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Healthy versus Unhealthy Adipose Tissue Expansion: 
the Role of Exercise
Benjamin M. Meister, Soon-Gook Hong, Junchul Shin, Meghan Rath, Jacqueline Sayoc, Joon-Young Park*
Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA

Although the hallmark of obesity is the expansion of adipose tissue, not all adipose tissue expansion is the same. 
Expansion of healthy adipose tissue is accompanied by adequate capillary angiogenesis and mitochondria-cen-
tered metabolic integrity, whereas expansion of unhealthy adipose tissue is associated with capillary and mito-
chondrial derangement, resulting in deposition of immune cells (M1-stage macrophages) and excess produc-
tion of pro-inflammatory cytokines. Accumulation of these dysfunctional adipose tissues has been linked to the 
development of obesity comorbidities, such as type 2 diabetes, hypertension, dyslipidemia, and cardiovascular 
disease, which are leading causes of human mortality and morbidity in modern society. Mechanistically, vascu-
lar rarefaction and mitochondrial incompetency (for example, low mitochondrial content, fragmented mito-
chondria, defective mitochondrial respiratory function, and excess production of mitochondrial reactive oxygen 
species) are frequently observed in adipose tissue of obese patients. Recent studies have demonstrated that ex-
ercise is a potent behavioral intervention for preventing and reducing obesity and other metabolic diseases. 
However, our understanding of potential cellular mechanisms of exercise, which promote healthy adipose tissue 
expansion, is at the beginning stage. In this review, we hypothesize that exercise can induce unique physiologi-
cal stimuli that can alter angiogenesis and mitochondrial remodeling in adipose tissues and ultimately promote 
the development and progression of healthy adipogenesis. We summarize recent reports on how regular exer-
cise can impose differential processes that lead to the formation of either healthy or unhealthy adipose tissue 
and discuss key knowledge gaps that warrant future research. 
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INTRODUCTION

Obesity is a major risk factor for cardio-metabolic diseases such 
as dyslipidemia, type 2 diabetes, hypertension, coronary heart dis-
ease, stroke, gall bladder disease, respiratory problems, sleep apnea, 
osteoarthritis, and some cancers. However, in some diseases, obese 
but otherwise metabolically healthy patients present with well-pre-
served adipose tissue function that is often associated with fewer 
comorbidities and lower mortality rates compared with lean pa-
tients.1-3 In order to address this long-lasting paradox, extensive re-

search has been conducted to identify the differences in adipose 
tissue phenotype between patients showing these contradictory 
outcomes. As a result, the current understanding of adipose tissue 
biology predicts that expansion of adipose tissue is possible with-
out accompanying adipose tissue dysfunction.4-6

Adipose tissue is highly vascularized and contains a remarkable 
microvascular network. Formation of both white and brown adi-
pose tissue (WAT and BAT, respectively), as well as recently identi-
fied beige adipose tissue, rely heavily on concomitant capillary an-
giogenesis during adipogenesis to maintain their metabolic activi-
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ties. Contrarily, adipose tissue dysfunction can arise through 
chronic hypoxia, inflammation, and mitochondrial dysfunction. 
Progression of adipose tissue dysfunction in unhealthy metabolic 
obesity proceeds without a well-coordinated response, which leads 
to insulin resistance, hypertension, and atherosclerosis.7,8 Angio-
genesis, the growth of new blood vessels, and mitochondrial bio-
genesis, the growth of new functional mitochondria, are tightly and 
distinctively coupled with the formation of healthy and unhealthy 
adipose tissue.

In the present review, we summarize existing knowledge of the 
molecular mechanisms and underlying effects of exercise on angio-
genesis as well as mitochondrial remodeling in the context of the 
expansion of adipose tissue. 

FACTORS AFFECTING HEALTHY VS. 
UNHEALTHY ADIPOSE TISSUE EXPANSION

As a primary energy-storing organ, adipose tissue changes in size 
and shape throughout an individual’s life. Type of adipose tissue 
growth (hypertrophy or hyperplasia), adipose tissue anatomical lo-
cation, adipose tissue inflammation, ectopic fat accumulation, ge-
netics, and lifestyles factors (i.e., diet and physical activity) collec-
tively contribute to the development of either metabolically healthy 
or unhealthy adipose tissue.9 

Angiogenesis and mitochondrial biogenesis are key factors influ-
encing healthy and unhealthy adipose tissue expansion.10,11 As pre-
adipocytes differentiate into mature adipocytes, mitochondrial bio-
genesis and oxygen consumption increase 20- to 30-fold.11 An in-
crease in metabolic activity requires angiogenesis because blood 
vessels enable adipose tissue metabolism by delivering oxygen and 
nutrients and removing metabolic waste. Similarly, promoting mi-
tochondrial biogenesis is essential to preserving adipose tissue 
function during the early stages of obesity and preventing the de-
velopment of unhealthy metabolic adipose tissue. In this section, 
we briefly discuss the critical roles of each angiogenic and mito-
chondrial factor affecting the expansion of adipose tissue.

Angiogenesis and adipogenesis
Adipose tissue differs from other tissues because it can expand 

during times of overnutrition to store extra calories. As adipose tis-

sue expands, the demand for both nutrients and oxygen increases, 
leading to local hypoxic conditions surrounding newly formed adi-
pose tissue. Insufficient blood flow into growing adipose tissue can 
result in the formation of metabolically unhealthy adipose tissue. 
Angiogenesis needs to be properly activated in new tissue to meet 
the metabolic demand of the expanded adipose tissue. 

The main mechanism of angiogenesis appears to be mediated by 
hypoxia inducible factor-1α (HIF-1α) and vascular endothelial 
growth factor (VEGF). Under normoxic conditions, HIF-1α is hy-
droxylated by prolyl hydroxylase domains (PHDs), leading to pro-
teome degradation of HIF-1α through the von Hippel-Lindau tu-
mor-suppressor protein.12 In contrast, hypoxic conditions inhibit 
PHDs activity, stabilize HIF-1α, and enable binding to hypoxic-re-
sponse elements of target genes such as VEGF to create new blood 
vessels that grow toward hypoxic tissues.12 When this mechanism 
is successful, hypoxic response can serve as a regulator of angiogen-
esis to ensure that blood vessels grow at the same rate as the tissues 
they perfuse because blood vessels expand toward hypoxic areas 
that do not receive adequate blood flow. Periods of growth of new 
adipose tissue, such as those involving high caloric intake or experi-
mental high-fat diet (HFD), seem to protect metabolic functions 
of the new adipose tissue.

Conversely, when these pathways are disrupted, adipose tissue can 
become dysfunctional, which can lead to various metabolic diseas-
es. For example, VEGF ablation in mice increased adipose tissue 
hypoxia and inflammation, resulting in dyslipidemia and insulin in-
sensitivity, when the mice were fed an HFD,13 whereas VEGF-over-
expressing mice exhibited improved adipose tissue metabolic func-
tion and insulin sensitivity.14 If the angiogenic response is insuffi-
cient to provide oxygen, chronic hypoxia initiates low-grade inflam-
mation in adipose tissue.15 An increase in pro-inflammatory gene 
expression leads to adipose tissue fibrosis,16 impairment of endo-
thelial angiogenic potentials,17 and, in more severe cases, necrosis. 
Angiogenesis serves as an important immediate response mecha-
nism against hypoxic conditions in expanding adipose tissue.

Mitochondrial function and adipogenesis
Mitochondrial content in growing adipose tissue is a hallmark of 

healthy adipogenesis. In adipose tissue, mitochondria play an im-
portant role in maintaining energy homeostasis by regulating lipid 
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turnover, adipogenesis, adipokine secretion, and metabolic sub-
strate utilization. Early obesity studies discovered links between 
obesity and mitochondrial oxidative stress.18 Mitochondrial reac-
tive oxygen species (mtROS) can serve as second messengers that 
are integral to fundamental cellular19 and biological responses.20 
Adequate production of mtROS is beneficial for insulin sensitivi-
ty,21 adipocyte differentiation,22 adipogenesis, and WAT function.23 
Specifically, inhibition of oxidative phosphorylation (complex I 
and III) prevents adipogenesis induction,22 suggesting that mtROS 
play a causal role in adipogenesis induction. However, adipocytes 
exposed to excess mtROS can activate various stress pathways,24 
leading to increased production of pro-inflammatory adipokines, 
interleukin 6, and tumor necrosis factor alpha (TNF-α).25 In addi-
tion, mtROS and oxidative damage have been shown to be elevated 
in the WAT of obese humans26 and animals.27 Chemical induction 
of mtROS can decrease adiponectin release and glucose uptake in 
adipocytes.28 Overall, the current consensus is that mtROS are 
both necessary for (at appropriate levels) and detrimental to (at ab-
normal levels) adipose function in various pathologies.

Mitochondria possess their own DNA (mtDNA), which encode 
for 13 proteins critical to oxidative phosphorylation.29 Mitochon-
dria can increase or decrease mitochondrial mass through activa-
tion of peroxisome proliferator-activated receptor gamma coactiva-
tor 1α (PGC-1α), which activates genes such as nuclear respiratory 
factors 1 and 2 (NRF-1 and NRF-2) and mitochondrial transcrip-
tion factor A (TFAM), which modulates mtDNA transcription and 
replication. A reduced copy number of mtDNA was reported in 
obese WAT.30,31 Reduced activities of complexes I–IV were ob-
served in isolated adipose tissue mitochondria obtained from obese 
patients.32 An HFD also disrupted mitochondrial biogenesis and 
mtDNA content in adipose mitochondria.33,34 Knock-down of oth-
er mitochondrial biogenesis genes, such as TFAM and NRF-1, in 
adipocytes decreased mtDNA, resulting in insulin resistance.28,35 
Overexpression of NRF-1 in WAT restored the release of adipo-
nectin from adipose tissue.28 Collectively, mitochondrial biogenesis, 
content, and function are closely related to adipogenesis, adipose 
tissue function, and insulin sensitivity.

Table 1. Effects of aerobic exercise training on angiogenesis and blood perfusion in adipose tissue

Author (year) Subject Treatment Result

Human study
   Moro et al. (2005)36 10 Untrained overweight 

men
45–60-minute at 50%–85% VO2peak 

EXTR 5–7 day/wk for 4 months  
(cycling or running)

↑ ATBF measured by ethanol outflow/inflow ratio, ↑ fat-free mass,  
↑ VO2max, ↓ plasma insulin, ↓ glucose, ↓ NEFA, ↓ LDL-C, and ↓ RER at 
rest; ↑ lipid-mobilizing effect of ANP, isoproterenol 

   Walton et al. (2015)37 12 Insulin-sensitive;  
14 IR adults 

12-Week cycling EXTR ↑ Angiogenesis in SAT of insulin-sensitive individuals but not SAT of IR 
individuals; exercise training did not increase insulin sensitivity in IR 
subjects.

Animal study
   Lee (2018)38 16 C57BL/6J mice 6-Week VW ↓ Vegfa, Flk1 mRNA expression and ↑ Ang2, Pdgfrb mRNA  

expression in eWAT; ↑ Vegfa mRNA expression and ↓Ang1 in iWAT;  
no change in BAT gene expression

   Loustau et al. (2020)39 85 C57BL/6J mice fed HFD 7-Week VW ↑ Capillary density in WAT, ↓ adipocytes hypertrophy, ↓ adipose  
inflammation, ↑ adipose insulin sensitivity, ↑ browning process of SAT, 
↓ ectopic fat deposition

   Disanzo and You (2014)40 30 Lean, obese Zucker rats Treadmill exercise 5 day/wk for 8 weeks ↑ Vegfa in eWAT, ↓ lactate in iWAT
   Min et al. (2019)41 C57BL/6J mice fed HFD  

(n= 5–7 per group)
30-Minute treadmill EXTR at ~70%  

VO2max 5 day/wk for 7 weeks
ET: ↑ capillary sprouting; ↑ Ucp1 mRNA; ↑ vessel density in VAT and SAT
HFD: ↓ glucose handling attenuated by ET, ↓ Vegfa, ↓ Nos3 in WAT  

attenuated by ET
   Kolahdouzi et al. (2019)42 48 Male Wistar rats Continuous and interval aerobic EXTR Exercise training prevents HFD-induced adipose tissue remodeling by  

increased capillary density.

EXTR, exercise training; ↑, increased; ↓, decreased; ATBF, adipose tissue blood flow; NEFA, non-esterified fatty acids; LDL-C, low-density lipoprotein cholesterol; RER, respiratory ex-
change ratio; ANP, natriuretic peptide A; IR, insulin-resistant; SAT, subcutaneous adipose tissue; VW, voluntary wheel running; Vegfa, vascular endothelial growth factor A; Flk1, fetal 
liver kinase-1 (or vascular endothelial growth factor receptor 2); Ang2, angiopoietin 2; Pdgfrb, platelet derived growth factor receptor beta; eWAT, epididymal white adipose tissue; 
iWAT, inguinal white adipose tissue; BAT, brown adipose tissue; HFD, high-fat diet; ET, exercise training; Ucp1, uncoupling protein 1; VAT, visceral adipose tissue; Nos3, endothelial 
nitric oxide synthase.
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EXERCISE AND ADIPOSE TISSUE 
ANGIOGENESIS

Angiogenic potential
The effects of exercise on angiogenesis and blood perfusion in 

adipose tissue are summarized in Table 1. Exercise is believed to in-
crease the angiogenic potential for blood vessel growth throughout 
the body in a dose-dependent manner.43 Acute endurance exercise 
induces VEGF mRNA in subcutaneous adipose tissue (SAT) in 
animal44 and human45 models and can be stimulated through hy-
poxia12 and local shear stress.46 VEGF is believed to be the primary, 
albeit not the only, growth factor implicated.38 Increased VEGF ex-
pression in SAT of exercise-trained animals reportedly corresponds 
with an increase in vessel density, reduced inflammation, improved 
glucose tolerance,41 and decreased lactate in SAT.40 Similar increas-
es of VEGF in blood have been linked to improved weight loss47 in 
obese humans following 12 weeks of exercise training. However, 
this study found no effect of exercise training on VEGF in abdomi-
nal SAT.47 Collectively, these studies suggest a differential effect of 
exercise on angiogenesis in certain fat depots.38,47 It is likely that an-
giogenesis improves in adipose tissue near active muscles in a man-
ner similar to adipose tissue blood flow (ATBF). 

Adipocytes also interact with endothelial cells during angiogene-
sis. Secreted adipokines and angiogenic molecules, such as leptin, 
hepatocyte growth factor, and VEGF, activate angiogenesis via a 
VEGF receptor-dependent mechanism.10 It is important to note 
that the effects of leptin and adiponectin on endothelial cells are 
largely opposite, with leptin promoting and adiponectin inhibiting 
angiogenesis.48 Interestingly, most exercise studies report improved 
insulin sensitivity,49,50 increased angiogenesis,41 and reduced leptin51 
and inflammation in adipose tissue,51-53 with no change or a slight 
increase in adiponectin54-56 reported in obese animals. Similar in-
creases in angiogenesis and decreases in leptin and inflammation 
have been observed, with no change in adiponectin, in humans fol-
lowing 12 weeks of aerobic exercise.37,55 Although a 12-week program 
of aerobic exercise was sufficient to increase the number of vessels 
per adipocyte in insulin-sensitive humans, blood vessel numbers in 
insulin-resistant humans did not change.37 Generally, regular exer-
cise reduces inflammatory adipokine release (TNF-α, leptin, etc.) 
and central adiposity and improves whole-body insulin sensitivity.57

Fat perfusion
ATBF is an important determinant of adipose tissue function 

and a measure of vessels’ ability to deliver nutrients and oxygen 
while mobilizing and distributing adipokines and metabolites into 
circulation. Early studies demonstrated that ATBF is impaired by 
obesity and diabetic conditions.58,59 Exercise increases heart rate and 
cardiac output, which could also prevent adipose tissue hypoxia if 
blood flow to adipose tissue increases. ATBF increases during exer-
cise in dogs60 and humans.61-63 During exercise, blood flow to work-
ing muscles increases. This phenomenon is mirrored in adipose tis-
sue because acute exercise increases ATBF in specific fat deposits 
that are close to working muscle.64,65 Cycling exercises did not in-
crease blood flow to abdominal adipose tissue in humans,63,66 sug-
gesting that blood flow during exercise is depot-specific. However, 
increase in ATBF near active muscle occurs in obese subjects inde-
pendent of insulin sensitivity,67 suggesting that an exercise-induced 
increase in ATBF can improve tissue function in obese patients. 

This exercise-induced increase in ATBF might be a mechanism 
to mobilize fatty acids for use as a substrate in the metabolism of 
working muscles. The results of acute-exercise studies that also mea-
sured increased lipolysis, fatty-acid mobilization, and esterification 
in animals60 and humans62 support this hypothesis. Chronic aerobic 
training increased resting ATBF after training in animals68 and healthy 
humans36 without altering resting ATBF or lipolysis in obese hu-
mans.67 For example, in older women, no alterations to ATBF were 
observed acutely during exercise66,69 or chronically following exer-
cise training.66 Future research should attempt to confirm these re-
sults in more diverse subject populations and age groups.

Adipose tissue capillaries can be visualized microscopically, and 
a common view is that at least one capillary is in close contact with 
each adipocyte. Perfusion of SAT is easier to measure, but less is 
known about visceral adipose tissue (VAT) blood flow. The only 
accepted method of measuring visceral ATBF is positron emission 
tomography. Measurement of ATBF during exercise is a challenge 
due to current limitations in dynamic techniques to measure ATBF. 
How much does blood flow to VAT change during exercise? Fu-
ture advancements in technology and further study in this area 
might be of clinical interest because VAT releases more pro-inflam-
matory adipokines, contributing to atherosclerosis progression.70
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EXERCISE AND MITOCHONDRIAL 
REMODELING

Mitochondria in adipocytes 
The effect of exercise on mitochondrial remodeling in adipose 

tissue is summarized in Table 2. Exercise is a non-pharmacological 
treatment that improves insulin sensitivity in muscle and adipose 
tissues. A common theory is that exercise increases systemic insulin 

sensitivity by improving mitochondrial biogenesis, respiration, and 
content in the skeletal muscles of individuals with diabetes.84 These 
adaptations are believed to be a result of increased expression by 
genes for 5′ AMP-activated protein kinase (AMPK) and PGC-1α, 
which is elevated following exercise training in skeletal muscle.85 
Studies of similar mitochondrial adaptations in adipose tissue to 
exercise training suggest a role for adipose tissue mitochondria in 
the exercise-induced improvement of insulin sensitivity. 

Table 2. Effects of aerobic exercise training on mitochondrial remodeling in adipose tissue

Author (year) Subject Treatment Result

Human study
De Carvalho et al. (2021)71 24 Obese women 8-Week aerobic and resistance EXTR  

(3 day/wk for 55 min)
↑ WAT mitochondrial respiratory capacity; ↑ genes related to fat  

oxidation (ACO2 and ACOX1)
Mendham et al. (2020)72 Obese, black South  

African women (n= 45)
12-Week aerobic and resistance EXTR ↑ Mitochondrial respiration, ↑ respiratory coupling in abdominal SAT, 

↑ insulin sensitivity in SAT and SKM, ↓ gynoid fat mass, ↓ mtDNA 
in gluteal SAT

Pino et al. (2016)73 16 Lean/overweight  
human participants

30–60-Minute cycling exercise at 75%–85% 
VO2 6 day/wk for 3 weeks

1.5 to 2-fold ↑ PGC-1α expression in WAT, ↑ mitochondrial content in 
WAT 

Hoffmann et al. (2020)74 25 Obese subjects 8-Week EXTR 1 hour at 80% VO2 (3 day/wk) ↑ Mitochondrial protein content in SKM not WAT, ↑ insulin sensitivity, 
WAT respiration showed a preference for β-oxidation and complex 
II substrates

Dohlmann et al. (2018)75 12 Overweight subjects 
(M, 5; F, 7)

HIIT 3 day/wk for 6 weeks supervised EXTR ↑ Mitochondrial respiration in SKM not WAT, ↓ mtDNA in WAT

Larsen et al. (2015)76 10 Overweight subjects 
(F, 2; M, 8)

HIIT 3 day/wk for 6 weeks EXTR ↑ Mitochondrial content and mitochondrial OXPHOS capacity in SKM 
not WAT; ↑ mtDNA in WAT

Brandao et al. (2019)77 14 Obese women 8-Week aerobic and resistance EXTR ↑ Mitochondrial enzymes in WAT, ↑ mitochondrial enzyme activity,  
↓ coupling in WAT, ↑ RMR, ↓ Ucp1 mRNA expression in WAT,  
↑ lipid oxidation 

Animal study
Trevellin et al. (2014)78 36 C57BL/6J mice 7-Week swim EXTR ↑ Mitochondrial biogenesis gene expression (Ppargc1, Tfam, Nrf1),  

↑ mtDNA content, ↑ glucose uptake in SAT of WT but not Nos3 KO 
mice

Laye et al. (2009)79 Obese OLETF rat  
(n= 6–8 per group)

13-, 20-, and 40-week VW ↓ Mitochondrial protein content in WAT, ↓ insulin sensitivity in WAT at 
13 weeks, ↑ type 2 diabetes at 40 weeks restored cytochrome c and 
COXIV-subunit I protein content to match healthy controls, ↑insulin 
sensitivity at 13 weeks, ↓ type 2 diabetes incidence at 40 weeks

Brenmoehl et al. (2020)80 16 Mice (↑ running  
capacity vs. WT)

5-Week VW ↓ Reduced mtDNA, ↓ Nrf1, ↓ fission- (Dnm1), ↓ fusion-transcripts 
(Mfn1 and 2) in response to voluntary physical activity

Peppler et al. (2017)81 40 C57BL/6J mice 10-Week VW ↑ Ppargc1 mRNA and protein content in WAT, ↑ glucose tolerance in 
WAT, ↓ Tnf and IL-6 mRNA in WAT

Monaco et al. (2018)82 32 Obese Zucker rats 45-Minute treadmill 5 day/wk for 4 weeks ↑ Mitochondrial respiration, ↓ mtDNA in WAT, no change OXPHOS 
protein in WAT, ↑ whole-body glucose homeostasis

Xu et al. (2011)83 8 C57BL/6 mice per 
group

Sedentary vs. 40-minute treadmill EXTR  
5 day/wk for 8 weeks; normal chow vs. HFD

↑ Ucp1, ↑ WAT mitochondria number, ↑ PGC-1α in WAT of HFD mice, 
↓ abdominal fat, ↓ inflammation, ↑ glucose tolerance, ↑ vascular 
constriction and relaxation responses; ↑ preadipocytes  
differentiation into brown adipocytes

EXTR, exercise training; ↑, increased; ↓, decreased; WAT, white adipose tissue; SAT, subcutaneous adipose tissue; SKM, skeletal muscle; mtDNA, mitochondrial DNA; PGC-1α, per-
oxisome proliferator-activated receptor gamma coactivator 1α; HIIT, high-intensity interval training; OXPHOS, oxidative phosphorylation; RMR, resting metabolic rate; Ucp1, uncou-
pling protein 1; Ppargc1, peroxisome proliferator-activated receptor gamma coactivator 1α; Tfam, mitochondrial transcription factor A; Nrf1, nuclear respiratory factors 1; WT, wild-
type; Nos3, endothelial nitric oxide synthase; KO, knock-out; OLETF, Otsuka Long-Evans Tokushima Fatty; VW, voluntary wheel running; COXIV, cytochrome c oxidase subunit 4; Tnf, 
tumor necrosis factor; IL-6, interleukin-6; HFD, high-fat diet.
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Some exercise studies report increased mitochondrial respiration 
in adipose tissue.72,86 However, mitochondrial respiration changes 
in adipose tissue appear to be unrelated to insulin sensitivity be-
cause other studies found improved insulin sensitivity without any 
change in mitochondrial respiration following exercise training.74,77 
Instead, the efficiency of abdominal SAT mitochondria appears to 
be the difference between healthy and insulin-resistant patients.87 
Mendham et al.72 showed that 12 weeks of aerobic and resistance 
exercise training increased mitochondrial respiration and mito-
chondrial coupling in abdominal SAT. These adaptations in mito-
chondrial function occurred alongside improvements in insulin 
sensitivity in both adipose tissue and skeletal muscle. Interestingly, 
the same study reported decreases in gluteal SAT mitochondrial 
content and H2O2 production. Most studies of adipose tissue mito-
chondria focus on markers of mitochondrial biogenesis.73,78,81 Few 
studies of mitophagy and mitochondrial fission and fusion have in-
volved adipose tissue. Further research is necessary to test whether 
mitochondrial morphological changes can explain these depot-
specific changes in adipose tissue and insulin sensitivity following 
exercise training.

Increased PGC-1α mRNA and protein expression is observed in 
both WAT33,78,81 and BAT88,89 in animal studies. Similar increases in 
PGC-1α mRNA have been observed following aerobic exercise 
training in obese humans.73 These studies suggest that exercise 
leads to mitochondrial biogenesis in both skeletal muscle and adi-
pose tissue. Furthermore, the increase in PGC-1α expression in ad-
ipose tissue following exercise typically coincides with an increase 
in mtDNA content,73,78 but not all studies have observed this in-
crease in mtDNA. For example, one study of obese animals report-
ed that an improvement in insulin sensitivity following exercise 
training resulted in decreased mtDNA and increased mitochondrial 
respiration and mtROS.82 Interestingly, antioxidants reversed the 
beneficial effects of exercise on insulin sensitivity by reducing 
mtROS and their downstream signaling.82 Exercise increases mtD-
NA and enhances mitochondrial respiratory function, which is 
quickly followed by an increase in antioxidant and cytoprotective 
gene expression post-exercise.86

Mitochondria in vascular endothelial cells
Recent studies have shown that endothelial mitochondria play 

multiple roles in maintaining endothelial homeostasis, serving as 
bioenergetic, biosynthetic, and signaling organelles. As such, mito-
chondrial dysfunction has been linked to endothelial dysfunction 
that predisposes individuals to vascular diseases. Accumulating evi-
dence shows that chronic exercise training improves aortic endo-
thelial function and prevents vascular diseases through improved 
mitochondrial function. Chen et al.90 demonstrated that 6 weeks of 
daily treadmill exercise significantly increased aortic mitochondrial 
content in mouse thoracic aorta as measured by complex I expres-
sion and mtDNA copy number, concomitant with elevation of va-
sodilatory function and endothelial nitric oxide synthase phos-
phorylation in an AMPKα2-dependent manner. In addition, Gu et 
al.91 showed that chronic aerobic exercise attenuated age-related 
aortic stiffening and endothelial dysfunction in aged rat aorta. 
These preventive effects of exercise were associated with preserved 
aortic mitochondrial function as manifested by reduced mtROS 
production, increased mitochondrial content, elevated complex I 
and III activities, and elevation of protein expression involved in 
mitochondrial homeostasis, including uncoupling protein 2, PGC-
1α, and manganese superoxide dismutase, in rat aorta.91 Kim et al.92 
reported that voluntary wheel-running exercise significantly in-
creases mitochondrial biogenesis in the endothelium of mouse ab-
dominal aorta, while mRNA expression of genes involved in mito-
chondrial biogenesis, including PGC-1α, TFAM, and NRF-1, was 
increased in abdominal aortas of exercised mice. 

Ample evidence has shown that exercise significantly elevates the 
magnitude of wall shear stress and alters flow patterns in human ar-
teries by increasing laminar blood flow and reducing flow oscilla-
tion in atheroprone regions.93-95 Laminar blood flow and resulting 
high laminar shear stress (LSS) induce salutary effects on endothe-
lial mitochondrial homeostasis. LSS is also known to facilitate mi-
tochondrial biogenesis via elevation of PGC-1α, NRF-1, and 
TFAM expression levels in a NAD+-dependent deacetylase sirtuin 
1-dependent manner.92,96,97 In addition, LSS modulates mitochon-
drial dynamics, leading to an elevation of mitochondrial fusion and 
an increase in mitochondrial fusion protein expression, including 
mitofusin-2 (Mfn2) and optic atrophy 1, in cultured endothelial 
cells.98 These structural changes are accompanied by functional im-
provement of mitochondria, showing that LSS leads to intact mito-
chondrial function by intact oxidative phosphorylation and mito-
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chondrial membrane potential.92,98,99 LSS also maintains endotheli-
al redox homeostasis by increasing mitochondrial antioxidant en-
zymes, including manganese superoxide dismutase, thioredoxin 2, 
and peroxiredoxin 3 and 5, which neutralize cellular mtROS level 
in endothelial cells.98 Furthermore, LSS enhances mitochondrial 
quality control mechanisms by maintaining intact mitophagy and 
autophagy.100-102

Increasing evidence has shown that AMPK is a key mediator of 
mitochondrial homeostasis in endothelial cells.103 Interestingly, ex-
ercise and high LSS activate the AMPK pathway in the abdominal 
aorta and the endothelial cells, respectively.17,92,97 This implies that 

exercise renders endothelial mitochondria more protective via 
AMPK activation. Mitochondrial adaptation to exercise in obese 
subjects has not yet been extensively studied. Preventive effects of 
exercise on endothelial defects and acceleration of vascular diseases 
in obese individuals can be explained, at least in part, by improve-
ment of mitochondrial function in endothelial cells.

KEY RESEARCH GAPS AND FUTURE 
RESEARCH DIRECTIONS

Current understanding suggests that proangiogenic activity dur-

Figure 1. Schematic of the proposed mechanism. Excessive caloric intake and low energy expenditure create a positive energy balance, leading to adipose tissue expan-
sion to store the excess energy. Adipose tissue can grow in size (hypertrophy) or in unit number (hyperplasia). Angiogenesis and mitochondrial remodeling are activated af-
ter exercise and act as signals for healthy adipose tissue expansion. Adipogenesis is the primary factor allowing hyperplasia to occur. Hyperplasia appears to preserve 
metabolic functions of the tissue. Hypertrophied adipose tissue is characterized by hypoxia, inflammation, fibrosis, and insulin insensitivity. When enough adipose tissue is 
dysfunctional, changes to adipokines, metabolites, and immune cells contribute to metabolic diseases such as diabetes, dyslipidemia, hypertension, and atherosclerosis. 
TNF-α, tumor necrosis factor alpha.
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ing adipose tissue expansion is beneficial and associated with po-
tent protective effects on metabolic integrity of fat cells. As such, 
promoting angiogenic potential through exercise can be beneficial 
to prevent future metabolic diseases. However, a paradoxical rela-
tionship also exists between angiogenesis and healthy versus un-
healthy adipose tissue expansion. Some studies show that anti-an-
giogenic drug treatment leads to weight loss and improvement in 
metabolic capacity in pre-existing dysfunctional adipose tissue.104-107 
These data suggest that a proper balance between pro- and anti-an-
giogenic processes is key to addressing the large public health issues 
associated with obesity. Investigation of the temporal effect of aero-
bic exercise training on adipose tissue function throughout the 
stages of weight gain is imperative. 

While there is growing evidence that exercise training increases 
mitochondrial content and preserves mitochondrial respiratory 
function in adipose tissues, to the best of our knowledge, the effects 
of exercise on mitochondrial fusion and fission dynamics and mi-
tochondrial autophagy in adipose tissue have yet to be fully eluci-
dated. Mancini et al.108 recently reported that expression level of 
Mfn2, a gene promoting mitochondrial fusion and mitochondri-
on–endoplasmic reticulum interaction, is robustly lower in both 
animal and human models of obesity. The study further reported 
that Mfn2 deficiency is associated with adipocyte proliferation, in-
creased lipogenesis, and decreased glucose utilization, suggesting a 
crucial role for mitochondrial dynamics in adipocytes in triggering 
systemic metabolic dysregulation. Mitochondrial morphological 
changes, including mitochondrial biogenesis, mitophagy, fusion, 
and fission, have been observed in skeletal muscle,109 but future re-
search is needed to establish whether mitochondrial morphology 
plays the same role in adipose tissue.

Lifestyle changes, such as nutrition and exercise, that promote 
endothelial and mitochondrial function also have a place in the 
prevention of obesity and metabolic syndrome. Exercise mode, du-
ration, and intensity that elicit optimal benefits for adipose tissue 
function need to be established. Clinically, bariatric surgery seems 
to preserve a favorable metabolic profile in adipose tissue. Future 
studies should examine the efficacy of lifestyle modification on 
preventing redevelopment of obesity after bariatric surgery. 

CONCLUSION

In the present review, we summarized existing knowledge of the 
effects of exercise on angiogenesis and mitochondrial remodeling 
in the context of healthy and unhealthy adipose tissue expansion, 
as illustrated in Fig. 1. Future studies are needed to determine the 
length of time after which adipose tissue is irreparable by stimulat-
ing angiogenesis so that physicians can prescribe angiogenesis in-
hibitors. Furthermore, future research in this area should identify a 
biomarker that physicians can use to prescribe anti-angiogenic 
drugs when they are most appropriate. There is a great potential for 
further research to lead to new treatment options that would be 
beneficial in the later stages of obesity by promoting mitochondrial 
fission and inhibit angiogenesis. Overall, identifying genes related 
to exercise and their related pathways suggest potential novel thera-
peutic targets for obesity treatments. Exploration in this area will 
lead to novel mechanisms and applications, along with new treat-
ments for obesity and metabolic syndrome. 
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