44], had a significant

interaction effect (upregulated in spring and downregulated in

autumn with STI; Table 1). This family of proteins helps alter

chromatin structure and enhances transcription [45] and may also

have functional relationship to regulation of GnRH release.

HSPA2 belongs to the large group of the heat shock protein 70

family, members of which generally function as molecular

chaperones to stabilize the folded state of proteins, and control

protein disaggregation [46]. HSPA2 was increased in AC vs. SC in

microarray and a similar trend was observed with qPCR although

it was not significant. Up-regulation of this cDNA spot in AE vs.

SE with microarray was confirmed with qPCR. It has been

reported that heat shock proteins increase phagocytosis of

amyloid-b protein by microglial activation [47]. Therefore

differences in HSPA2 may be regulating Ab levels in the autumn

season. Amyloid-b precursor protein (APP) is a cell surface

receptor and trans-membrane precursor protein that can be

cleaved by secretases to form various types of peptides. The b
secretase releases amyloid-b protein that is associated with the

plaques observed in Alzheimer’s disease [48].

It has also been shown that TTR interacts with and potentially

sequesters amyloid-b protein to prevent amyloid formation in

cerebrospinal fluid [49] and in kidney [50]. Mice lacking TTR

have memory deficits and this was reversed by retinoic acid

treatment [51]. Moreover, mice with over-expression of APP and

mutation of presenilin (a risk factor for familial Alzheimer’s

disease) have increased production of amyloid-b protein and

display enhanced territorial aggression when compared to wild-

types [52]. There was a slight but significant increase of APP in AE

vs. AC in the array. Due to these potential and interesting

relationships of APP, Ab and aggression, it may be of interest to

investigate the concentration of amyloid-b protein with/without

STI in hypothamali of these birds.

Neuroplasticity and Transcriptional Regulations
Some changes in expression that we detected suggest an

increase in neuroplasticity in the autumn vs. spring, and upon STI

in autumn. There were increases in expression of the ribosomal

protein-coding gene (MRPL12) and ribosomal protein S6 kinase

(RPS6KA2) in AC vs. SC. Expressions of mRNA for two ribosomal

proteins (RPL3 and MRPS17) were increased in AE vs. AC.

Expressions of two ribosomal protein kinases (RPS6KA2 and

RPS6KA5) were decreased in AE vs. AC. PAP-associated domain

containing 1 (PAPD1), also known as mitochondrial poly(A)

polymerase (MTPAP) is known to play a role in mitochondrial

RNA processing [52] and was increased in AE vs. AC (Table 1

under Neuroplasticity and transcriptional regulation).

Figure 6. Schematic diagram showing the regulation of thyroid
hormone action in pars tuberalis of pituitary and hypothalamus.
Blue indicates genes that were significantly affected in the current
microarray study: common glycoprotein alpha subunit (CGA), transthy-
retin (TTR), m-crystallin (CRYM), and heat shock 70 KDa protein (HSPA2),
and amyloid-b precursor protein (APP). TSH: thyroid stimulating
hormone, DIO2: type-2 deiodinase, LH: luteinizing hormone, FSH:
follicular-stimulating hormone, 3 V: third ventricle, T3: L-triiodothyro-
nine, T4: thyroxine.
doi:10.1371/journal.pone.0008182.g006

Gene Profiling upon Aggression

PLoS ONE | www.plosone.org 9 December 2009 | Volume 4 | Issue 12 | e8182



Ribosomal proteins have critical function in ribosome biogen-

esis and activity and several ribosomal proteins have been shown

to have extra-ribosomal functions in apoptosis, DNA repair,

transcription and translation in mammalian cells (reviewed in

[53]). Ribosomal protein S6 kinase controls various cellular

processes such as cell proliferation, cell death, and cell growth

[54] and may be required for synaptic plasticity important for

cognitive processing [55]. Major changes in gene expression for

ribosomal and mitochondrial proteins were also observed in a

recent study of song response habituation in the zebra finch, a

model of acute memory formation [22,56]. Thus, changes in the

expression of mRNA coding ribosomal proteins and ribosomal

protein kinases may relate to increase in neuroplasticity in the

autumn in general and upon STI. This may have resulted in the

increased number of genes significantly different with STI in the

autumn vs. spring. When spring comes, the system may have

already reached a stable activated state sufficient to support rapid

neuroendocrine signaling, which is less dependent on acute

changes in gene expression.

Another group of genes suggested an increase in neuroplasticity

in autumn. Light intermediate chain of the axonemal dynein

(DNALI1) and light chain of the cytoplasmic dynein (DYNLL1)

was upregulated in AC vs. SC in the array. Dyneins are

microtubule-based motor proteins and are divided into two

groups; axonemal and cytoplasmic dyneins. Axonemal dyneins

are important in the sliding of microtubules in the axonemes of

cilia and flagella-like structures and found in cell types that have

these structures [57]. Ependymal cells of the third ventricle in the

basal hypothalamus contain apical cilia and/or microvillous

processes [58]. Cytoplasmic dyneins are important in various

activities including intracellular transport and nuclear migration

[57]. The increased expression of these motor proteins perhaps

suggest a reciliation, cell renewal, and/or increase in transport

activities of cellular components in these ependymal and other cell

types in autumn.

Expression of cDNA coding NRSN1 which plays an essential

role in neurite extension during nervous development, regenera-

tion, and plasticity [59], was up-regulated in AC vs. SC in the

microarray. This also fits well with a potential of increased

neuroplasticity in autumn compared to spring, although this

increase was not validated with qPCR, for a reason unknown.

Transcripts of GADD45B are usually increased during stressful

growth arrest conditions and treatment with DNA-damaging

agents (reviewed in [60]). Differential expression of this gene had a

seasonal/social interaction effect which suggested an increase with

STI in both seasons but with a stronger effect in the spring.

Increase in activity of GADD45B is known to increase DNA

demethylation of genes that are necessary for neurogenesis

[61,62,63]. This may suggest that repeated territorial intrusion

may affect neural plasticity in both seasons, but more effectively in

the spring for certain types of plasticity that this gene regulates, in

contrast to perhaps a more general plasticity increased by

ribosomal related genes in AC vs. SC and AE vs. AC.

There were other genes that regulate transcription that were

affected in the study. In addition to HMGN3 (discussed in the

previous ‘‘thyroid hormone’’ section), which helps to alter

chromatin structure and enhances transcription [45], SWI/SNF

related, matrix associated, actin dependent regulator of chromatin,

subfamily a-like 1 (SMARCAL1), which also regulates the

transcription of certain genes by altering chromatin structure

[64], and was down-regulated by 5.7-fold in spring with STI.

ZBTB16 is involved in cell cycle progression, interacts with a

histone deacetylase, and act as repressor of gene transcription [65].

This gene was increased by STI in spring. DNA methyltransferase

1 associated protein 1 (DMAP1) that is known to bind to DNA

methyltransferase (DNMT1) and be involved in transcriptional

repression [66] was also differentially regulated by interaction (up

in spring with STI and down in autumn with STI) in this study.

These facts fit well with the fact that more genes were altered in

autumn with STI compared to spring, but also suggest that this

transcriptional regulation may be of epigenetic origin.

Cell Attachment and Filopodial Extension
It has become evident that GnRH secretion is regulated at least

partly by non-neuronal cells including tanycytes (type of

ependymal cells), astrocytes and endothelial cells [67]. Tanycyte

endfeet completely encase the basal lamina of the median

eminence and show tight cell-to-cell interaction to prevent the

GnRH nerve terminals from reaching the capillaries of the

hypothalamo-pituitary blood portal system under short days (SD).

This encasement recedes in long day (LD) in Japanese quail

(Coturnix japonica) [68] and after thyroid hormone implants [29],

thereby potentially allowing GnRH secretion.

There were several genes affected in the array that could be

involved in cell-cell interactions and morphological changes

relating to GnRH neurons and their surrounding cells. Integrin

alpha 6 (ITGA6) was upregulated in autumn compared to spring.

Integrins are cell-surface receptors that mediate the attachment

and cell signaling of a cell to other cells or to the extracellular

matrix. The increase of integrin in autumn may be consistent with

this close interaction of the tanycyte endfeet. On the other hand,

cadherin-13 (CDH13) is another cell-cell adhesion glycoprotein

and was down-regulated in AC vs. SC. CDH13 has been

suggested to function as a negative regulator of neural cell growth

[69]. Ependymal cells do not express CDH13 protein [69].

Therefore, decrease of this cadherin in autumn may suggest

weaker cell-cell adhesion in other cell types (e.g. neurons,

astrocytes) to allow neural plasticity to prepare for the spring.

During the GnRH/LH surges, GnRH nerve endings are

allowed to directly contact the pericapillary space by filopodial

extension of nerve terminal or by evaginations of basal lamina to

the neural parenchyma in the median eminence [68,70]. Formin

binding protein like-1 (FNBP1L, also known as Toca-1) which has

been shown to induce filopodia and neurite formation [71], was

upregulated with STI in spring but downregulated by STI in fall

and was the only gene that also showed a significant interaction.

These findings suggest that LH increase upon STI in the spring

may also be regulated by morphological changes of tanycytes as

well as filopodial extensions of GnRH neurons. Additional in situ

studies will clarify where in the hypothalamus these genes are

being regulated.

Conclusions
Among all pairwise comparisons, the number of cDNAs

significantly affected was highest between the two control groups

in autumn and spring. It is likely that changes in basal expression

between seasons are major contributors to the difference in

neuroendocrine response upon aggression. Of the cDNAs

differentially expressed, those involved in the regulation and

activity of thyroid hormone, neuroplasticity, transcription, cell-

adhesion and neurite extension were of special interest due to their

potential relationship with the regulation of GnRH. However,

determining the in situ expression of these differentially-regulated-

genes in the specific regions of hypothalamus, in addition to

expressions of related genes/proteins that were not in the spotted

array, may help further clarify some of the mechanisms underlying

seasonal differences in the neuroendocrine response to territorial

challenge in this species.
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Methods

Animals
Free-ranging male song sparrow (Melospiza melodia morphna) were

captured in the following 7 sites in western Washington State

(48uN): Crescent Lake, Cherry Valley, Prison Farm, Spencer

Island (all in Snohomish county), Skagit Valley (Skagit county),

Pack Forest (Pierce county), Stillwater (King county). Birds were

captured during 1) the breeding season (mid to late June, 2005;

referred to as ‘‘spring’’ in this paper) and 2) the non-breeding

season (mid November, 2005 to late January, 2006; referred to as

‘‘autumn’’ in this paper) (n = 728). All animal procedures were

approved by the Institutional Animal Care and Use Committee of

the University of Washington and were conducted in accordance

with the NIH Guide for the Principles of Animal Care. Permits to

capture free-ranging birds using mist nets were obtained from U.S.

Fish and Wildlife Service and Washington State Department of

Fish and Game.

Simulated Territorial Intrusion (STI) and Behavioral Data
A live caged male song sparrow decoy was presented with

recorded male conspecific songs to a free-ranging territorial male.

For controls, a live caged male white-crowned sparrow decoy with

white-crowned sparrow songs was used. During the first 10

minutes of the STI, the following behaviors were recorded from

the focal bird: 1) number of songs, 2) number of flights directed at

the decoy, 3) closest approach to the decoy, and 4) time spent

within 5 meters (m) of the decoy. The STI was continued for

additional 20 min and then birds were quickly captured with a

mist net.

Tissue Collection
Immediately after capture, each bird was anesthetized with

isoflurane (10%) and decapitated. Hypothalamus was quickly

dissected out and quickly frozen on dry ice and subsequently

stored at 280uC. Due to the location and structural association of

the pars tuberalis in avian species, it was impossible to accurately

dissect out pars tuberalis from the hypothalamus, therefore all

samples were collected along with pars tuberalis for consistency;

however, other parts of the pituitary were removed.

Microarray Hybridization
Methods of sample preparation and microarray hybridization

have been described previously [21]. Briefly, total RNA was

isolated using TRI Reagent (Ambion, Austin, TX), treated with

TURBO DNase (Ambion) and purified with RNeasy Mini spin

columns (Qiagen, Valencia, CA). Then 0.5 mg of DNase treated

total RNA was used for oligo (dT) primed reverse transcription

followed by cRNA amplification step using Low RNA Input

Fluorescent Linear Amplification Kit (Agilent, Santa Clara, CA)

and 1 mg of the resulting amplified RNA was used in the

subsequent RT reactions using an indirect aminoallyl incorpora-

tion protocol with Cy3/Cy5 dye labeling (GE Life Sciences,

Piscataway, NJ). Labeled cDNA was hybridized overnight at 42uC
to the custom-made zebra finch brain spotted cDNA microarrays,

using the resources of Songbird Neurogenomics (SoNG) Initiative,

as part of Community Collaborations #25 [21]. Each experi-

mental song sparrow sample (total of 31, n = 728/group) was

hybridized along with a universal reference sample consisting of

brain cDNA from 30 non-breeding zebra finches [21] using a dye-

swap reference design [72]. Then the slides were washed and

scanned using Axon GenePix 400B (Molecular Devices, Sunny-

vale, CA) and images were visualized by GenePix Pro 6.0

(Molecular Devices). Images were screened to identify aberrant

spots (e.g. dust spots, scratches), which were then flagged to be

excluded from further analysis.

Microarray Statistics and Pathway Analysis
Data pre-processing and statistical analysis were done in R using

the limma package [73] from Bioconductor (www.bioconductor.

org). Spot intensity values were calculated by subtracting the local

median background from the median foreground value, and

adjusting negative/zero values to 0.5 [74]. Normalization was

carried out in two steps: first a print-tip loess within-array

normalization to remove dye biases, then a between-array scale

normalization to remove array biases [75]. However, even after

these standard normalization steps, hierarchical clustering indi-

cated a persistent batch effect due to array print batch combined

with the channel in which the universal reference sample was. This

batch effect was accounted for in the statistical model using the

average correlation within the blocks [76]. Because pairwise-

comparisons between treatment groups (AC vs. SC, AE vs. SE, SE

vs. SC, and AE vs. AC) and the interaction effect were of interest,

not the main effects of season or treatment, a cell-means model

(Y1 = a1xi1+a2xi2+a3xi3+a4xi4+e) was used instead of a 2-way

ANOVA. However, the results for the pairwise comparisons and

interaction from the cell-means model are identical to those

calculated from a 2-way ANOVA [77]. Limma also applies an

empirical Bayes correction to moderate the standard errors based

on information from all cDNAs; these moderated t-statistics also

have increased degrees of freedom, representing the extra

information gained by borrowing information across cDNAs

[77]. Multiple testing correction methods were not applied since

they depend heavily on the assumption that each cDNA

expression is independent and can often be too restrictive as a

result of their effort to prevent all type-I errors, thus filtering out

truly regulated spots [78]. Instead, a threshold of raw p-value

,0.01 was used for significance and a subset of genes was

validated by real-time qPCR. Microarray data generated in this

study comply with the Minimum Information about Microarray

Experiment (MIAME) guidelines and original gpr files are

available at Gene Expression Omnibus (accession#GSE18970).

Significantly affected cDNA spots were clustered hierarchically by

Pearson correlation using GeneSpring GX (Agilent, Santa Clara,

CA). They were also imported to IPA software (Ingenuity Systems,

Redwood City, CA) for functional gene network analysis.

Real-Time Quantitative PCR
Groups of genes of interest, e.g. genes that regulate thyroid

hormone, neuroplasticity, and gene transcription were selected to

perform real-time PCR to validate microarray results. The total

RNA samples (also used for the microarray hybridizations) were

quantified using NanoDrop ND-1000 (NanoDrop Technologies,

Wilmington, DE) and 500 ng was reverse transcribed for 50 min

at 42uC in a 20-ml reaction with 200 U of SuperScript II reverse

transcriptase (Invitrogen, Carlsbad, CA) and 0.5 mg of Oligo

(dT)12–18 primer following the manufacturer’s protocol. The

synthesized cDNA was diluted 1:25, and 2 ml of this diluted

cDNA was used for subsequent 10 ml quantitative PCR (qPCR)

reactions with 2x SYBR Green PCR Master Mix (Applied

Biosystems, Foster City, CA) and 300 nM of each forward and

reverse primer. Primers (Table 2) were designed with known zebra

finch (Taeniopygia guttata) sequences submitted on GenBank and by

using Vector NTI (Invitrogen, Carlsbad, CA). All primers except

for HSPA2 were designed across 2 exons to inhibit potential

amplification of genomic DNA. Sequence of the cDNA clone that

is annotated as HSPA2 did not span an intron; therefore, intron-

spanning primers could not be designed for this gene. However,
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appropriate negative controls were run with all qPCR runs to

make sure that the product is not of genomic DNA origin. All

primers except for ZBTB16 were designed using one of the EST

sequences of the cDNA clone that was significant in the array.

Both of the sequences for differentially expressed cDNA spots

(SB03034B2D05.f1 and SB03036B1C02.f1) that are annotated

for ZBTB16, actually blasted to a region that is outside coding

region. Therefore, another sequence obtained from NCBI

(XM_002189445.1) that does blast within the coding region of

predicted zebra finch ZBTB16 was used.

Quantitative real-time PCR analysis was done using ABI Prism

7700 Sequence Detector (Applied Biosystems, Foster City, CA).

The Ct (threshold cycle) value was obtained, and relative amount

of amplicon was calculated using the relative standard curve

method described in Applied Biosystems User Bulletin 2. In

addition, some of the resulting PCR products were run on a 1.5%

agarose gel, appropriate sized bands were excised, extracted with

QIAquick Gel Extraction Kit (Qiagen, Valencia, CA), and

sequenced to verify the sequence specificity for song sparrow.

These sequences (.98% homologous to T. guttata) are available

upon request.

Statistics
Statistical analysis for real-time PCR was performed by 1-way

ANOVA followed by post-hoc Tukey’s test for pair-wise

comparisons using SYSTAT 11 (SSI, Richmond, CA). Interaction

effect was obtained separately by 2-way ANOVA. The data were

transformed into natural log to meet the normality assumption for

some data. Statistical analysis for behavioral data was performed

by Kruskal-Wallis 1-way ANOVA followed by Mann-Whitney U

test for pair-wise comparisons using the same program since

normality assumptions were still violated after transformations of

the data. All p values were two sided and considered statistically

significant at p,0.05. Data are shown as mean6SEM.

Supporting Information

Table S1 Complete list of cDNAs affected by the comparison

AC vs. SC with cell-means model, p,0.01. The expressions in

autumn control (AC) compared to spring control (SC) are shown

in fold changes.

Found at: doi:10.1371/journal.pone.0008182.s001 (0.02 MB

PDF)

Table S2 Complete list of cDNAs affected by the comparison

AE vs. SE with cell-means model, p,0.01. The expressions in

autumn STI (AE) compared to spring STI (SE) are shown in fold

changes.

Found at: doi:10.1371/journal.pone.0008182.s002 (0.02 MB

PDF)

Table S3 Complete list of cDNAs affected by the comparison SE

vs. SC with cell-means model, p,0.01. The expressions in spring

STI (SE) compared to spring control (SC) are shown in fold

changes.

Found at: doi:10.1371/journal.pone.0008182.s003 (0.01 MB

PDF)

Table S4 Complete list of cDNAs affected by the comparison

AE vs. AC with cell-means model, p,0.01. The expressions in

autumn STI (AE) compared to autumn control (AC) are shown in

fold changes.

Found at: doi:10.1371/journal.pone.0008182.s004 (0.02 MB

PDF)

Table S5 Complete list of cDNAs affected by the interaction

(season6social) with cell-means model, p,0.01. The expressions

in spring STI (SE) compared to spring control (SC) and autumn

STI (AE) compared to autumn control (AC) are shown in fold

changes.

Found at: doi:10.1371/journal.pone.0008182.s005 (0.01 MB

PDF)
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