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Whole exome sequencing has provided significant opportunities to discover novel

candidate genes for intellectual disability and autism spectrum disorders. Variants in

the spectrin genes SPTAN1, SPTBN1, SPTBN2, and SPTBN4 have been associated

with neurological disorders; however, SPTBN5 gene-variants have not been associated

with any human disorder. This is the first report that associates SPTBN5 gene variants

(ENSG00000137877: c.266A>C; p.His89Pro, c.9784G>A; p.Glu3262Lys, c.933C>G;

p.Tyr311Ter, and c.8809A>T; p.Asn2937Tyr) causing neurodevelopmental phenotypes

in four different families. The SPTBN5-associated clinical traits in our patients include

intellectual disability (mild to severe), aggressive tendencies, accompanied by variable

features such as craniofacial and physical dysmorphisms, autistic behavior, and

gastroesophageal reflux. We also provide a review of the existing literature related to other

spectrin genes, which highlights clinical features partially overlapping with SPTBN5.

Keywords: intellectual disability (ID), whole exome sequencing (WES), SPTBN5, heterozygous mutation, protein

modeling 3
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INTRODUCTION

Intellectual disability (ID) encompasses a heterogeneous group
of neurodevelopmental disorders characterized by substantial
intellectual and adaptive functioning limitations before the age
of 18 (Musante and Ropers, 2014; Khan et al., 2020; Nøstvik
et al., 2021). The overall incidence of ID varies from 1 to
3% in the general population and is commonly defined by an
intelligence quotient (IQ) score of <70 (Ropers, 2010; Umair
et al., 2020; Nøstvik et al., 2021). ID can be syndromic or non-
syndromic and can be attributed to genetic and environmental
factors (Umair et al., 2020; Shao et al., 2021). Prenatal and
perinatal events, such as drug and toxins exposure during
pregnancy, are currently correlated to autism (ASD) and ID
(Bilder et al., 2013; Wang et al., 2017). To date, more than
700 causative genes have been reported to cause ID. They
are implicated in many important biological processes such as
cell cycle regulation, DNA methylation, DNA repair, damage
response, chromatin remodeling transcription, and translational
processes (Dulac, 2010; Bourgeron, 2015; Vissers et al., 2016;
Deciphering Developmental Disorders, 2017).

The advent of next-generation sequencing (NGS)
technologies, comprising whole exome and genome sequencing
along with the use of different bioinformatics databases that
promote sharing of information on genotype-phenotype
correlation, has been a significant factor in the remarkable
progress in unraveling the genetics of ID (Boycott et al., 2017;
Khan et al., 2020; Umair et al., 2020).

The spectrin beta, non-erythrocytic 5 (SPTBN5) gene,
alternatively called beta V spectrin, BSPECV, HUSPECV, and
HUBSPECV is located on chromosome 15q15.1, having 68
exons encoding 3674 amino acid spectrin protein (Stabach and
Morrow, 2000; Figure 1E). The spectrin protein is composed
of calponin homology domains (CH), spectrin repeats, and
pleckstrin homology domain (PH; Figure 1D). Spectrin is
considered a central part of a ubiquitous complex system
linking membrane proteins, lipids, and cytosolic factors with the
significant cytoskeletal elements of the cell (Kennedy et al., 1994).

We present four different families with homozygous variants
in the SPTBN5 gene associated for the first time with a
neurodevelopmental disorder. Furthermore, we interpret our
findings in the light of what was previously reported regarding
patients with mutations in the spectrin genes, delineating a
phenotypic continuum for this family of genes.

MATERIALS AND METHODS

Consent Approval and Patient Recruitment
Family elders (parents) provided written informed consent for
molecular analysis and publication of the clinical data for
research and diagnosis purposes. The families reported in the
present study originated from Pakistan and Italy. Family A was
diagnosed at Khalifa Gul Nawaz Teaching Hospital, and the
district headquarter hospital in Bannu Khyber Pakhtunkhwa,
Pakistan. Families (B–D) were diagnosed at the Medical Genetics
department of the University of Siena, Italy (Figure 1A).

Genetic counseling was performed to evaluate each patient’s
personal and familial history.

DNA Extraction and Quantification
Genomic DNA of both the affected and unaffected family
members was isolated from peripheral blood using
standard methods and quantified using the Nanodrop-2000
spectrophotometer (ThermoFisher Scientific, Waltham,
MA, USA).

Library Construction
Sample preparation was performed following the Illumina
DNA prep with enrichment manufacturer protocol. A bead-
based transposome complex was used to perform segmentation,
which fragments the genomic DNA and then tags it with
adapter sequences in one step. After saturation with input
DNA, the bead-based transposome complex fragments a set
number of DNA molecules. This fragmentation allows a wide
DNA input range to generate normalized libraries with a
consistent tight fragment size distribution. Then a limited-
cycle PCR adds adapter sequences to the ends of a DNA
fragment. A subsequent target enrichment workflow is then
applied. Following pooling, the double-stranded DNA libraries
are denatured and biotinylated. Next, Illumina Exome Panel
v1.2 (CEX) probes are hybridized into the denatured library
fragments. Then Streptavidin Magnetic Beads capture the
targeted library fragments within the regions of interest.
Then the indexed libraries are eluted from beads and further
amplified before sequencing. The exome sequencing analysis was
performed on the Illumina NovaSeq6000 System (Illumina San
Diego, CA, USA) according to the NovaSeq6000 System Guide.
Reads were mapped against the hg19 reference genome using the
Burrow-Wheeler aligner BWA (Li and Durbin, 2010). Variant
calling was obtained using an in-house pipeline which takes
advantage of the GATK Best Practices workflow.

Whole Exome Sequencing and Data
Analysis
Trio whole-exome sequencing (WES) was performed, including
the proband and both parents. The caring clinicians gathered
clinical and mutation details of the patients harboring the
SPTBN5 variants by getting in touch through Gene Matcher
(http://www.genematcher.org). Exome sequencing and variant
interpretation and analysis were as previously described (Monies
et al., 2019; Shao et al., 2021). All the variants were screened
according to the location, frequency, and type of variation.
Variants were filtered with a minor allele frequency (MAF) cutoff
of 1% in the Exome Variant Server (http://evs.gs.washington.edu/
EVS/), GnomAD (https://gnomad.broadinstitute.org), and 1000
Genomes (http://www.1000genomes.org/). Sanger sequencing
was performed using stranded methods (Khan et al., 2019; Umair
et al., 2019).

Bioinformatics Analysis
The bioinformatics analysis focused on non-synonymous
SNVs (missense, non-sense, splice-site, and frameshift)
and was submitted to Polyphen-2 (http://genetics.bwh.
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FIGURE 1 | (A) Representing pedigrees of all the four families (A–D). (B) Showing Sanger sequencing electro-grams of all the four families. (C) Conservation analysis

of the mutations identified in the present studies along different species. (D) Structural models of the CH1 domain containing the His89Pro mutation, and the spectrin

repeats containing the Asn2937Tyr and Glu3262Lys mutations. Three 1,000 segments containing the residues of interest were modeled with AlphaFold, and are

shown in the bottom as cartoons, colored by pLDDT score. Residues with pLDDT<50 are colored red, representing regions with low confidence, and residues with

pLDDT>90 are blue, showing high-confidence segments. The top insets show a zoom into the local region of each mutated residue (shown as blue sticks), and the

comparison between the wild-type and mutated states. The residues predicted to interact with His89 are shown as gray sticks. (E) Exon organization of SPTBN5.

Boxes are exons. Lines connecting the boxes are introns. Filled boxes are coding sequence, and empty, unfilled boxes are UTR (UnTranslated Region). Adapted from

Ensembl (release 105) (Howe et al., 2021).

harvard.edu/pph2/), Sorting Intolerant from Tolerant
(SIFT, http://sift.jcvi.org/), Protein Variation Effect Analyzer
(PROVEAN, http://provean.jcvi.org), Mutation Taster (http://
www.mutationtaster.org/), Varsome (https://varsome.com/),
Mutation assessor (http://mutationassessor.org), and Combined
Annotation Dependent Depletion (CADD, https://cadd.gs.
washington.edu/) for functional effect prediction.

Protein Modeling
AlphaFold (Jumper et al., 2021) was used to produce high-
quality structural models of three 1,000 residue segments
of SPTBN5, containing the residues of interest. The average
pLDDT score of the three models was higher than 80, and
the residue pLDDT of His89, Asn2937, and Glu3262 and their
local region was higher than 90, indicating a very confident
3D configuration. A configuration of four V100 GPUs and 16

CPU cores (provided by the KAUST IBEX cluster) was used
for modeling. Models were manually inspected, and mutations
were evaluated using the Pymol program (pymol.org). The
American College of Medical Genetics and Genomics (ACMG)
2015 guidelines were used for the interpretation of variants (Li
et al., 2020).

Primer Designing and Mutation
Confirmation
Gene Runner (version 5.0.69 Beta, Hastings, NY, USA)
software was used for Primers design. Sanger sequencing
was performed using an ABI3730 Automated Sequencer
to verify co-segregation of the identified variants with the
disease phenotype (Thermo Fisher Scientific, Waltham,
MA, USA). The Sanger sequencing results were examined
and compared with the help of visual software such
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TABLE 1 | Clinical features of affected subjects from families A–D.

Family parameters Families information

Parameters Family A Family B Family C Family D

Pedigree ID II:3 II:2 II:3 II:3

Nationality Pakistani Italian Italian Italian

Gender Male Female Male Female

Current age (Years) 11 yrs 15 yrs 14 yrs 7 yrs

Family history Sporadic Familial Sporadic Familial

Disease onset (years) First year of life First year of life First year of life First year of life

Consanguinity No No No No

Gestation weeks (weeks) 38 39 38 38

Pregnancy event Uneventful Uneventful Uneventful Uneventful

Developmental Features

Developmental delay + + + +

Language impairment + + +

Learning disability + + + +

Sleep disorder + + + +

Head circumference 49cm 50.5 cm 46.5 cm –

Height 52.1 cm 144.5 cm 150.5 cm 97 cm

Weight 45.9 kg 35 kg 34 kg 15 kg

Dysmorphic Features

Low set ears + – – –

Nasal bridge Broad Broad Depressed Broad

Strabismus + – – –

Facial expression Triangular Triangular Triangular –

Thin upper lip + + + +

Skeletal anomalies

Hands Bilateral clinodactyly of the

5th little finger

Arachnodactyly, fusiforme

fingers of the hands

Bilateral clinodactyly of 4th

and 5th fingers of hands

Bilateral clinodactyly of 4th

and 5th fingers of hands

Feet Brachydactyly of the feet Fusiforme fingers of the feet Bilateral clinodactyly of 4th

and 5th fingers of the feet

Bilateral clinodactyly of 4th

and 5th fingers of hands

Behavioral Features

Impairment social interaction + + + +

Feeding difficulty + + – +

Agression/hyperactivity + + + +

Neurological Features

Intellectual disability + + + +

Anxiety/psychiatric + + + +

Seizure + + + –

Amnesia + + + +

Feeding difficulty + + + +

Karyotype Normal Normal Normal Normal

+, present; −, absent.

as Chromas Lite (http://technelysium.com.au/wp/) and
Codon Code Aligner (https://www.codoncode.com/
aligner/).

RESULTS

Clinical Report
This study recruited four families affected by ID
from Pakistan and Italy. A clinical neurologist

examined all the affected individuals. Additional clinical
information on the affected individuals is summarized in
Table 1.

Family A
Family A, of Pakistani origin, has a single affected individual
(II:3), a 11-year-old male with ID had a developmental delay
born from non-consanguineous parents. The pregnancy and
delivery events were unremarkable. The parents of the affected

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 June 2022 | Volume 15 | Article 877258

http://technelysium.com.au/wp/
https://www.codoncode.com/aligner/
https://www.codoncode.com/aligner/
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Khan et al. SPTBN5 and Intellectual Disability

individuals are normal and have no neurological symptoms
related to cognition. Patient II-1 was examined at the age of 10
and 11 years, respectively. Clinical examination revealed early-
onset epilepsy and seizures at 2–3 years of age, anxiety, severe
chronic constipation, aggressive behavior, feeding difficulties,
and harming himself by beating his head against the wall.
Physical examination revealed a prominent metopic ridge,
strabismus, epicanthus, flat philtrum, stuttering, and relatively
thin upper lips with mild wide spacing of teeth. He had a normal
46 XY karyotype. At the last examination (11 years of age), his
weight, height, and Occipital Frontal Circumference (OFC) were
45.9 kg, 52.1 cm, and 49 cm, respectively. No cardiac, respiratory,
skeletal, or skin anomalies were observed. His vision and hearing
were seen as normal (Figure 1A).

Family B
We reported a 15-year-old girl with ID born from non-
consanguineous parents regarding the Italian family B. She was
born after pregnancy with threats of miscarriage; a growth
deficit was signaled during the last month. She was diagnosed
with drug-induced autoimmunity at birth and interatrial and
interventricular defects (DIA and DIV). She came to our
attention when she was 3-year-old, and since her first months of
life, she presented recurrent infections in the upper respiratory
vias and feeding difficulties with gastroesophageal reflux. The
anamnestic collection reported a paternal cousin who acquired
severe ID after meningitis. Physical examination at the age of 15
years showed a height of 144.5 cm, a weight of 35 kg, and a head
circumference of 50.5 cm. She suffered from ID, hyperactivity,
language/speech delay and aggressiveness, and a disturbing wake-
sleep cycle. Arachnodactyly of the hands and feet was noticed.
She showed triangular facies, prominent ears, thin upper lip,
absent eyebrows, broad nasal bridge, bulbous nasal tip, thin and
sparse hair, fusiform fingers of the hands and the feet, everted
lower lip, M-shaped upper lip, hairline anteriorly advanced. Her
array-CGH exams gave negative results (Figure 1A).

Family C
Family C includes a 14-year-old Italian boy with a history of
physical dysmorphisms and behavioral and nonverbal learning
disorders. He was born at 38 weeks with a cesarian section.
Her anamnestic collection presented a brother with language
and behavior delay, a maternal cousin with language delay, and
a paternal cousin with seizures at pediatric age. His weight
and height were 34 kg and 150.5 cm, and OFC was 46.5 cm,
respectively. He showed psychomotor delay, cognitive delay,
and manifested aggressiveness through himself and the others.
His physical examination reveals thin upper lips, bilateral
clinodactyly of the 3rd−4th and 5th fingers, depressed nasal
bridge, turricephaly, high anterior hairline, hypertelorism, nasal
voice, prominent forehead suture. His karyotype, array-CGH,
and X-fragile exams were normal (Figure 1A).

Family D
Family D of Italian origin had an affected 6-year-old female child
diagnosed with autism and ID. Her weight was 15 kg, height
97 cm, and chest circumference (CC) 50 cm. Her anamnestic

collection highlighted language delay in the maternal line and
autistic disorders in the paternal line. She was born at term and
suffered from gastroesophageal reflux and feeding difficulties.
Her weaning and her wake-sleep cycle were normal. However,
she manifested aggressiveness, language delay, and expression
disorder. Her ADOS score was 16 (moderate ASD), and her
auditory evoked potentials were negative. In addition, her array-
CGH exam was negative (Figure 1A).

Identification of Candidate SPTBN5

Variants
By applying an iterative filtering strategy based on variant
frequency, functional consequences on coding sequence, and
heredity, de novo variants in the SPTBN5 gene [NM_016642]
were considered the best candidate. These include c.266A>C;
[p.(His89Pro)] in Family A, c.9784G>A; [p.(Gly3262Lys)] in
Family B, c.933C>G; [p.(Tyr311∗)] family C, and c.8809A>T;
[p.(Asn2937Tyr)] in family D. These candidate variants were
confirmed by Sanger sequencing in all the available family
members (Figure 1B).

Predicted Molecular Effect of the SPTBN5

Variants
The SPTBN5 encodes a 3674 long amino acids protein. It consists
of two N-terminal calponin homology (CH) domains, actin-
binding domains that cross-link actin filaments into bundles and
networks (Richards et al., 2015). The α-helical CH domains are
common in actin-binding proteins and play important regulatory
roles in cytoskeletal dynamics and signaling. Most of the region
C-terminal to the CH domains, almost 90% of the protein, is
formed by spectrin repeats. The spectrin repeats form a tandem
arrangement of helical coiled coils, where each repeat forms a
three-helix bundle. Through tension-induced unfurling of the
three-helix repeats, these domains allow spectrin to expand and
contract, conferring flexibility to the protein (Borrego-Diaz et al.,
2006). The spectrin repeats are also self-association and tetramer
formation with alpha spectrins (Nicolas et al., 1998; Stradal et al.,
1998). Finally, there is a pleckstrin homology domain (PH) at the
C-terminal end. The PH domains bind to phosphatidylinositol
lipids, allowing the recruitment of proteins to cellularmembranes
(Mayer et al., 1993).

His89Pro
His89 is exposed and located at the end of an alpha helix in the
first CH domain, surrounded by the residues forming the linker
to the adjacent helix (Figure 1D). AlphaFold predicts several
interactions of His89 with its surrounding residues, namely Ile64,
Phe68, Ile75, Ile77, and Glu83. The substitution for a proline
could destabilize the helical structure leading to an earlier break,
affecting the 3D packing and stability of this globular domain.
This mutation was predicted as probably damaging by Polyphen2
(score= 0.998; Adzhubei et al., 2010), tolerated by SIFT (score=
0.31; Sim et al., 2012), and as deleterious by PROVEAN (score=
−5.450; Choi et al., 2012).
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TABLE 2 | In silico prediction analysis of SPTBN5 variants in the present families.

Paramètres Family A Family B Family C Family D

Gene name SPTBN5

Other names BSPECV; HUSPECV; HUBSPECV

Chromosome location 15q15.1

MIM number 605916

Ensemble ID ENSG00000137877

Total exon 68

cDNA change c.266A>C c.9784G>A c.933C>G c.8809A>T

Protien change p.His89Pro p.Glu3262Lys p.Tyr311Ter p.Asn2937Tyr

Variant exonic location Exon 3 Exon 58 Exon 7 53

Variant chromosome location Chr15:42185210 Chr15:41853778 Chr15:41886322 Chr15: 41856598

Variant type Non synonymous Non synonymous Non synonymous Non synonymous

SIFT 0.226/Tolerable 0.127/Tolerable – 0.023/Damaging

Polyphen-2_HDIV 0.998/Probably_damaging 0.003/Benign – 0.989/Probably_damaging

Polyphen-2_HVAR 0.939/Probably_damaging 0.014/Benign – 0.832/Possibly_damaging

FATHMM −3.54/ Damaging 0.73/ Tolerable – 0.75/Tolerable

Mutation taster 1.000/Polymorphism 0.983/Polymorphism 1/Disease_causing 0.959/Disease_causing

PROVEAN −5.45/Damaging 0.25/Tolerable – −4.54/Damaging

MetaSVM 0.088/Damaging −1.014/Tolerable – −0.633/Tolerable

CADD 21.2/Damaging 22.5/Damaging 35/Damaging 26.6/Damaging

FATHMM_MKL 0.559/Damaging 0.513/Damaging 0.449/Tolerable 0.990/Damaging

GERP++ 2.82/Conserved 1.48/conserved −0.984/Nonconserved 5.01/Conserved

GnomAD_exome All 0.000004124 0.0001 0.000008175 0.0045

Tyr311∗

The Tyr311∗ mutation eliminates all the spectrin repeats and
the C-terminal PH domain. It is expected to render the protein
non-functional for activities that require interactions, providing
flexibility or support through these domains. This mutation was
predicted to be deleterious by PROVEAN (score=−14.963).

Asn2937Tyr and Glu3262Lys
Asn2937 and Glu3262 are located on the exterior of one of
the repeat helices of a spectrin repeat, with Glu3262 being
close to the C-terminus. Neither Asn2937Tyr nor Glu3262Lys
are expected to severely disrupt the structural stability of
their spectrin repeats as the side chains of both point toward
the solvent and AlphaFold does not predict contacts with
neighboring residues. However, both mutations change the local
physicochemical surface characteristics in shape (Asn2937Tyr)
and charge (Glu3262Lys). Thus, both variants could weaken or
disrupt interactions with other molecules or affect the dynamics
of the spectrin repeat under tension. Asn2937Tyr was predicted
as probably damaging by Polyphen2 (score = 0.986), tolerated
by SIFT (score = 0.25), and as deleterious by PROVEAN (score
= −4.539). Glu3262Lys was predicted as benign by Polyphen2
(score = 0.002), tolerated by SIFT (score=0.82), and neutral by
PROVEAN (score= 0.250).

In conclusion, Tyr311∗ has by far the most deleterious effect
by only leaving the CH domains intact. By affecting the CH
domain stability and surface, His89Pro might weaken acting
associations and hence make these interactions more prone
to disruption under tension. In comparison, Asn2937Tyr and

Glu3262Lys present mutations that are relatively benign for the
tertiary structure of an individual molecule. However, their effect
on dynamics and/or interactions is expected to become additive
and potentially disruptive within spectrin networks. The results
of the in silico analysis have been summarized in Table 2.

DISCUSSION

Spectrins constitute a family of cytoskeletal proteins interacting
with actin filaments, microtubules, and intermediate filaments,
and connecting the cytoskeleton to the plasmamembrane (Ortiz-
Gonzalez and Wierenga, 2020; Rosenfeld et al., 2021). SPTBN5
forms extensive networks by forming tetramers and higher
oligomers through homologous associations and associations
with alpha spectrins (Stabach and Morrow, 2000). In this study,
we report, for the first time, four different families of SPTBN5
deficiency with features such as ID, developmental delay,
seizures, aggressive behavior, variable dysmorphic features, and
limbmalformations. Themolecular analysis usingNGS identified
four heterozygous variants {c.266A>C; [p.(His89Pro)] in family
A, c.9784G>A; [p.(Glu3262Lys)] in family B, c.933C>G;
[p.(Tyr311∗)] family C, and c.8809A>T; [p.(Asn2937Tyr)] in
family D} in SPTBN5 gene. These variants are located in highly
conserved positions and are predicted to be detrimental based
on various in silico analyses (Figure 1C). Additional functional
evidence is needed to clarify how the SPTBN5 haploinsufficiency
affects brain malformation.

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 June 2022 | Volume 15 | Article 877258

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Khan et al. SPTBN5 and Intellectual Disability

SPTBN5 and other spectrins are expressed ubiquitously in
the body, including the brain, eye, kidney, heart, gastrointestinal
tract, and musculoskeletal tissue (https://www.proteinatlas.org/);
thus, it is not surprising that the disease phenotype involves
multiple organs (Uhlén et al., 2015). In addition, mutations
in various members of the spectrin gene family are associated
with erythroid cell disorders (SPTA1, SPTB) and neurological
disorders (SPTAN1, SPTBN1, SPTBN2, and SPTBN4); however,
no human genotype-phenotype correlation has been established
for SPTBN5 to date (Rosenfeld et al., 2021). Here we report
SPTBN5 variants that are predicted to severely truncate the
protein (Tyr311∗), weaken its actin association (His89Pro),
or disrupt the integrity of spectrin networks (Asn2937Tyr
and Glu3262Lys).

A comparison of the SPTBN5 phenotype to the published
SPTBN1 and SPTBN4 phenotype shows common features of ID,
DD, and aggression reported in all four families for both diseases
(Ortiz-Gonzalez and Wierenga, 2020; Rosenfeld et al., 2021).
In addition, individuals with SPTBN5 variants had low rates
of seizures as compared to SPTBN1 SPTBN4, and individuals
with SPTBN1 and SPTBN4 variants had cerebellar or cerebral
atrophy that was not detected. In the SPTBN5 cohort. However,
abnormalities of the corpus callosumwere found in both cohorts.
In addition, our results further support the contribution of
inherited pathogenic variants in candidate genes to ASD and ID
and reinforce the theory of a multi-hit model, according to the
coexistence between ultra-rare inherited variants and de novo
mutations has been observed in ASD trios (Krumm et al., 2015;
Wilfert et al., 2021).

In summary, we implicate SPTBN5 as a gene whose disruption
leads to human neurodevelopmental disease. However, open
questions remain regarding the variability of the phenotype and
the role of SPTBN5 in multiple organ systems.
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