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Abstract

Flies achieve supreme flight maneuverability through a small set of miniscule steering mus-
cles attached to the wing base. The fast flight maneuvers arise from precisely timed activa-
tion of the steering muscles and the resulting subtle modulation of the wing stroke. In
addition, slower modulation of wing kinematics arises from changes in the activity of indirect
flight muscles in the thorax. We investigated if these modulations can be described as a su-
perposition of a limited number of elementary deformations of the wing stroke that are under
independent physiological control. Using a high-speed computer vision system, we re-
corded the wing motion of tethered flying fruit flies for up to 12 000 consecutive wing strokes
at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings
into components that had the minimal mutual information (a measure of statistical depen-
dence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct
types of frequently occurring least-dependent components, each defining a kinematic pat-
tern (a specific deformation of the wing stroke and the sequence of its activation from cycle
to cycle). Two of these stroke deformations can be associated with the control of yaw torque
and total flight force, respectively. A third deformation involves a change in the downstroke-
to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pat-
tern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extend-
ing for dozens of cycles. Our analysis indicates that these four elementary kinematic
patterns can be activated mutually independently, and occur both in isolation and in linear
superposition. The results strengthen the available evidence for independent control of yaw
torque, pitch torque, and total flight force. Our computational method facilitates systematic
identification of novel patterns in large kinematic datasets.
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Introduction

Insect flight provides a powerful model system for neuromotor control [1-3]. Flight puts ex-
treme physiological demands on the organism, which are met by specialized adaptations with
sharply defined structure-function relations [4]. This is particularly apparent in flies, in which
the generation of power for wing motion and the control of fast modulations of the wing stroke
are mediated by two distinct types of muscles [5,6]. In recent years, flight control in flies has
been extensively investigated using integrative approaches. In particular, the quantitative corre-
spondence between the kinematic patterns of wing motion and the resulting aerodynamic
forces has been clearly established using dynamically scaled robotic models [7-9]. This knowl-
edge provides a functional interpretion of observed variations in the fly’s wing kinematics. De-
tailed measurement and analysis of wing kinematics therefore has the potential to reveal the
functional organization of the flight control apparatus. Our approach combines high-speed
measurements of wing motion during extended intervals of unstimulated tethered flight with a
computational analysis that extracts independently occurring components of the kinematics.

Freely flying flies execute a variety of flight maneuvers, such as turning, acceleration, and
casting flight [10]. To control the aerodynamic forces and torques necessary for the maneuvers,
flies modulate their wing kinematics in specific ways [11-15]. For example, yaw torque is
known to be generated by bilaterally asymmetric changes in stroke plane angle and the mid-
stroke angle of attack [13,14], while a symmetric change in the mean wing translational velocity
or in the timing of wing rotation alters the lift force [7,12]. A change in pitch torque can be
achieved by a bilaterally symmetric change in mean stroke position [11,15] or in the ratio of
down- and upstroke duration [9]. Most of the flight maneuvers require a combination of such
changes in wing kinematics. Geurten et al. [16] classified 9 prototypical movements of the hov-
erfly body, such that any segment of free flight consists of a sequence of these typical move-
ments. 8 out of the 9 prototypical movements involve rotation and/or translation with respect
to multiple body axes. A prominent example of flight maneuver is the body saccade, a rapid
turn during which the fly changes its heading by up to 120° in about a dozen wingbeat cycles
[14]. In the course of the saccade, the fly rotates about all the three body axes; saccades with dif-
ferent combinations of yaw, roll and pitch velocities are observed [10,13,14].

The remarkable maneuverability of flies is based on a special organization of the flight appa-
ratus that permits precise control on very fast time scales. In Dipterans, wing motion is pow-
ered by asynchronous flight muscles that act indirectly, by deforming the thorax. Cycle-to-
cycle modulations of the wing stroke result from the activity of multiple miniscule steering
muscles that are attached to the hinge of each wing [5,6]. This knowledge is based on simulta-
neous recordings of wing motion and steering muscle activity in the so called ,tethered flight”-
setup (in free flight, electromyographic recording from flight muscles has so far been achieved
only in larger insects, such as hawkmoths [17,18]). During tethered flight, the motion of the
wings is unconstrained, while the body of the fly is fixated. The observed changes in wing kine-
matics are interpreted as attempted flight maneuvers or responses. Electrophysiological record-
ings from groups of steering muscles during tethered flight permitted to link some flight
maneuvers to the activity of specific muscles [19,20]. It is currently not fully known, however,
which muscles (or synergies of muscles) can be activated independently of each other. In this
study, we aimed to identify the kinematic outputs of such independent neuromotor controls.
The kinematic output of a given neuromotor control consists of a specific deviation from the
baseline wing stroke; such a deviation will be termed an ,,elementary kinematic pattern“. Our
computational analysis operates under the assumption that when multiple independent con-
trols are active simultaneously, the corresponding elementary kinematic patterns superpose
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linearly to produce the full wing motion. Our results give indirect support for this assumption,
but its direct testing is beyond the framework of this article.

To extract the elementary kinematic patterns, we measured and analyzed segments (up to
12 000 wingbeat cycles) of left and right wing motion sampled at 6250 Hz. The tethered flies
were not stimulated, but displayed a wide range of kinematic changes during the recordings.
These extensive recordings permitted us to apply, for the first time, an advanced statistical
analysis designed to identify the full repertoire of independently controlled kinematic patterns.
The statistical analysis is based on the method of least-dependent component analysis (LCA)
[21]. This is a variant of the well-known independent component analysis (ICA) [22]. In ICA,
the set of measured signals is assumed to be a linear combination of statistically independent
source signals; in LCA, the assumption of complete statistical independence is relaxed. We al-
lowed a deviation from full statistical independence, as weak dependencies among the elemen-
tary kinematic patterns could arise due, e.g., to mechanical coupling through the exoskeleton.
We identified the least-dependent components (LDCs) using the MILCA algorithm [21].
MILCA (Mutual Information based Least-dependent Component Analysis) iteratively searches
for the set of linear combinations of the measured signals that has the minimal mutual infor-
mation (which takes into account both linear and nonlinear statistical dependencies). Each
LDC specifies the activation time course of a specific deformation mode of the wing stroke.
The least-dependent components define the candidates for elementary kinematic patterns—
i.e., kinematic patterns that arise from mutually independent neuromotor controls. For clarity
we stress that the ,,stroke deformation modes”in this study do not refer to mechanical deforma-
tions of the wing (which are known to be functionally important at least in some larger flying
insects [23,24]).

Our analysis starts from just two measured kinematic degrees of freedom—the stroke posi-
tions of the left and right wing. To define an input signal for LCA, we extracted the wing stroke
position at a given phase of each wing stroke cycle in a given flight recording. LCA based on a
set of 16 such signals examines the variability of entire wing strokes cycles, rather than only of
pre-selected kinematic parameters such as stroke amplitude. When computing these compo-
nents, we allowed linear combinations of signals from both wings, which permits to construct,
e.g., bilaterally symmetric or antisymmetric deformations of the wing stroke. Table 1 summa-
rizes the nomenclature used throughout the paper.

In the majority of the analyzed flight segments, the MILCA algorithm converged to a set of
linear components that had no significant mutual statistical dependence. Under the assump-
tion that the identified kinematic patterns play a fundamental role for flight control, we ex-
pected to find similar occurences in independent trials. Indeed, some of the computed patterns
occurred repeatedly across distinct flight segments measured from one fly as well as across in-
dividual flies. We provide a classification of such kinematic patterns obtained from recordings
of 10 flies. Out of the 7 classified types of kinematic patterns, four showed strong evidence for
being considered elementary kinematic patterns. This provides a lower bound for the number
of independent neuromotor controls of wing motion. Three identified elementary patterns can
be associated with yaw control during body saccades, pitch control, and control of flight power,
respectively. The fourth elementary kinematic pattern contains sequences of dozens of wing-
beat cycles during which the stroke amplitude of both wings is alternatingly increased and de-
creased in successive wing strokes. Physiologically, this kinematic pattern may correspond to
the activation of a specific steering muscle in every other wingbeat cycle. Multiple elementary
kinematic patterns can be active simultaneously in a given stroke cycle; our statistical method
allowed us to unambiguously decompose the resulting complex wing strokes into elementary
wing stroke deformations.
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Table 1. Summary of terms and quantities used in the computational analysis.

Term Definition

Least-dependent component analysis  Linear transformation of a set of signals into another set of signals

(LCA) that have minimum mutual dependence.

Stroke trajectory Time course of stroke positions of left and right wing, as recorded
with our apparatus.

Wingbeat cycle (WBC) Wing motion during the time interval between two consecutive
dorsal reversals of the left wing.

Input signal Stroke position at a specific phase of the wingbeat cycle, over

2500 cycles (see Fig. 2A). 16 such signals (8 from each wing)
constitute the full set of input signals to LCA.

Least-dependent component (LDC) A specific linear combination of the input signals, obtained from

or component LCA analysis. It defines the time course of activation of a particular
“stroke deformation mode”.

Baseline wing stroke Set of 16 stroke positions obtained by averaging each of the 16
input signals over the 2500 wingbeat cycles in a given flight
segment.

Stroke deformation mode Specific form of deviation of the wing stroke from the baseline wing
stroke. Defined by the separating vector of a specific LDC.

Reconstructed wing stroke Array of phase points computed by back-transforming a subset of

least-dependent components. Used for visualization of “stroke
deformation modes”.

Least-dependent kinematic pattern or  Stroke deformation mode and its time course of activation. (Refers

kinematic pattern jointly to a specific LDC and its separating vector)

Elementary kinematic pattern Least-dependent kinematic pattern that is claimed to be controlled
independently.

Wiener entropy (WE) A measure of spectral flatness, defined as the ratio of the

geometric mean to the arithmetic mean of the power spectrum of a
time series. It ranges from 0 for a sinusoidal wave to 1 for white
noise.

doi:10.1371/journal.pone.0116813.t001

Our results indicate that changes in yaw torque, pitch torque and total flight force can be
controlled mutually independently.The computational method described here provides a novel
way to analyze extensive flight recordings, taking advantage of the information inherent in
spontaneous (unstimulated) variations of the wing stroke kinematics. Our method of analysis
may be productively applied also to other movements with quasiperiodic character, such as an-
imal and human gait.

Experimental Methods
Flies

The flies used in the experiments were 5 to 10 days old female fruit flies (D. melanogaster Mei-
gen), obtained from our laboratory stock descending from 200 wild-caught mated flies. The
flies were reared following standard breeding procedures (25 females and 10 males, standard
nutritive medium, 12:12 hours’ dark/light cycle). Experiments were performed in the first 6
hours of a subjective day.

Digital wingbeat analyzer

To measure the wing kinematics of tethered flying flies, we used a computer vision system with
real-time analysis functionality (digital wingbeat analyzer—DWBA, SciTracks, Switzerland).
The system is based on a high-speed camera (Photonfocus, Switzerland) connected to a frame
grabber card in a personal computer. The wings are tracked using dynamic regions of interest
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Fig 1. Wing tracking and data post-processing. A) Visualization of digital wingbeat analyzer (DWBA)
functionality. Two consecutive frames of the dynamically updated region of interest (ROI, left and right wing),
are shown overlaid on the mean image of the fly body and the tether. The DWBA detects and records [25] the
leading (green squares) and trailing (blue dots) wing edge positions on a predefined tracking path (red
circular lines). B) Data pre-processing. Recorded positions of the leading and trailing wing edge (green/blue
dots) of a single wing are interpolated using B-splines (green/blue trace). The wing chord position (black
trace) is obtained as the low-pass filtered mean of the interpolated positions of the two edges. For details see
main text.

doi:10.1371/journal.pone.0116813.9001

(ROI) for increased temporal resolution from localized sampling. An extended Kalman filter
fits an a priori kinematic model to past wing position measurements, predicting the position of
the next ROL Instead of storing the individual images, the system records the detected posi-
tions of the leading and trailing wing edges (Fig. 1A). This procedure greatly reduces the
amount of data that is generated and hence allows long recordings of more than 12 000 wing-
beats, as required for the statistical analysis.

The angular positions of the leading and trailing wing edges were used to obtain a robust es-
timate of the wing stroke position (i.e. stroke angle)—see Data preprocessing. Using the
DWBA, we achieve a sampling frequency of 3125 Hz for each wing, which at a wingbeat fre-
quency of around 200 Hz corresponds to about 15 stroke position data points per wing stroke
(spatial resolution 1°). To avoid tracking a leg instead of a wing edge, the system demands a
minimal distance between leading and tailing wing edge of 3 pixels (the width of the legs was
usually about 1-2 pixels). For offline verification purposes, the system also saves the last 200
analyzed images. For details on the DWBA functionality see [25].

Experimental procedure

In each experiment, we cold-anaesthetized a single fly and fixated it by the dorsal part of its
thorax to the tip of a steel tether (200 um diameter, 1 cm length), using UV-hardening glue.
The fly was then positioned in the DWBA such that the wing stroke plane agreed with the cam-
era plane as best as possible while avoiding occlusions from the tether (Fig. 1A). Before starting
the measurements, the flies were allowed to rest on a piece of wet tissue for at least 30 minutes.
We then initiated flight by applying a puff of air on the fly. For each fly, we performed several
measurements of 1 minute length, alternating with pauses of 1 minute. The number of record-
ings per fly varied from 3 to 5, depending on its willingness to fly.

Data preprocessing

Using a suitable smoothing B-spline interpolation algorithm [26] (Matlab mex implementation
by W. Dickson, parameter noise variance set to 3), we up-sampled the leading and trailing
wing edge data to a new sampling frequency of 50 000 Hz. We then calculated the center wing
position as the low-passed mean of leading and trailing wing edge positions (Matlab zero-
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Stroke angle (deg)
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phase digital filtering, 3" order Butterworth filter with cut off frequency 1500 Hz). For an ex-
ample, refer to Fig. 1B.

When comparing the control images with the wing position data, we found that when both
wings came close together during the dorsal reversal, the DWBA occasionally lost track of one
of the wings and was tracking an edge of the other wing instead. This type of artifact leads to
typical deformations of the normally roughly sinusoidal wing trajectory, comprising a second
local maximum close to the dorsal reversal. To exclude intervals that were potentially contami-
nated by these types of mistrackings, we applied a custom-built Matlab algorithm that auto-
matically discarded wingbeat cycles in which two dorsal maxima occurred within 3 ms. We
also discarded the corresponding wingbeat cycles of the other wing and the nearest
neighboring cycles.

Computational Methods
Signal extraction

After the preprocessing of experimental data we are left with two time series—the left and right
wing stroke trajectories (Fig. 1B). To identify statistically independent wing stroke variations,
we first extract a new set of signals, each corresponding to a specific phase of the wingbeat
cycle. We define a stroke cycle as the time interval between two consecutive dorsal reversals of
the stroke angle of the left wing. From the wing stroke trajectory in each cycle, we extract 8
stroke position values, sampled at 8 temporally equidistant phases of the stroke cycle. An ex-
ample for one wing stroke is shown in Fig. 2A. Each of the 16 phase points (1 to 8 from the left
and 9 to 16 from the right wing) then defines a separate time series, with successive samples of
the series corresponding to successive wing strokes. An example of the 16 time series for a flight
segment of 2500 cycles (approximately 12-13 seconds) is shown in Fig. 2B. Note that in dis-
tinction to the original recorded data (the wing stroke trajectory sampled at 3125 Hz), the 16
time series based on the phase points are not periodic. (A related procedure was used to define
the input signals for principal component analysis in recent investigations of human move-
ments [27,28].)

B g g Aok A 1 W»M'g
W Attt I fee i, 2 . Aasasrasbrritness mertiynsmve, 10
T e e e
WA i gy Wwwnwwmw”
MW«WW e»wmwwwww
w WA WMMM 6 " 'Wm#‘%wﬁ i W 14

500 1000 1500 2000 2500 500 1000 1500 2000 2500
Number of wingbeat cycles Number of wingbeat cycles

Fig 2. Definition of phase points and an example of their time course. A) One cycle of the stroke trajectory of left wing (blue) and right wing (red). The
cycle is divided into 8 phase points sampled at equal time intervals; the angular positions of the two wings at these 8 phase points define the 16 signals X;. B)
Time course of the 16 signals X; during a flight segment of 2500 wing stroke cycles. See Fig. 3 for the least dependent components of the signals shown here.

doi:10.1371/journal.pone.0116813.g002
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In this manner we obtain a multivariate signal X = [X;... X 16)T that can be used as the
input for least dependent component analysis (see next subsection). We consider only 8 phase
points per wing as further increasing this number (within the limit of experimental sampling
rate of ~15 per cycle) did not yield new features but considerably increased the computation
time. The effect of increasing or decreasing the number of analyzed phase points will be de-
scribed in the Discussion using a specific example. The choice of the dorsal stroke reversal
point as the beginning of wing stroke is arbitrary; we were lead to it by the knowledge that the
ventral reversal and mid-stroke phases of the wingbeat are considered as more important for
flight control than the dorsal reversal phase [29]. Putting the cycle boundary at the dorsal re-
versal point results in the inability to construct the wing velocity just before the dorsal reversal,
as this would require a linear combination of point 1 from a given cycle with point 8 from the
previous cycle, while in our analysis, only linear combinations of phase points from the same
cycle are included (see next subsection). At the ventral reversal and mid-stroke phases, no such
restriction arises.

It is important to note that the procedure for constructing the 16 signals X; results in the
loss of information about the duration of each cycle. The signals X; therefore reflect only varia-
tions in the waveform (shape) of the wing stroke, but not changes in the stroke duration / wing-
beat frequency. In our analysis, we assess separately if the obtained least-dependent
components of the stroke waveform are correlated (or uncorrelated) with the stroke period.

For the purpose of LCA analysis, all flight recordings were divided into segments of a fixed
length, and the least-dependent components were computed separately for each segment.
When choosing the segment length, the following two aspects were considered. Long-duration
segments are more likely to contain multiple occurrences of distinct kinematic changes, which
is a requirement for successful statistical analysis. On the other hand, for long segments the sig-
nal X may violate conditions of wide-sense stationarity, a pre-requisite of LCA analysis [22].
Considering this tradeoff, we found the duration of 2500 wingbeat cycles to be approximately
optimal. We use this segment length throughout our analysis.

To recapitulate, each sample of the multivariate signal X defines the waveform of one stroke
cycle, for both the left and right wing. Our analysis exploits the variability of this signal over
2500 successive samples.

Algorithm for finding least-dependent components of the wing trajectory

To extract the least-dependent component variations of wing trajectory we used the computa-
tional tool least-dependent component analysis (LCA). The algorithm searches for the linear
transformation of the input signals X; such that the transformed signals are mutually statistical-
ly independent to the largest possible degree. While it is always possible to find a linear trans-
formation resulting in uncorrelated transformed signals (e.g., the Karhunen-Loeve transform
in principal component analysis), the LCA algorithm goes further and attempts to achieve full
statistical independence. The coefficients of the optimal linear transformation define the sepa-
rating matrix W. The transformed signals Z;, given by

Z,=wy X, +wp X, + ...+ wy Xy le. Z = WX, (1)

are the least-dependent components. For each component Z;, the coefficients [w;;. . ., wi;¢] de-
fine the corresponding separating vector. LCA is a variant of the well-known independent
component analysis (ICA) [22]. In the special case when the input signals are a linear combina-
tion of fully statistically independent sources, LCA and ICA give identical results, i.e., the least
dependent components are then equivalent to independent components.
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In LCA analysis a reliable estimator of mutual dependence of variables is crucial, because it
is needed as a cost function for optimization. The algorithm we use quantifies dependence by
estimating mutual information. Mutual information between two random variables is defined
as the reduction in the uncertainty of one due to the knowledge of the other. It is a more com-
plete measure of independence than the well-known Pearson correlation coefficient because it
quantifies the entire dependence structure, both its linear and non-linear parts. Two random
variables are fully statistically independent if and only if their mutual information is zero. The
mutual information of two random variables Q and R can be calculated as

I(Q R) = H(Q) + H(R) — H(Q,R), (2)

where H(Q) and H(R) are the marginal entropies and H(Q,R) is the joint entropy. (The (differ-
ential) entropy of a variable Q with probability density p(Q) is defined as
H(Q) = — [ p(Q)logp(Q)dQ. To define the joint entropy H(Q,R) of two variables, the joint
probability density p(Q,R) is used.)

For a multivariate signal like Z in our case, the definition in Eq. 2 can be extended to define
the joint mutual information of Z as:

WZ,,....2,) = iH(Zi) —H(Z,,...,Z,). (3)

Reliable estimation of entropy from a finite number of samples of the random variables is a
non-trivial task [30]. When calculating combinations of entropies (such as in Egs.2, 3) that can
have a total value close to zero, it is particularly important to eliminate any biases in entropy es-
timation. Kraskov et al. developed a reliable mutual information estimator [31] based on a pre-
viously known binless strategy for entropy estimation. This estimator is the basis for the
MILCA algorithm (mutual information based least dependent component analysis [21]) which
we use in this study. In searching for the least dependent components, the MILCA algorithm it-
eratively remixes the input signals, converging to linear combinations with minimal joint mu-
tual information (Eq. 3). A brief description of this algorithm is provided in the S1 Text; for
further details refer to the original article [21]. We used the Matlab implementation of MILCA
downloaded from www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/MILCA.
Parameters were set as follows: distance to the 12 neighbor and rectangular 2D neighborhood
for entropy estimation; first two Fourier components in the fitting of mutual information vs.
rotation angle curve.

Fig. 3A shows the least-dependent components (set of 16 time series Z;) obtained from LCA
analysis of the wing stroke signals (set of 16 time series X;) shown in Fig. 2B. These components
will be discussed in detail in Results.

Least-dependent kinematic pattern

Each least-dependent component Z; is a series of 2500 sample points, with one sample per
stroke cycle. The value of Z; in a given cycle gives the weight of a particular stroke deformation
mode in the overall wing stroke trajectory. This stroke deformation mode is defined by the co-
efficients of the corresponding separating vector (i.e. i row of the separating matrix W). For
some components that we obtain, direct examination of the separating vector is sufficient to
understand the corresponding stroke deformation mode. For example, components of type IV
(see Results) are obtained as the difference of the wing position signals X; and Xo; the corre-
sponding stroke deformation mode therefore consists of an antisymmetric change of the wing
position at dorsal stroke reversal for the two wings. In general, however, it is more convenient
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Fig 3. Least-dependent components and their temporal features. A) Least-dependent components estimated from the 16 signals in Fig. 2B.
Components with noise-like flat power spectra (Wiener entropy > 0.9) are plotted in gray. B) Welch power spectra and the Wiener entropy (WE) values of

selected components shown in A.

doi:10.1371/journal.pone.0116813.g003

to construct a graphical representation of the stroke deformation mode defined by the separat-
ing vector of a given component.
To do so, consider the inverse of Eq. 1,

X =W'Z. (4)

The mixing matrix W' defines the transformation from least-dependent components to
original signals. When the full set of components Z=[Z;, ..., Z 16) T is used in Eq. 4, the 16 sig-
nals X are faithfully reconstructed. Equation 4 can be expanded as

X =WNZ)+ W (Z - (Z)) = (X)+W'Z, (5)

Where (.) denotes the average over all wing strokes. The vector Z = Z — (Z) contains the de-
viations of the weights from their respective mean values. The wing stroke is thus represented
as the sum of the baseline wing stroke (X) (i.e., the mean stroke, averaged over the entire flight

segment) and the wing stroke deformation W~'Z. To construct the stroke deformation mode
corresponding purely to the i-th component, we suppress the stroke deformations due to other
components—i.e., in the second term of Eq. 5, we replace all coefficients in W™, except in its i
column, by zeros. From such partial reconstruction we obtain an array of phase points called
the reconstructed stroke cycle, which when plotted together with the baseline wing stroke gives
a visualization of the stroke deformation. In Fig. 4, we show an example of three reconstructed
stroke cycles, with only one stroke deformation mode included. Comparing this to the baseline
wing stroke shown in gray, it is seen that in this example, the stroke deformation mode is main-
ly an anti-symmetric change in ventral amplitudes (i.e., wing positions at ventral stroke
reversal).

Each stroke deformation mode is thus a specific form of deviation from the baseline wing

stroke. Deviation of any element of Z ; from zero implies that the stroke deformation mode rep-
resented by the i™ LDC is active at that stroke cycle. Thus each LDC specifies the time course
of activation of the stroke deformation mode it encodes. Together, the activation time course
and the stroke deformation mode constitute a least-dependent kinematic pattern.
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Fig 4. Reconstructed wing stroke, with deviation from baseline stroke due to a selected kinematic
pattern. (Upper panel: left wing, lower panel: right wing). The green dots and the interpolated gray lines show
the baseline stroke trajectory. The black dots (interpolated with blue and red line) are phase points
reconstructed from only one selected component (see main text). The 8 reconstructed phase points for each
wing are converted to time points, based on the recorded wing stroke duration. This stroke deformation mode
is seen to consist of an increase in left ventral amplitude with simultaneous decrease in right

ventral amplitude.

doi:10.1371/journal.pone.0116813.9004

Selective removal of measurement errors by LCA-based reconstruction

Reconstruction of the stroke cycle from least-dependent components (Eq. 5) can be used as a
systematic method for removing experimental artifacts from the recorded data. In the record-
ings from our digital wingbeat analyzer, an occasional source of measurement error is the mis-
tracking of the wing edges; wing strokes with mistrackings near the dorsal reversal were
removed in the data preprocessing step (see Methods). Mistrackings during other parts of the
wing stroke, however, may persist and appear as isolated single-cycle jumps in one or more of
the 16 signals.

While it would be possible to use a frequency-domain filter to remove these mistrackings,
this would result in removal of all variations with a single-cycle time scale, including true wing
motion patterns (type VI kinematic patterns, Sec. Results). In order to selectively remove mis-
trackings one can exploit the fact that in general, their occurrence is statistically independent
from actively controlled wing stroke deformations. Most of the cases of mistrackings therefore
appear in a separate LDC. To remove these mistrackings one needs to reconstruct the phase
points from the full set of LDCs while suppressing the component(s) encoding mistrackings.
Fig. 5 shows an example where a case of mistracking during downstroke (marked by arrow)
has been selectively removed in this manner (component 12 encoding this mistracking is
shown in Fig. 6B; the cycle with mistracking is marked by a red dot). In this rare case, a moving
leg (whose width transiently exceeded 3 pixels) was tracked instead of a wing edge.

The MATLAB code for the computational analysis, as well as the input kinematic data and
the obtained least-dependent components, are available through figshare at http://dx.doi.org/
10.6084/m9.figshare.1244993.

Results

We present the results in four subsections. In the first three subsections, we present important
general features of the wing motion decomposition into least-dependent kinematic patterns, il-
lustrated with specific examples. The fourth subsection provides a classification of the kinemat-
ic patterns obtained frequently across 100 test flights from 10 flies, and discusses the
correspondence of some of these patterns to known flight maneuvers.
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Fig 5. LCA-based denoising of the wing trajectory. Blue: interpolated trajectory of the wing center position
as obtained from the wingbeat analyzer. Red circles: phase points obtained by inverse-transforming the set of
least-dependent components while omitting a particular noise-like kinematic pattern (component 12 in

Fig. 6B). Black dashed line: interpolated denoised stroke trajectory. Black arrow points to the mistracking
which has been selectively removed. The 8 reconstructed phase points are converted to time points, based
on the recorded wing stroke duration.

doi:10.1371/journal.pone.0116813.9005

Events with distinct time courses are separated into distinct least-
dependent components

The time course of each of the 16 input signals X; contains events with a variety of durations
and forms. As an example, Fig. 6A shows the 16 signals over 1500 wingbeat cycles from a typi-
cal recording (recall that each signal X; is the sequence of stroke angles at a fixed phase of the
wingbeat cycles—see Table 1). Each event typically appears in multiple input signals. For ex-
ample, events occurring symmetrically in left and right wings dominate signals 1, 9, 2, 10, 5, 13,
6 and 14. In addition to these events, sharply peaked events anti-symmetric in the two wings

: J \
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
Wingbeat cycle Wingbeat cycle Wingbeat cycle

Fig 6. Least-dependent components separate distinct temporal features. A) 16 signals extracted from a flight segment of 2500 wingbeat cycles (the
signals are numbered according to Fig. 2A). Red: signals from left wing; Blue: signals from right wing. Yellow and green highlighted regions mark two events
with pronounced variations asymmetric in the two wings. B) Least-dependent components of signals shown in A. Component 12 encodes the kind of
mistracking shown in Fig. 5 and the red dot marks the stroke cycle corrected in Fig. 5. Note: the examples in Fig. 6 and in Figs. 2 and 3 are from two
different flies.

doi:10.1371/journal.pone.0116813.g006
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are present in signals 5, 13, 6 and 14 (see highlighted regions in Fig. 6A). In signal 4 the latter
are the dominant feature.

The least-dependent component analysis separates events of distinct types into distinct
components. Fig. 6B shows the LDCs of the signals from Fig. 6A. In this example, the separa-
tion of activation events is as follows:

i. Events symmetric in the two wings are separated in component 13.

ii. Events anti-symmetric in left and right wing (the two sharply peaked events highlighted in
Fig. 6A) are isolated in component 1.

ili. Gradual drifts occurring at a timescale of many hundreds of wingbeat cycles are separated
in 3™ and 14" components.

iv. Several components (8, 12, 15, 16) consist of isolated short pulses with a duration 1-2 cy-
cles. Such pulses arise mainly in the input signals X3, X, and X;;, X;, (phases corresponding
to mid-stroke) and are due predominantly to mistracking of the wing (tracking the wing
vein or leg instead of wing edges—see arrow mark in Fig. 5).

Another example is seen in Fig. 3A. The triangular-shaped event seen early in component 9
is apparent in most of the 16 input signals (Fig. 2B), but is isolated in only one component
(Fig. 3A). The two brief events in component 11 do not stand out in the input signals; least-de-
pendent analysis, however, isolates these as events of a particular type. Notice that these two
events are similar in time course to the events in component 1 of Fig. 6B (obtained from a flight
recording of a different fly). This is an example of repeated occurrence of components; such
components will be analyzed in detail in the last subsection.

The separation of temporal features into distinct components, illustrated in the examples
given above, is a typical outcome of the LCA analysis. In rare cases, the separation fails, and
several components will contain the same event. In general, however, LCA provides a powerful
tool for extracting and sorting the various temporal features of the input signals, as well as for
isolating experimental artifacts (see Computational Methods).

The least-dependent components are statistically nearly independent

The main goal of our study was to identify kinematic patterns that are controlled independent-
ly of each other (for example, through parallel neural pathways that activate different steering
muscles). If two types of kinematic patterns cannot be controlled independently, then the time
courses of their activation will necessarily have some degree of statistical dependence—even
during spontaneous, unstimulated flight behavior. Consequently, if the components obtained
from LCA are fully statistically independent, they define candidates for elementary

kinematic patterns.

The least-dependent component analysis produces the most independent linear combina-
tions of the input signals. To evaluate if the resulting LDCs are fully statistically independent or
not, it is necessary to examine their mutual information. Fig. 7A shows the matrix of estimated
pairwise mutual information for the least-dependent components in Fig. 6B. Mutual informa-
tion was calculated using Eq. 3 and the entropies using the algorithm presented in [31]. (De-
pending on the base of the logarithm in the definition of entropy, mutual information is
expressed either in bits (base 2) or nats (base e). The conversion factor is: 1 nat = (1 / In 2) bits
= 1.44 bits.) To determine the significance of mutual information values obtained from the esti-
mator, the statistics of null estimates of mutual information was obtained. To do so, the time
series of each of the 16 LDCs from a given flight segment was randomly reshuffled to destroy
any residual dependence with other components and then the pairwise mutual information
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Fig 7. Mutual information of least-dependent components. A) Dependency matrix of the components shown in Fig. 6. The color scale indicates the value
of mutual information in nats. Values below 0.026 nats imply statistical independence. B) Solid black curve shows the distribution of pairwise mutual
information, for pairs of components in a flight segment, over a total of 100 flight segments. Dashed red curve gives the null estimate of this distribution,
obtained after randomly reshuffling the activation time course of each component. Dashed black line marks the a = 0.01 confidence limit for rejecting the null
hypothesis of zero mutual information.

doi:10.1371/journal.pone.0116813.g007

was estimated. The distribution of this null estimate calculated from 100 flight segments
(12000 pairs of LDCs) is shown in Fig. 6B (red dashed line). Based on this distribution (fitted
to a Gaussian distribution with zero mean), only values above 0.026 nats were considered as
significant (o value of 0.01).
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Fig 8. Complex changes in stroke trajectory resolved into elementary kinematic patterns. A) Activation time course of two kinematic patterns
(components 1 and 13 from Fig. 6B). B) Left panel: 10 consecutive cycles (marked with brackets and asterisk symbol in A) of wing stroke deformation
reconstructed from only component 1. The reconstructed phase points (not shown for clarity) were interpolated with cubic splines. Blue: left wing, red: right
wing. The black line shows the baseline wing stroke. Middle panel: 10 consecutive cycles (marked with brackets and asterisk symbol in A) of wing stroke
deformation reconstructed from only component 13. Right panel: Wing stroke trajectories during these 10 cycles. The trajectory deformation in the right panel
is resolved into a linear combination of laterally symmetric and anti-symmetric deformations.

doi:10.1371/journal.pone.0116813.9008
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In the example in Fig. 7A, all but 10 of the 120 pairs of components have mutual informa-
tion less than 0.026 nats and hence are pairwise statistically independent. 9 out of the remain-
ing 10 pairs (1-3, 1-13, 5-16, 7-11, 8-9, 8-12,9-12, 11-13 and 13-14) have mutual
information less than 0.04 nats, which is only nominal statistical dependence. Only one pair
(i.e. 1-12) has a significant mutual information of 0.06 nats. To obtain a similar statistics for
the entire set of 100 flight segments, pairwise mutual information of LDCs from individual seg-
ments were estimated (12000 pairs of LDCs). The solid black line in Fig. 7B shows their distri-
bution. 95.5% of pairs were statistically independent and only 0.5% shared mutual information
greater than 0.1 nats, testifying that components with large statistical dependence are rare.

Statistical analysis allows to decompose complex stroke trajectories into
elementary kinematic patterns

As discussed above, events with distinct time courses are typically separated into distinct com-
ponents. These distinct types of events occasionally overlap in time. An example in seen in
components 1 and 13 from Fig. 6B, shown again in Fig. 8A for clarity. Events in these two com-
ponents have distinct time scales; moreover, events in component 1 are accompanied by corre-
lated changes in wingbeat period, whereas those in component 13 are not (correlation
coefficients 0.68 and 0.08, respectively). The time courses of these two components are statisti-
cally nearly independent (the mutual information evaluated over the whole flight segment of
2500 wingbeat cycles is 0.04 nats). Some activation events, however, occur simultaneously: the
first major event in component 1 overlaps in time with a major event in component 13. The
stroke deformation modes encoded by components 1 and 13 are shown in the left and middle
panels of Fig. 8B. Component 1 encodes for a change in ventral amplitude that occurs antisym-
metrically in the left and right wing, while component 13 encodes a decrease in stroke ampli-
tude occurring symmetrically in both wings.

The right panel of Fig. 8B shows the recorded wing stroke trajectories of 10 wingbeat cycles
(marked with blue bracket and asterisk in Fig. 8A), compared to the baseline trajectory (black).
The recorded strokes deviate from the baseline stroke by asymmetric changes in ventral and
dorsal amplitudes combined with an increase in stroke duration. Based only on this informa-
tion, it would not be possible to deduce that such a complex deviation is generated by a specific
linear combination of more fundamental, independently controlled stroke deformation modes.
Based on our statistical analysis, however, we can conclude that the deformation of the stroke
trajectory shown in the right panel of Fig. 8B is a composite of the elementary stroke deforma-
tion modes shown in the left and middle panels of Fig. 8B. This conclusion is possible only
after examining (using LCA) the entire segment of 2500 cycles, in which the elementary stroke
deformations are seen to occur independently of each other.

Similar cases of composite kinematic changes that arise as a superposition of several ele-
mentary kinematic patterns are encountered also in other examined flight segments. A second
example is shown in S1 Fig.

Classification of frequently obtained least-dependent kinematic patterns

In total, 100 flight segments from 10 flies were analyzed. LCA was carried out in each of these
segments, generating a set of 100 x 16 = 1600 least-dependent components, each corresponding
to a separating vector. Kinematic patterns with certain features were found repeatedly within
this set. These kinematic patterns represent stroke deformation modes exercised frequently by
different flies, and can thus be presumed to be important for flight control. To characterize
such kinematic patterns we classified them into well-defined types.
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We first divided the kinematic patterns into those showing distinct temporal features and
those resembling broad-band noise. As an example, consider the set of components shown in
Fig. 3A. The activation time course of component 14 appears featureless, while for component
15 it is dominated by randomly occurring single cycle jumps. As seen in Fig. 3B, the Welch
power spectra for both these components are flat. We view such components as not relevant
for flight control, and drop them from further analysis. To quantify the spectral flatness, we es-
timated the Wiener entropy (WE), defined as the ratio of the geometric mean to the arithmetic
mean of the spectral density. WE ranges from 0 for sinusoidal waveforms to 1 for white noise.
For the components shown in Fig. 3A, WE varies between 0.19 and 0.93 (see values given in
Fig. 3B). For WE higher than 0.9, the spectrum is visually indistinguishable from a flat one.

We chose 0.9 as the threshold value to declare a component to be broadband noise. On aver-
age only 12 components per segment were found to have temporal structure, while the remain-
ing 4 had WE greater than 0.9 (the full distribution of WE is shown in S3 Fig.).

Among the kinematic patterns with temporal structure, we classified the ones occurring re-
peatedly in distinct flight tests of the same fly, and in different flies. A kinematic pattern was
classified as frequently occurring if it was observed in at least 3 out of the 10 analyzed flies.
Three supersets of these components can be defined based on the type of their characteristic
features:

A. Kinematic patterns characterized by prominent activation events in their time course.

B. Kinematic patterns characterized by dominance of specific signals in their
separating vector.

C. Kinematic patterns characterized by spectral density peaks at particular frequencies.

These supersets are not mutually exclusive—a minority of the kinematic patterns belongs to
more than one category. The kinematic patterns in each of these supersets can be further divid-
ed into several classes. Below we first state (for each type of kinematic pattern) its defining fea-
ture. Following this, we discuss additional properties of these kinematic patterns, and list
functional interpretations of the stroke deformation modes that they encode. The precise algo-
rithmic criteria for assigning a given component to one of the 7 types are given in S2 Text. The
corresponding MATLAB code is available through figshare at http://dx.doi.org/10.6084/m9.
tigshare.1244993.

A. Kinematic patterns characterized by typical events in the activation time course

Type I: For these kinematic patterns, the time course is dominated by characteristic events
of activation with a time scale of 40 to 100 wingbeat cycles. A typical example is shown in
Fig. 9A. Component 1 in Fig. 6 and component 11 in Fig. 3 also belong to this type (the 3 ex-
amples were obtained from 3 individual flies). This type of component has a very low corre-
lation with the wingbeat period (Pearson coeff. <0.2).

The corresponding stroke deformation modes consist of an increase in ventral amplitude
for one wing and a simultaneous decrease for the other wing. 10 successive reconstructed
stroke cycles during a typical activation event are shown in Fig. 9B. Such a stroke deforma-
tion mode is expected to generate yaw torque (see Discussion). The duration (300-500ms)
and the form of these events (Fig. 9A) match the time course of yaw torque measured for
spontaneous saccades during tethered flight [32,33].

Type II: The time course in this type of kinematic patterns is correlated (Pearson coeff. >
0.45) with changes in wingbeat period. Fig. 9C shows such a component, with three sharply
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Fig 9. Least-dependent kinematic patterns of types |, Il and lll. A) Activation time course of a type | kinematic pattern (black trace). A typical activation
eventis marked as Event 1. The lower subpanel shows the wingbeat period (gray trace) during this flight segment. B) 10 superposed cycles of wing stroke
deformation reconstructed from only the kinematic pattern shown in A (blue: left wing; red: right wing; time window marked with blue bracket and asterisk
sign). Black lines show the baseline wing stroke. C) Activation time course of a type Il kinematic pattern (black trace). A typical activation event is marked as
Event 2. The lower subpanel shows the wingbeat period during this flight segment (gray trace). D) 20 superposed cycles of wing stroke deformation
reconstructed from only the kinematic pattern shown in C (markers as in B). E) Activation time course of a type Il kinematic pattern (black trace). A typical
event is marked as Event 3. The lower subpanel shows the wingbeat period during this flight segment (gray trace). F) 10 superposed cycles of wing stroke
deformation reconstructed from only the kinematic pattern shown in E (markers as in B).

doi:10.1371/journal.pone.0116813.g009

defined activation events. During these events only the overall stroke duration changes,
while the ratio of downstroke to upstroke duration remains unaltered.

The corresponding stroke deformation modes involve a symmetric change in stroke ampli-
tude of both wings. 20 successive reconstructed stroke cycles during one activation event are
shown in Fig. 9D. Such a stroke deformation is expected to alter the total flight force (lift
and/or thrust)—see Discussion.

Type III: These kinematic patterns are dominated by activation events with a time scale of
40 to a few hundred wingbeat cycles, during which the ratio of downstroke to upstroke du-
ration is significantly altered. A typical activation time course is shown in Fig. 9E.

In these kinematic patterns, the stroke deformation may also involve a change in stroke am-
plitudes. The change in downstroke-to-upstroke ratio and in the amplitude can be bilateral-
ly symmetric or asymmetric. In some cases, this stroke deformation is coupled with a
change in wingbeat frequency (S2 Fig.). 10 successive reconstructed stroke cycles during an
activation event are shown in Fig. 9F. Such a stroke deformation, if symmetric in both
wings, is expected to result in altered pitch torque (see Discussion).

B. Kinematic patterns characterized by the dominance of specific contributing signals

Most of the recurring components are linear combinations that include the majority of the
16 phase points. However, two unusually simple linear combinations were seen to occur
repeatedly:
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printed in two rows for ease of visualization. The vectors are scaled to operate on signals with unit variance (see the main text).

doi:10.1371/journal.pone.0116813.9010

Type IV: These LDCs are dominated by the difference of wing stroke positions at dorsal
stroke reversal. Time courses of type IV kinematic patterns from 3 flies are shown in
Fig. 10A, B and C together with their separating vectors (coefficients of the linear
combination).

Type V: These LDCs are dominated by the difference of wing stroke positions at mid-up-
stroke. See Fig. 10D, E, F for examples.

The separating vectors shown in Fig. 10 are scaled to operate on signals of unit variance so
that they directly show the relative contribution of the variability of each phase point in con-
structing the given LDC. The temporal features appearing in components of type IV and V
do not have a consistent pattern. The activation time courses in some of these kinematic
patterns are nearly spectrally flat (WE > 0.7). These properties suggest that the kinematic
patterns corresponding to these two components might not be involved in flight control
(see also Discussion).

C. Kinematic patterns characterized by spectral density peaks at particular frequencies
To characterize the time scales that dominate the activation time course of a given kinematic

pattern, it is useful to examine its power spectrum. For most of the frequently recurring kine-
matic patterns, the Welch spectral density of the time course has high power at low frequencies
(<0.05/cycle) and is relatively flat at high frequencies (>0.1/cycle), as in the top three panels in
Fig. 3B. Two specific types of deviations from this usual pattern were seen to occur repeatedly
and the corresponding kinematic patterns are classified as type VI and VII.

Type VI: For these kinematic patterns, the power spectrum of the activation time course is
dominated by the highest frequencies. The power density increases by about an order of
magnitude between frequency 0.35/cycle and 0.5/cycle (the Nyquist frequency). The activa-
tion time course contains intermittent intervals during which a period-2 pattern develops:
the magnitude increases and decreases in successive cycles. In contrast to other types of
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Fig 11. Least-dependent kinematic patterns with 2 cycle periodicity in the activation time course (Type VI). A) Activation time course in 3 kinematic
patterns of type VI (only 200 wingbeat cycles shown for clarity). B) Welch power spectra of the time courses shown in panel A. C) 10 consecutive cycles of
wing stroke deformation reconstructed from each of the 3 kinematic patterns in A, during the left highlighted interval (upper row: left wing; lower row: right
wing). D) 10 consecutive cycles of wing stroke deformation during the right highlighted interval in A. Odd-numbered and even-numbered cycles are plotted in
different colors. The regular alternation of ventral amplitude between higher and lower values in successive cycles is best visible in C, right column and D,

middle column.

doi:10.1371/journal.pone.0116813.g011

kinematic patterns, multiple type VI components frequently co-occurred in a flight seg-
ment. As an example, Fig. 11A shows 3 components obtained from a single flight segment.
The period-2 patterns do not occur in all three components simultaneously. Fig. 11B shows
the power spectra.

The stroke deformation mode of this type encodes significant symmetric changes in ventral
amplitude and varying amounts of changes in the rest of the wing stroke. The exact waveform
of the wing stroke varies between components. The stroke deformation modes corresponding
to the 3 components in Fig. 11A (in the highlighted intervals) are shown in Fig. 11C, D. Their
superposition results in somewhat different wing strokes during the two intervals.

Type VII: For these kinematic patters, the power spectrum of the activation time course has
a dominant peak at the frequency of 0.02/cycle. The time course is periodically modulated,
with a period of 40-50 wingbeat cycles—see Fig. 12A, B. In the flight segments that con-
tained these components, typically only one or at most two type VII components occurred.

For these kinematic patterns, the stroke deformation modes did not show any commonality.
For example, component 4 in Fig. 12A encodes changes in dorsal amplitude whereas compo-
nent 13 encodes changes in ventral amplitude of the opposite wing (Fig. 12C and D, respective-
ly). Note also that the periodic modulations in these two components are not
fully synchronized.

Fig. 13A shows a summary of the classification, and gives the number of flies and flight seg-
ments in which the kinematic patterns of a particular type were found. Kinematic patterns of
types L, Il and V are the most commonly occurring ones. Kinematic patterns of type VI, with
the striking period-2 pattern of activation, were found in 6 of the 10 examined flies. Fig. 13B
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doi:10.1371/journal.pone.0116813.9012

gives the full distribution of occurrences of the classified patterns in the 100 analyzed
flight segments.

To evaluate the sensitivity of our results to the number of flies analyzed, we examined how
many of the patterns in Fig. 13B would be classified as frequently occurring within batches of
fewer flies. We obtained batches of 5, 6, 7, 8, 9 or 10 flies by subsampling from the measured
set of 10 flies (with repetition allowed). A kinematic pattern was declared frequent if it ap-
peared in at least 25% of the flies in a given batch (e.g., in 2 out of 8 flies or in 3 out of 10 flies).
In Fig. 13C, we show the distribution of the number of such frequent patterns in all batches of
a given size. It is seen that even in batches of 7 flies, the most frequently found number of classi-
fied types of patterns is 7 (identical to the number we obtained from the full set of flies). For
batches of 5 flies, however, the most frequently found number of patterns is 6—i.e., had we
worked with only 5 flies, we would have likely missed one of our 7 classified types of patterns.
(For batches of 6 flies, finding 6 patterns or 7 patterns is approximately equally likely). We can-
not exclude that additional types of classified patterns would have been found had we worked
with more than 10 flies.

The repeatability of the classified patterns in recordings from an individual fly can be judged
from Fig. 13B. To summarize this repeatability, we defined a simple measure as follows. For
each pair of flight segments from a given fly, we counted the number of classified types of pat-
terns that occurred in both flight segments. The average of these counts over all pairs of seg-
ments from a given fly gives a number between 0 and 7, with 0 indicating no repeatability and
7 perfect repeatability of the classified patterns. These averages, as well as the minimal and
maximal counts, are shown individually for all 10 flies in Fig. 13D. It is seen that typically, only
1 or 2 classified types of kinematic patterns are shared by a randomly chosen pair of flight seg-
ments. At most 4 types of patterns were found to co-occur in a pair of segments.
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Fig 13. Classification summary and repeatability of kinematic patterns. A) 1600 kinematic patterns from 100 flight segments (measured in 10 flies) were
first divided into kinematic patterns with and without temporal features in the activation time course. Among kinematic patterns with temporal features, the
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of kinematic patterns (filled boxes) among the 100 flight segments. Horizontal lines separate individual flies. C) Given the distribution of kinematic patterns in
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see text.

doi:10.1371/journal.pone.0116813.9013

Discussion

Least-dependent component analysis as a tool for identifying

independently controlled kinematic patterns

The goal of our study was to identify kinematic patterns of the wing motion that are controlled
independently of each other. Physiologically, these independent kinematic patterns can arise,
for instance, from the activity of parallel anatomical pathways. The complete set of such ele-
mentary kinematic patterns can be viewed as a basis from which the fly composes its various
maneuvers. Our method was designed to identify elementary patterns that are repeatedly acti-
vated in the available kinematic dataset, but cannot judge the completeness of the obtained set

of patterns.

Independent control of some aerodynamic and kinematic parameters has already been pro-
posed in previous insect flight studies [29,34,35]; for a review refer to [3]. Typically, the inde-
pendence was assessed by estimating the correlation of these parameters during a flight
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recording. For example, in the study of Balint and Dickinson for blowflies [29], the downstroke
deviation was shown to have no significant correlation with either the dorsal amplitude of the
same wing or the wingbeat period.

Uncorrelatedness is a necessary, but not sufficient condition for statistical independence;
non-linear statistical dependencies can persist even if the correlation coefficient is zero. Exam-
ining a scatter plot of two variables (as in [29]) can help in excluding such non-linear depen-
dencies. For an automatized computational approach, however, a quantitative evaluation is
necessary. In our study, we assessed statistical independence using mutual information. This
measure captures both linear and non-linear statistical dependencies: two variables are statisti-
cally independent if and only if their mutual information is zero.

In contrast to previous studies, we attempted to systematically identify all independently
controlled kinematic patterns that occurred in the measured flies. Rather than examining a
pre-determined set of kinematic features, we started off from the full wing stroke trajectory and
used least-dependent component analysis (LCA) to compute a set of kinematic patterns that
have minimal mutual information. Each kinematic pattern was associated with a specific defor-
mation mode of the wing stroke. While for some patterns this deformation can be expressed in
terms of a single standard kinematic parameter (such as stroke amplitude), for others the stroke
deformation was more complex, involving e.g. example a change in both stroke amplitude and
downstroke-to-upstroke ratio. In blowflies, Balint and Dickinson [29] identified the down-
stroke deviation and the dorsal amplitude as two mutually independently controlled kinematic
features, and pointed out that a change in either of these features was closely coupled with
changes in other aspects of the wing stroke. Our method directly searches for independently ac-
tivated deformations of the entire wing stroke. Another significant difference compared to
Ref. [29] is that our analysis takes into account the motion of both wings, and the degree of bi-
lateral (anti)-symmetry is a defining feature of the kinematic patterns we identify.

Our computational method is based on least-dependent component analysis with explicit
evaluation of mutual information. To successfully apply this advanced statistical tool, a suffi-
ciently large sample size is necessary, typically thousands of wingbeat cycles. Long-duration
flight recording increases the probability of the fly exerting multiple types of kinematic patterns
during the recording, as well as the probability of repeated occurrence of activation events in
each kinematic pattern. The former is crucial for identification of patterns that occur mutually
independently and the latter enhances the reliability of their separation. In Fig. 14, we show the
result of applying LCA to a flight segment of insufficient length (500 cycles). This leads to a
failure in separating some of the kinematic patterns that were successfully separated when the
analysis was applied instead to a 2500 cycle segment. It is likewise important for the analysis to
start from a sufficient number of input signals to LCA. Each signal corresponds to a specific
phase point in the wing stroke cycle; a higher number of phase points capture the stroke defor-
mations more precisely. We used 16 phase points (8 for each wing), as we found that working
with more points did not yield additional deformation modes with structured time course of
activation (but considerably increased the computation time). We illustrate this with an exam-
ple in S4 Fig., in which one flight segment was analyzed starting from 8, 16, or 24 phase points.
Analysis based on a higher number of phase points preserved the classified kinematic patterns
obtained with a lower number of points (S4A, C Fig.). The new components obtained from a
higher number of phase points do not have well-delineated activation events (in comparison to
the classified kinematic patterns), and have a relatively flat power spectrum (Wiener entropy
above 0.8)—see S4B, D Fig. The classified stroke deformation modes involve correlated
changes in multiple phases of the stroke cycle and hence their occurrence can be inferred by
analyzing as few as 4 phase points. Such coherent nature of the wing stroke has been found also
in previous fly studies [29]. When applying our method to other types of kinematic data,
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however, a higher number of sampled phase points may be necessary to uncover the indepen-
dent kinematic patterns.

Our procedure has some commonalities with principal component analysis (PCA). Both in
PCA and LCA, the components are constructed as linear combinations of the input signals.
The principal components are uncorrelated, but not necessarily fully statistically independent.
PCA has often been used for dimensional reduction, for example in the analysis of human
movements (e.g. [27,28]). In animal flight literature, PCA was used to quantify the complexity
of bat wing kinematics in [36]. In our study, we did not restrict ourselves to components carry-
ing the dominant contributions to the signal variance; some of the functionally most important
deformation modes of the wing stroke occur highly intermittently, and the corresponding com-
ponent therefore gives only a small contribution to the total variance. Rather, we aimed to iden-
tify variations that are fully statistically independent from each other. The framework of LCA,
rather than PCA, was therefore appropriate in our case. In S5 Fig., we show an example in
which LCA gives significantly different results from PCA. In this case, bilaterally anti-symmet-
ric stroke deformations isolated in one LCA component are distributed in three PCA compo-
nents, which have high mutual statistical dependence. We systematically compared the mutual
dependence of components obtained from LCA to the mutual dependence of components
from PCA, in each of the 100 recorded flight segments. Many of the principal components
were found to be strongly mutually dependent (S5C Fig.).

Our computational analysis assumed that the elementary kinematic patterns (i.e., the stroke
deformations generated by independent neuromotor controls) superpose linearly. This as-
sumption is expected to be satisfied only approximately. On one hand, as the direct steering
muscles all attach to the wing hinge, a linear summation of their effects on the wing stroke may
be expected. On the other hand, the muscles insert at different sclerites that can to some extent
move with respect to each other; this likely leads to nonlinear summation in blowflies ([20]
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and references therein). A linear superposition of the effects of indirect muscles and direct
steering muscles was inferred for Drosophila in [37]. The elementary kinematic patterns identi-
fied in our analysis adequately represented the wing kinematics both when active one-by-one
and when active simultaneously (Fig. 8 and S2 Fig.). This provides a consistency check for the
assumption of linear superposition (which was used in identifying the elementary kinematic
patterns). A direct test of this assumption would be possible in a stimulated-flight setup, using
stimuli that activate the individual kinematic patterns.

Classification of the least-dependent kinematic patterns and implications
for flight control

In most of the flight segments analyzed, LCA decomposed the wing motion into a set of linear
components with insignificant or only marginally significant mutual dependence. Each such
component is associated with a specific deformation mode of the wing stroke (the terminology
is summarized in Table 1). The deformation mode together with the time course of its activa-
tion specifies a kinematic pattern of the wing motion. The kinematic patterns defined by com-
ponents that are statistically independent could, in principle, result from independent
neuromotor controls.

Alternatively, some of the obtained statistically independent kinematic patterns may reflect
other sources, such as noise in neuromuscular activity, experimental artifacts (e.g., the mis-
tracking in Fig. 5), or variability unrelated to flight control. To narrow down the set of candi-
dates for elementary kinematic patterns (i.e., patterns that are generated by independent
neuromotor flight controls), we restricted further analysis to components that (i) had temporal
structure significantly distinct from white noise, and (ii) occurred repeatedly in multiple flight
segments and in different flies. The first criterion was motivated by our expectation that the ac-
tivation course of the elementary patterns will contain time scales similar to those seen in vari-
ous flight maneuvers (i.e., between several wing stroke cycles and hundreds of cycles).
Components with a flat power spectrum, on the other hand, are more likely to result from
physiological noise or from measurement artifacts. The second criterion required the pattern
coded by the component to occur in at least 3 of the 10 analyzed flies. We cannot exclude that
some of the infrequently obtained independent components do represent elementary patterns.
The rarely obtained components can, however, also arise e.g. from transient nonlinear cou-
plings between elementary patterns, or from statistical limitations (limited duration of the re-
corded flight segment). In our search for the elementary kinematic patterns, we therefore chose
not to classify the rarely occurring components. The described elimination may be viewed as a
dimensional reduction; its goal, however, was to construct a lower-dimensional space that still
contains the frequently activated independent kinematic patterns, rather than best approximat-
ing the time course of the original signal.

The resulting classification of kinematic patterns is summarized in Fig. 13. We identified 7
types of frequently recurring patterns. For five of these types, the kinematic pattern was found
in at least 6 of the 10 examined flies. As our analysis was based on recordings of unstimulated
flight of limited duration, we do not view as surprising that some kinematic patterns were not
observed in all flies. To help in deciding which of the 7 frequently recurring types of patterns
should be viewed as elementary kinematic patterns, we evaluated their possible
functional roles.

To functionally interpret a given kinematic pattern, we first examined the stroke deforma-
tion mode associated with it. Previous studies [8,9,13] used dynamically scaled robotic models
to establish the correspondence between changes in wing stroke kinematics and changes in
aerodynamic forces. The full 3-dimensional kinematics of each wing is specified by the time
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course of three angles: the stroke position, the morphological angle of attack, and the deviation.
In our study, only the stroke position was measured. We therefore could not directly evaluate
the aerodynamic forces and their moments, as was done in [8,29]. However, previous studies
with optically stimulated tethered fruit flies [38] established a linear relation between the differ-
ence of stroke amplitudes in the two wings and the yaw torque generated by the fly; likewise,
the difference of stroke amplitudes is correlated with yaw torque during a free flight saccade
[13]. We therefore concluded that the wing stroke deformation typical for type I kinematic pat-
terns (i.e., a bilaterally antisymmetric change in stroke amplitude and no change in wing peri-
od) is associated primarily with a change in yaw torque. For the type II kinematic patterns, the
stroke deformation mode involves a bilaterally symmetric change in stroke amplitude coupled
with a change in wingbeat period. A similar stroke deformation can be evoked by optical stimu-
lation (vertical movement of the background pattern) and results in a change of total flight
power [12]. For the type III kinematic pattern, the stroke deformation involves a change in the
ratio of downstroke duration to upstroke duration. When symmetric in both wings, this change
in stroke trajectory is expected to alter primarily the pitch torque acting on the body. In

Ref. [9], the aerodynamic output was evaluated for wing strokes recorded in hovering free flight
and in tethered flight; these wing strokes differed primarily by the downstroke-to-upstroke
ratio (1.16 in free flight vs.1.53 in tethered flight). It was shown that in the tethered case, the
wing stroke generates a strong pitch torque (that would cause an untethered fly to pitch nose-
down by 20° after a single stroke cycle) [9]. In our flight tests, the downstroke-to-upstroke ratio
was in the range 1.45-1.55 for the baseline wing stroke, but decreased to values as low as 1.1
when a type III kinematic pattern was activated. We therefore associate the type III kinematic
patterns with a strong change in pitch torque.

The inferences given above were based on the similarity of stroke position trajectory in the
stroke deformations identified by us and in the kinematic changes analyzed in previous litera-
ture. We cannot exclude that there are differences in the morphological angle of attack or in
stroke deviation that would modify the torques or forces acting on the body. In Ref. [29] kine-
matic changes in the three rotational degrees of freedom were found to be mutually strongly
coupled, resulting in concerted modifications of the entire wing stroke. It is, however, possible
that the deformation of the stroke position trajectory (even when sampled at a high rate) is not
fully indicative of the full 3-dimensional wing kinematics.

To further judge the functional relevance of the kinematic pattern of a specific type, we next
compared the typical features in its activation time course to the typical time courses of known
flight maneuvers. For the type I kinematic pattern, the time course of the activation events
matches the time course reported for fictive saccades induced by visual expansion stimulus in
tethered flight [32,33]. The type I kinematic pattern can therefore be identified with activations
of the saccade motor program (see [39] for a discussion of the relation between tethered and
free flight saccades).The activation events for the kinematic patterns of type II and III are typi-
cally of longer duration, consistent with the time scales on which Drosophila is known to con-
trol flight power and pitch.

In type VI kinematic patterns, the ventral amplitude for both wings in turn increases and
decreases in successive wing strokes; such regular switching persists for dozens of cycles. It is
plausible that this kinematic pattern is caused by some steering muscle(s) becoming active in
every other wingbeat cycle. Such a pattern of activity of the b1 steering muscle, lasting for 16
cycles, was recorded in the blowfly by Balint and Dickinson [20] (the first 0.1 sec in their
Fig. 6A), and was correlated with a period-2 pattern in the downstroke deviation (known to be
highly correlated with ventral amplitude). In Drosophila, activation of the M.b2 and M.I1 steer-
ing muscles with average frequency of 2 to 3 wingbeat cycles was recorded in [19] (their
Fig. 6B). As we recorded only wing kinematics and not muscle activity, we cannot identify
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which steering muscle(s) are responsible for the type VI kinematic pattern. It appears unlikely
that this pattern has a direct functional role in flight control, yet the pattern occurred frequent-
ly and was observed in the majority of the examined flies.

Kinematic patterns of types IV and V involve a bilaterally antisymmetric change in the dor-
sal reversal positions (type IV) or in the stroke angles at the mid-upstroke phase of the stroke
cycle (type V). The activation time courses in these kinematic patterns do not have prominent
temporal features, and we have not been able to relate these patterns to any known flight ma-
neuver. It is possible that these two types of kinematic pattern simply reflect particular sources
of noise in neuromuscular activity. In this case, the fly would control the bilaterally symmetric
variations in dorsal amplitudes (which are prominent in type II kinematic patterns), but not
the antisymmetric variations (which are usually of lower magnitude). In blowflies [29], dorsal
amplitude was found to vary independently of downstroke deviation. Because the (3d) kine-
matics of an individual wing was studied in Ref. [29], a direct comparison to our findings on
stroke deformations evaluated jointly for both wings is difficult.

The type VII kinematic pattern, which was obtained as a separate component in 8 flight seg-
ments, is characterized by a slow periodic modulation of the wing stroke (with a period of 40—
50 wingbeat cycles). In other flight segments, however, such periodic modulation was not iso-
lated by LCA into a separate component, but rather remained mixed with other kinematic pat-
terns (predominantly of type I). This indicates that the type VII kinematic pattern may be
nonlinearly coupled with other pattern types. We consequently do not include it among the el-
ementary kinematic patterns that form a linear basis for the construction of the total wing
stroke. The type VII kinematic pattern may be related to the yaw torque fluctuations with simi-
lar periodicity that were reported by Heisenberg and Wolf [40].

Based on the properties described above, we propose that the kinematic patterns of types I,
IT, IIT and VI are elementary kinematic patterns. We view these 4 elementary patterns as part
of the basis, from which the total deviation of the wing kinematics from the baseline stroke is
composed by linear superposition. For each of these 4 kinematic patterns, the corresponding
stroke deformation modes are typically activated intermittently, with well-delineated activation
events separated by intervals of relative inactivity. The activation events of the 4 elementary
patterns occurred both one-at-a-time (demonstrating that the 4 corresponding neuromotor
controls are not coupled by strong mutual excitation) as well as simultaneously (demonstrating
that they are not coupled by strong mutual inhibition).

We cannot exclude that there are additional elementary kinematic patterns, which were not
activated frequently during our measurements, or which are not activated at all during teth-
ered, unstimulated flight. It is also possible that some of the elementary kinematic patterns that
we identified result from the simultaneous activation of several neuromotor controls that may
act mutually independently in other behavioral settings. Our finding of 4 elementary kinematic
patterns therefore gives only a lower bound for the number of independent
neuromotor controls.

Our results have a partial correspondence to the control system implemented in the simula-
tions of Dickson et al. [41]. In their integrative model of Drosophila flight, the navigation
through a virtual environment was achieved by the appropriate activation of four “deformation
modes”: the pitch mode, the yaw mode, the roll mode, and the throttle mode. Each mode con-
sists of a suitable deformation of the wing stroke that achieves the required change in flight tor-
que or force. The activation of each of these modes is achieved by a separate controller. The
yaw mode and the throttle mode defined in Ref. [41] are in direct correspondence to the kine-
matic patterns of type I and II we found in our study. The pitch mode in Ref. [41] is functional-
ly similar to the kinematic pattern of type III, but consists of a different deformation of the
wing stroke. The deformation modes in Ref. [41] were designed a priori, based on previous

PLOS ONE | DOI:10.1371/journal.pone.0116813 February 24, 2015 25/29



@'PLOS ‘ ONE

Independent Wing Stroke Patterns in Drosophila

conceptions of Drosophila flight control. In contrast, in our study we extracted the indepen-
dently controlled deformation modes of type I, IT and III from an automatized computational
analysis of unstimulated flight recordings. Our results thus give support to the control frame-
work of Dickson et al.

Conclusion

In this study, we developed a new method for the analysis of rhythmic movement, and applied
it to high-speed measurements of wing kinematics in tethered flying fruit flies. The method is
designed to identify the elementary kinematic patterns, i.e., independently controlled kinemat-
ic changes that combine to generate the modulations of the wing stroke during flight maneu-
vers. It is based on a systematic search for linear components of the recorded signal that are as
close as possible to mutual statistical independence, as assessed by the mutual

information measure.

The computational method we presented is particularly suited for exploratory data analysis.
It does not depend on any prior knowledge of expected types of kinematic changes, and pro-
ceeds in an unsupervised manner. Given the wide range of wing kinematics patterns in flies, it
can be difficult to identify novel patterns by visual inspection of the recorded data. Our method
isolates such kinematic patterns in separate components, which facilitates their identification
and interpretation. For instance, the periodic patterns identified by us are frequently super-
posed on other types of kinematic variations, and may be missed without computationally pro-
cessing the kinematic data. Our method relies on iterative optimization procedures, but its
computational cost is sufficiently low to permit automatized analysis of long flight recordings.

Using this method, we identified 7 types of kinematic patterns that recurred frequently in
recordings from 10 flies. Four of these types were judged to be elementary kinematic patterns
arising from independent neuromotor controls. The findings imply mutually independent con-
trol of wing stroke deformations that generate (i) torque about the yaw axis, (ii) torque about
the pitch axis, and (iii) total flight force.

The elementary kinematic patterns reflect mutually independent activations in the fly’s neu-
romotor apparatus. Each pattern may be due to the activity of a single muscle or to a synergy of
multiple muscles. Identification of the corresponding muscles requires electrophysiological
studies. Our kinematics-based approach, however, has the advantage of studying the neuromo-
tor system in its entirety, and is readily extendable to kinematic data obtained from free
flight recordings.

Supporting Information

S1 Text. Summary of the MILCA algorithm for least-dependent component analysis.
(DOCX)

S2 Text. Algorithmic criteria for assigning the components to the 7 types of kinematic pat-
terns in Fig. 13.
(DOCX)

S1 Fig. Simultaneously active stroke deformation modes of type I and type III kinematic
patterns. A) Activation time course of a type I kinematic pattern, with typical spiky activation
events. B) Activation time course of the type III kinematic pattern in the same flight segment,
with a long-duration activation event lasting from cycle 1100 to cycle 2000. Note that some ac-
tivation events in A occur simultaneously with the long-duration event in B. C) Time course of
the wingbeat period, which is not correlated with the activation time courses in A and B. D) 10
consecutive reconstructed stroke cycles (from the time window marked with blue bracket and
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asterisk sign in A) with only the type I stroke deformation mode included (blue: left wing; red:
right wing). Black lines show the baseline wing stroke. E) 10 consecutive reconstructed stroke
cycles (from the time window marked with blue bracket and asterisk sign in B) with only the
type III stroke deformation mode included.

(TIF)

S2 Fig. Co-occurrence of three elementary kinematic patterns in one flight segment. A-C)
Activation time courses of type I (panel A), type II (panel B) and type III (panel C) kinematic
patterns obtained from LCA analysis of one flight segment. D) Time course of the wingbeat pe-
riod, correlated with B and C. E-G) 20 consecutive reconstructed stroke cycles with only the
type I (panel E), type II (panel F) and type III (panel G) stroke deformation modes included
(blue: left wing; red: right wing). Black lines show the baseline stroke cycle. The time window
for which the reconstructed stroke cycles are shown is marked with blue brackets and asterisk
in panel A (for strokes in E), panel B (for strokes in F) and panel C (for strokes in G).

(TIF)

S$3 Fig. Distribution of Wiener entropy for input signals and for their least-dependent com-
ponents. A) Histogram of number of least-dependent components per segment that have Wie-
ner entropy less than 0.9 (obtained from 120 flight segments). The average number of such
components per segment was found to be 12. B) Histogram of Wiener entropy of all (16x120)
analyzed signals (upper panel) and least-dependent components (lower panel). Only 1% of sig-
nals have Wiener entropy greater than 0.9 (i.e. have flat power spectra) as compared to 26% of
least-dependent components. LCA analysis has thus separated broadband noise from signifi-
cant temporal features.

(TIF)

$4 Fig. Consequences of decreasing or increasing the number of analyzed phase points. A)
Correlation coefficients of the LDCs that were obtained from the analysis of 16 phase points (8
for each wing) with LDCs obtained from the analysis of 8 phase points (4 for each wing). 4 of
the components from analysis based on 16 phase points are classified kinematic patterns (com-
ponent 16 is of type I, component 1 of type II, and components 13 and 15 of type III). Each of
these 4 components has very high correlation (marked with arrows) with one of the compo-
nents obtained from analysis based on 8 phase points. B) The time course of components 4, 9,
and 10. These components have no correspondence in the analysis based on 8 phase points
(white boxes in A). Wiener entropy (WE) values are shown in the legends. The separating vec-
tors (given in the same format as in Fig. 10) indicate that the corresponding stroke deforma-
tions are predominantly localized near a specific phase of the cycle. C) As in A, but showing
correlation coefficients with components that were obtained from the analysis of 24 phase
points (12 for each wing). The 4 classified components are again reproduced (white arrows).
D) Time courses and separating vectors of 5 components (marked with white boxes in C) that
have no correspondence in the components obtained from 16 phase points.

(TIF)

S5 Fig. Principal components and their mutual dependence. A) Time course of the principal
components of signals in Fig. 6A. The sharp events dominating principal component 3 are also
present in principal component 4—in contrast to the isolation of these events in only one least-
dependent component (Fig. 6B). B) Dependency matrix of the principal components shown in
A. The color code indicates the value of mutual information for a given pair of components.
(The value on the diagonal is undefined.) Components with mutual information above 0.26
nats (threshold of significant mutual dependence) are frequent, and 5 pairs have very high mu-
tual information (>0.9 nats). C) Distribution of pairwise mutual information, for principal
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components (solid blue line) and least-dependent components (solid red line) from each flight
segment, over a total of 100 flight segments. The dashed black line marks the o = 0.01 confi-
dence limit for rejecting the null hypothesis of zero mutual information. Only 56% of principal
component pairs have mutual information less than 0.026 nats, in contrast to 88% of least-
dependent components.
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