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Simple Summary: The red palm weevil, Rhynchophorus ferrugineus, is a significant pest to palm
plantations globally and directly impacts economic activities. These weevils’ cryptic attack on palms
is inconspicuous until the damage is irreparable. Chemical pesticides were used extensively in
plantations to mitigate RPW infestation, and the results were impressive. However, their negative
impact on the environment, nontarget organisms, and insecticide resistance is a primary concern.
Therefore, alternative preventive and curative solutions based on the natural enemy concept are
safer for the environment and more sustainable. This review highlights the use of entomopathogenic
nematodes and their symbiotic bacteria as biological control agents against the red palm weevil and
storage formulation.

Abstract: Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) is a severe pest of palm
trees worldwide. The development and feeding activities of R. ferrugineus larvae inside the trunk
damage palm trees. However, the absence of noticeable infestation signs at an early stage contributes
to the spread of the attack. Integrated pest management (IPM) has been introduced to control
R. ferrugineus infestation by implementing various approaches and techniques. The application of
chemical pesticides has shown impressive results. However, biological control should be applied as
an alternative solution due to adverse environmental impacts and pest resistance issues. One example
is the use of entomopathogenic nematodes (EPNs) as biological control agents, which can forage and
attack targeted pests without compromising the environment and other nontarget organisms. EPNs
and their symbiotic bacteria have a mutualistic interaction that can kill the host within a short period
of time. Therefore, this review emphasizes the effectiveness of entomopathogenic nematodes and
their symbiotic bacteria against R. ferrugineus.

Keywords: Rhynchophorus ferrugineus; palm infestation; Steinernema; Heterorhabditis; symbiotic
bacteria; biological control

1. Introduction

The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Cur-
culionidae), is the primary pest of date palm (Phoenix dactylifera), canary palm (Phoenix
canariensis), coconut (Cocos nucifera), and other palm trees [1–4]. Approximately 40 palm
species are host to the RPW, with the majority being from the Arecaceae family, with one
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species each from Agavaceae and Poaceae [5]. Malaysia first recorded three Rhynchopho-
rus species, i.e., R. ferrugineus in Peninsular Malaysia, Sabah, and Sarawak; Rhynchopho-
rus vulneratus (Panzer) in Peninsular Malaysia and Sarawak; and Rhynchophorus bilineatus
(Montrouzier) in Sarawak only [2,6].

RPW infestation has resulted in additional costs to the ornamental and cultivation
palm industries, as it involves eradication and treatment processes [7]. Various preventive
or curative approaches are currently being applied to combat RPW infestation on palm
trees, including physical and chemical detection with chemical and biological control
approaches [8,9]. Entomopathogenic nematodes (EPNs) are one of the biological control
agents used in integrated pest management (IPM) programs, as they are lethal obligate
parasites and safe to the environment. The role of EPNs is similar to entomopathogenic
fungi and bacteria in reducing and replacing the use of chemical insecticides [10,11]. Much
research has been conducted to test the pathogenicity of EPNs as potential biological control
agents of the RPW and their effectiveness in the field. The efficacy of EPNs against the
targeted host is diverse, depending on the species or strain. Therefore, this paper discusses
the role and application of EPNs as biological control agents in managing RPW infestation
in the field.

2. Biology and Distribution of R. ferrugineus

The genus Rhynchophorus consists of ten species distributed in specific regions [4].
Rhynchophorus cruentatus (F.) is found in the coastal areas of South Carolina through to the
Florida Keys and west into coastal Texas in the USA [12,13]. Rhynchophorus palmarum (L.)
is native to Mexico, Central and South America, the Caribbean, and Southern California
USA [14,15]. Rhynchophorus ritcheri (Wattanapongsiri) is native to Peru, Rhynchophorus quad-
rangulus (Quedenfeld) from West to Central Africa, and Rhynchophorus phoenicis (F.) in
tropical Africa [16–18]. Rhynchophorus bilineatus is native to New Guinea and Papua,
Rhynchophorus distinctus (Wattanapongsiri) in Borneo, Rhynchophorus lobatus (Ritsema) in
Sumatera, and R. ferrugineus in Oriental Asia [4]. R. vulneratus is native to Southeast Asia,
was discovered, and subsequently eradicated from California [19,20]. R. ferrugineus and
R. vulneratus are classified as synonymous and color morphs of the same species based
on cytochrome oxidase gene sequence and morphological characteristics [21]. Based on
these data, R. vulneratus should also be known as R. ferrugineus. However, DNA sequences
of mitochondrial COI data [22], with COI and Cytb molecular clock analysis [23], have
proved that R. ferrugineus and R. vulneratus are two different species.

The RPW originated from South and Southeast Asia by infesting coconut palms,
C. nucifera, and was later detected in the Middle East region [24], where it became the
key pest of the date palm (P. dactylifera). Eventually, the infestation continued to North
Africa [25], and Spain was the first country in Europe to report RPW presence in 1993 [26].
The canary and date palms have been the main factors for the rapid expansion of the
RPW throughout the Mediterranean during the last two decades [3,27]. In Southeast
Asian countries, RPW infestation is not only limited to coconut (C. nucifera) but also other
important economic plants such as oil palm (Elaeis guineensis), sago palm (Metroxylon
sagu), and sugar palm (Arenga pinnata), as well as ornamental plants such as ribbon palm
(Livistona decipiens) and Chinese fan palm (Livistona chinensis) [6,9,28,29]. The RPW quickly
bores of young palm below 20 years. as the trunk is soft and tender [30–32].

RPWs have four phases in their life cycle: eggs, larvae, pupae, and adults. Corre-
sponding to several articles, the eggs deposited by adult female RPWs vary, ranging from
180 eggs to 396 eggs [33–37]. Depending on where the attack begins along the palm tree,
adult females lay eggs in wounds or openings at the palm crown or leaf scar [35]. The
complete life cycle of the RPW varies from 45 days to 180 days [2,3]. Once hatched, larvae
will start to feed on the soft tissue. Continuous feeding activities will create tunnels along
the stem before the larvae develop into pupae inside an oval-shaped cocoon made of
palm fibers [6,8,35].



Insects 2022, 13, 245 3 of 15

The duration of the larval development phase, which can range from 24 to 210 days, is
influenced by diet and temperature, while the host plant species determines the number of
larval instars [9,38]. RPWs tend to have a shorter development period if the environment
and host plant are favorable to insects [39]. The plant host species influences the fertility of
females RPWs [33]. RPWs are reared in laboratory facilities for their continuous supplies
in various research, and their diet mainly comes from abundant and nearby sources.
Norzainih et al. [40] successfully reared RPWs in the laboratory by feeding them sugarcane
and reported the production of eight larval instars within 80 days. In another study, El-
Zogby and Abdel-Hameid [41] demonstrated that a sugarcane diet produced 12 instar
larvae in 89 days. Different ambient temperatures are likely to be the cause of these
inconsistent results. Furthermore, within a year, RPWs can produce 3–4 generations or
more in a single palm tree [42,43].

3. Red Palm Weevil Infestation

R. ferrugineus infestation on canary palms can be classified into five stages, according
to Güerri-Agulló et al. [44]. The first level of early infestation begins with the absence of
visual indicators of RPW assault on the palm tree and progresses to the formation of pits
and notches in the leaves at the second level. The third and fourth stages are characterized
by uneven leaves in the crown, with frond skirting pointing downwards. Finally, the palms
die in the last stage.

In oil palm, the RPW infestation level can be classified into the early, intermediate I
and II, and final stage. The intermediate stage can be detected as early as the fourth week
of the attack with sawdust at the trunk’s base and visible dark sap accompanied by odor
from the fermentation process. Consequently, the fronds begin to collapse, and at the final
stage, the collapsed fronds turn brown. Early and intermediate infestation can be treated
by injecting insecticides into the trunk. The final stage requires the trees to be eradicated by
cutting them down according to the guidelines provided [45].

4. Control Management of the Red Palm Weevil

Several implementations have been performed to manage RPW infestation, including
trapping and monitoring, preventive and curative techniques, and plant quarantine treat-
ments [3,38,46,47]. Preventive and curative treatment should be performed at the early stage
of pest infestation to protect the palm from further damage and for recovery of the infested
palm [5]. The trapping technique involves using pheromones, with both chemical synthesis
and food bait showing significant decreases in RPW infestation. However, synthetic food
baits are better than natural food baits since they can attract more weevils and can survive
over a longer period [48]. Insecticides based on carbamate, organophosphate, phenylpyra-
zole, and neonicotinoid are used for preventative and curative treatments [38,47,49]. Early
detection of RPW infestation can be performed using a trained dog to detect the foul odor
of infested trees [9,16]. Alternatively, acoustic detection can be achieved by detecting the
feeding activities of larvae within the stem [27,50–52]. Several techniques have been applied
to control weevil infestation in coconut plants in Malaysia. These include pheromone traps
and chemical and physical controls eradicating the infested palm. The chemical controls
involve spraying Cypermethrin on the crown, canopy, and stem of the palm and trunk
injection with Methamidophos or Monocrotophos [53].

Management of RPW infestation within the palm trunk is also possible by using bio-
logical control agents such as EPNs, as they can penetrate, invade, and kill its prospective
pests [54]. Much research has been carried out on the effectiveness of entomopathogenic ne-
matodes (EPNs) against insect pests, especially on the RPW [55]. Besides EPNs, Metarhizhium
anisopliae and Beuveria bassiana are entomopathogenic fungi commonly applied in IPM
to kill RPWs in the field [56–58]. The pathogenicity of indigenous isolates, M. anisopliae
strain MET-GRA4 against adult red palm weevils (RPWs), was investigated in vitro with
different spore viabilities. The isolates were pathogenic, with 100% mortality 21 days
after infection [58].
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The only virus found in the RPW is the highly potent cytoplasmic polyhedrosis virus
(CPV). The virus was first discovered in Kerala, India, where it infected all stages of the RPW.
During the late larva stage, infection resulted in malformed adults and significantly reduced
insect populations [59,60]. The efficacy of Bacillus thuringiensis (Bt), an entomopathogenic
bacterium characterized by its production of insecticidal crystal proteins on larvae and
adults of R. ferrugineus, was also studied. Infection with B. thuringiensis subspecies kurstaki
identified from Egyptian larvae successfully controlled the RPW in laboratory condi-
tions [60,61]. A study using commercial bacteria-based biopesticide reported the RPW
larval mortality was high (>50%) at the lowest concentration (0.5 mg/mL), and it reached
85% at 2.0 mg/mL [62]. Larvae and adult mortality ranged between 46.86–58.36% and
26.79–39.04%, respectively, after 21 days of exposure to B. thuringiensis var. kurstaki [63].

Additionally, microwave heating treatment is another approach used to combat pest
issues, such as R. ferrugineus infestation, without causing any significant harm to the
host plant [64–66]. Microwave radiation causes hyperthermia in R. ferrugineus adults and
larvae. This method is safe for the environment and only causes slight dehydration in
palm trees [67]. Several plants, such as the French marigold (Tagetes patula) [68], Ceylon
(Cinnamomum zeylanicum) [69], citronella grass (Cymbopogon nardus) [70,71], clove (Syzy-
gium aromaticum), and cardamom (Elettaria cardamomum), are known for their insecticidal
properties and have been proven to effectively kill the RPW [72].

5. Biology of Entomopathogenic Nematodes

Nematodes are microscopic, multicellular, and nonsegmented bodies of worms un-
der the phylum Nematoda. Nematodes have adapted to live in various environments
and have symbiotic relationships with other organisms [73]. The life cycle consists of
the egg stage, four larval stages, and adult stage [74]. The life cycle of EPN is 5–10 days,
depending on temperature, bacterial symbiont, and ability to suppress the immunity of
the insect host [75,76]. EPNs are widely distributed, but the species varies according to
geographic regions and habitats [77,78]. There are 30 families of nematodes associated with
insects, plants, and vertebrates [79]. Steinermatidae and Heterorhabditidae are significant
families widely used as control agents of insects. Currently, there are two genera in Stein-
ernematidae, Steinernema Travassos, 1927 (comprises over 30 species), and Neosteinernema
Nguyen and Smart, 1994 (one species, Neosteinernema longicurvicauda). On the other hand,
Heterorhabditidae is solely represented by the genus Heterorhabditis Poinar 1976 and one
species, Heterorhabditis bacteriophora [80,81]. However, Hunt and Nguyen reported that
95 valid species of Steinernema and 16 species of Heterohabditis were described by the end
of 2015 [82].

A symbiotic Gram-negative bacterium, genus Xenorhabdus in Steinernema and
Photorhabdus in Heterorhabditis, lives in the modified intestines of infective juvenile (IJ)
nematodes [83,84]. When the IJ invade their specific host after entering via the anus, spir-
acle, and mouth, the symbiotic bacteria released by the IJs in the hemocoel of the target
insect multiply and cause the death of the insects within 24–48 h due to septicemia [85,86].
In addition, the symbiotic bacteria produce secondary metabolites that cause cytotoxic
activity. It will cause the hemolymph immunodepression of the insect, thus leading to
septicemia and death of the host [87]. The secondary metabolites produced by the symbiotic
bacteria also inhibit other bacteria, fungus, and protists from developing in the nutrient-rich
hemolymph of the dead cadaver, thus providing a suitable condition for the nematodes to
reproduce [88,89]. The IJs feed on the multiplied bacteria and digested host tissue until all
the sources are depleted and begin to search for a new host [90]. As a result, only infective
juvenile (IJ) or dauer larva can survive outside the host [86] (Figure 1). The brown color
of the insect cadaver indicates the insect was killed by Steinernematid nematodes, while
the red color indicates Heterorhabditid species. The color difference is due to the pigment
released by the symbiotic bacteria in the cadaver [80,85].
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6. Mutualistic Symbiotic Bacteria

In association with Steinernema and Heterorhabditis, 21 Xenorhabdus spp. and 3 Photorhab-
dus spp. have been described, respectively [88,91,92]. The Steinernema and Heterorhabditis
species can be identified through 28S rDNA and ITS regions’ sequencing and PCR-based
analysis [88]. Steinernematid reproduces via cross-fertilization between males and females
and Heterorhabditid via self-fertile hermaphrodites [90,93,94]. In addition, Heterorhabditid
is able to produce hermaphrodites, males, and females in the subsequent generations [95].

The symbiotic bacteria, Xenorhabdus and Photorhabdus, are essential to the EPN. They
kill the insect host in a short period, providing a suitable environment for the EPN to repro-
duce and produce antibiotics and secondary metabolites that prevent any development
of other microorganisms and convert the host tissue into food [96]. In exchange, the EPN
provides protection and access to the host’s hemolymph [97]. However, in this bacterium—
nematode complex, nematodes are responsible for overcoming the host immunological
defense by making lipid or protein [98–100]. Thus, the bacterium–nematode complex plays
a vital role against insect hosts.

The bacteria Xenorhabdus spp. and Photorhabdus spp. exist in two phenotypes, primary
and secondary [101]. The first-phase bacteria are smaller, 3–4 µm in length, and induce
more secretory enzymes, toxins, antibiotics, and protein with the oval or circular shape.
The secondary bacteria are larger, 6–7 µm in length, and do not produce enzymes or
antibiotics or flat colonies. The primary bacteria only reside in the insect’s body for a few
hours after being released by the nematodes before being converted to secondary bacteria.
The transformation is believed to adapt to the external environment [102]. Research
conducted on X. stockiae and P. luminescens subsp. Akhurstii [88] against Aedes aegypti and
Aedes albopictus has shown that the symbiotic bacteria are malicious against mosquitoes
and demonstrated that they could be utilized as biological control agents.

7. Application of Entomopathogenic Nematodes as Biological Control Agent

The nematodes use two basic strategies in finding a host: active searching, i.e., cruising
or foraging, and the passive method by waiting for the host to contact with the nematodes
and ambush [94]. As a result, the EPN can reach its specific host even in a sealed area
such as a tree trunk. Major target insects of EPNs in IPM are Coleoptera and Lepidoptera,
but it also applies to other orders, such as Thysanoptera, Diptera, Orthoptera, Blattodea,
Hymenoptera, and Siphonaptera [81]. Besides that, the application of EPNs against insect
pests in the orchard system also contributes to promising results [103]. Shahina et al. [104]
conducted a laboratory bioassay of seven EPNs species against all life stages of the RPW,
including the eggs. All seven EPNs species killed all stages of the RPW, but the emergence
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of IJs from the adult RPW was recorded in Steinernema pakistanense. However, a single
species of EPNs does not have the same virulence towards all stages of the RPW [104,105].
For instance, Steinernema scapterisci, Steinernema sp. (SII), Steinernema abbasi are virulent to
the adult stage, while Heterorhabditis bacteriophora is virulent to the larvae stage. However,
both stages are susceptible to Steinernema glaseri.

8. Biological Assay on Pathogenicity of Entomopathogenic Nematodes against
R. ferrugineus

Various studies on the efficacy of EPNs against the RPW have been conducted, particu-
larly in the Mediterranean, Middle East, and Southern Asia (Table 1). Steinernema carpocapsae
caused the highest mortality of RPW larvae at 98.9% after eight days of treatment under lab-
oratory conditions, followed by H. bacteriophora at 86.9% and Steinernema feltiae at 38.9% [55].
The efficacy assessment of EPNs was conducted in the date palm field in the UAE [106],
where a local isolate of Heterorhabditis indicus appeared to kill larvae, adults, and cocoons,
of the RPW successfully within a short period when compared to Steinernema riobrave and
S. abbasi. The RPW population in the date palm field also showed a successful decline
after the second treatment within two months. Due to their high pathogenicity against
insect hosts [34], the two common EPNs are utilized as biological control agents in IPM are
S. carpocapsae Weiser and H. bacteriophora Poinar [107], as shown in Table 1.

Table 1. Summary of the pathogenicity assay on red palm weevil by using the entomopathogenic nematode.

Author Species Bioassay Result Symbiotic
Bacteria

Origin/
Country

[55]
S. corpocapsae

S. feltiae
H. bacteriophora

Concentrations: 100 IJs
each larva and adult
RPW: 3rd, 6th, 10th

larvae, adult
Duration: 12 h duration

up to 8 days

Mortality:
S. corpocapsae

3rd: 96.5%, 6th: 94.7%,
10th: 88.17%,
Adult: 3.07%

S. feltiae
3rd: 38.68%, 6th: 36.35%,
10th: 35.35%, Adult: 0%

H. bacteriophora
3rd: 85.75%, 6th: 78.15%,

10th: 74.4%,
Adult: 0.66%

N/A Pakistan

[34]

S. affine
S. carpocapsae

S. feltiae
H. bacteriophora

RPW: Last instar larvae
Concentrations:
500 IJs/ larva

Duration: mortality
recorded after 7th day

Greatest mortality in H.
bacteriophora and least in

S. affine
N/A Turkey

[108]

H. bacteriophora
S. abbasi

S. anomali
S. carpocapsae

S. feltiae
S. glaseri

S. riobravae
Steinernema sp.

S. ritterai (EGBS)
S. egyptens
S. kushidai

Heterorhabditis sp.

Concentration:
2000 IJs/mL

RPW: 5 weevils in a box
(young, medium,

full-grown larvae, pupa
with cocoon, and adult)

Duration: mortality
recorded every 2 days

for 10 days

Some EPNs showed a
preference for certain life

stages of weevils.
Steinernema sp. showed

the highest mortality,
and S. feltiae was the
least virulent species

N/A Egypt
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Table 1. Cont.

Author Species Bioassay Result Symbiotic
Bacteria

Origin/
Country

[98] S. carpocapsae

The antimicrobial
response of RPW larvae
on S. carpocapsae and X.

nematophila

Living EPNs and
symbionts can suppress

the antimicrobial
response of the RPW

X.
nematophila Netherlands

[105]

S.scapterisci Steinernema sp.
S. abbasi
S. glaseri

H. bacteriophora

RPW: Five late instar
larvae and an adult.

Concentration:
(156–2000 IJs/mL) of

EPN injected into
hemocoel.

Duration: 10–13 days

Adults are more
resistant than the larva
stage. S.glaseri and H.

bacteriophora exhibited
high virulence toward

the RPW larvae

N/A Egypt

[106]
H. indicus
S. riobrave
S. abbasi

Concentration:
(50, 100, 200, 400, and

800 IJs)
Duration: 60 h and

6 days

The local isolate of H.
indicus is highly

pathogenic towards
adult RPWs

N/A UAE

[99] S. carpocapsae
Immune response of the
RPW after infection and

post-infection of EPN

The EPN can short-term
regulate the

phenoloxidase activity
for its continuity

N/A Netherlands

[54] S. carpocapsae
H. bacteriophora

RPW: Various stages of
the RPW (small,

medium and large
larvae, pupae

and adults)
Concentration: 50–

6000 IJs/0.4 mL water
Duration: Mortality
recorded after 72 h

Increase size of the host
reduces its susceptibility

Small larvae—500 IJs
Medium larvae—

2000/6000 IJs
Large larvae—6000 IJs

Pupae/adults—2000 IJs

N/A Germany

[104]

S. pakistanense
S. asiaticum

S. abbasi
S. siamkayai

S. feltiae
H. indica

H. bacteriophora

RPW: Eggs, first, third,
sixth, final stages

larvae, adult
Concentration:
50–1500 IJs/mL

Period: Mortality was
recorded between 24 to

168 h

H. bacteriophora and S.
siamkayai showed the
highest mortality of

larvae while all EPNs
showed similar results

in adult RPWs

N/A Pakistan

[109] H. indica
S. carpocapsae

Young and grown
larvae, adult RPW were
infected with EPNs in

the laboratory and date
palm field

In the lab, the mortality
RPWs is from 70% to
100%. In the field, the

mortality of adults and
larvae is 46% and 60%

N/A UAE

[110]
S. riobravae

S. carpocapsae
Heterorhabditi sp.

N/A

All species are virulent
to larvae and adult

RPWs. LC50 of
S. riobravae

S. carpocapsae
Heterorhabditis sp. were

900, 1100, and
1416 IJs/weevil.

N/A Egypt
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Table 1. Cont.

Author Species Bioassay Result Symbiotic
Bacteria

Origin/
Country

[111]

S. abbasi
S. carpocapsae All
S. carpocapsae S2

S. riobravae
S. feltiae
S. glaseri

S. anomali
Heterorhabditis sp. IS12

Heterorhabditis sp. S1
H. bacteriophora

RPW: Larvae, pupae,
and adults (lab)

2000 IJs/mL Duration:
Mortality was calculated

after 7 weeks
Field trial: 3000 IJs/mL
with 300 mL injected
into the infected tree

Duration: Mortality was
calculated after two
weeks of treatment

In the lab, all EPNs were
virulent to any RPW

stages
In the field, 66.67%

mortality of larvae was
caused by H.
bacteriophora

N/A Egypt

[112] H. bacteriophora

RPW: 2nd, 4th, and 6th
instar larval of RPW.
Method: Beauveria

bassiana and Metarhizium
anisopliae combined

treatment
Larval development

was recorded.
Duration: Mortality of

the larvae were recorded
weekly after application

Association of H.
bacteriophora and B.

bassiana produced better
results, especially in

early larvae and
decelerated larval

development

N/A Pakistan

[113]

H. bacteriophora
H. megidids

H. carpocapsae
S. feltiae
S. glaseri
S. affine

S. longicaudum
S. apuliae
S. kraussel

Concentration: 300 IJs in
0.5 mL water

RPW: Late instars and
adult RPW

Duration: Mortality was
recorded every 2 days in

10 days

H. bacteriophora, S.
longicaudum, and S.

carpocapsae were highly
virulent towards larvae

and adult RPWs.
S. glaseri was only highly
virulent towards RPW

larvae only.

P. luminescens
subsp.

laumondii
P. luminescens
X. nematophila

X. bovieni
X. ehlersii
X. kozodoii

New Zealand
Italy
USA

Germany

[114] S.carpocapsae

An alternate application
of EPNs and

Imidacloprid on the
canary palm as a

preventive treatment

Combination applied
treatments were able to
reduce the population

RPWs

N/A Spain

[115] Steinernema carpocapsae

Product Biorend® was
sprayed onto the canary
palm. Nine larvae each

palm. Period: Inspection
after 14 and 28 days

post-infection

Restorative and
inhibitory of EPNs were

at 80% and 98%,
respectively

X. nematophila Spain
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Table 1. Cont.

Author Species Bioassay Result Symbiotic
Bacteria

Origin/
Country

[68] Heterorhabditis
bacteriophora

Concentration: 300 IJs in
1 mL water

RPW: 6th instar larvae
and adult

Duration: Mortality was
recorded until 21 days of

exposure in
laboratory conditions.

Treatment combination:
H. bacteriophora with
Bacillus thuringiesis

Kurstaki (70 µg g−1) and
H. bacteriophora with

Beauveria bassiana
(1 × 107 conidia mL−1)

Mortality percentage of
RPW larvae and adults
was 92.40% and 81.29%,

respectively
Mortality percentage of

RPW larvae:
93.35–100% (EPN + Bt-k)

and 100% (EPN +
B. bassiana)

Mortality percentage of
RPW adult:

81.27–94.24% (EPN +
Bt-k) and 100% (EPN +

B. bassiana)

N/A Pakistan

[116] Heterorhabditis
bacteriophora-HP-88

Laboratory condition:
Concentration: 250, 500,

1000, 1500, and
2000 IJs/mL

RPW: 4th, 8th, 11th
instars larvae and adults
Duration: Mortality was
recorded 24 h till 9 days

post-treatment
Field condition:
Concentration:

2000 IJs/mL
Infested tree: Five
infested date palm,
Phoenix dactylifera

injected with IJs. Each
tree received

approximately 2 L of
EPN solution.

Duration: Infestation
was monitored every
week until recovery

Mortality percentage of
4th instar larvae was

100% for all
concentrations., while
LC50 for 8th, 11th, and

adults was
435.16 IJs/mL,

1045.34IJs/mL, and
167.90 IJs/mL,

respectively
No external sign of

recovery for three weeks
of observations

N/A Egypt

9. Formulation

EPNs can be stored and large-scale produced as biopesticides in two ways, in vivo and
in vitro [117]. The production of EPNs has enabled at least 13 species of Steinernematids
and Heterorhabditids to be commercialized for biological insect control purposes [118]. For
small-scale experiments such as laboratory bioassay with low dosage and mortality, the
EPN can be inoculated on a dish and absorbent paper before being transferred to White Trap
for in vivo harvesting. This method is dependent on environmental conditions that affect
yields, such as optimal temperature, proper aeration, and moisture [117]. On the other
hand, in vitro methods can offer mass production of the nematodes to fulfill the demanding
needs for EPN application in the field. The rearing of nematodes via in vitro methods does
not require insects as hosts but through solid or liquid culture [119]. In vitro reliable culture
methods are performed by rearing the nematode with respective symbiotic bacteria in a
growth medium. In contrast, nematodes are cultured in vitro liquid culture methods after
the symbiotic bacteria were introduced in the liquid culture [120]. Next, the mass-produced
nematode will be transformed into a new entity or product that practical methods can
apply. This process is known as EPN formulation [121] and involves inclusions of carriers,
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additives, and active ingredients. Various forms and mediums have been used to store
and transport EPNs, including aqueous suspension, synthetic sponges, gels, clay, powder,
and infected cadaver [122]. These formulations are widely used and commercialized
in other countries; for instance, S. carpocapsae was commercialized byproduct Sanoplant
from Switzerland, Helix from Canada, ORTHO Biosafe USA from the USA, and BASF
from Germany [97,122].

10. Conclusions

Rhynchophorus ferrugineus is indeed a ferocious pest in palm trees worldwide. R. ferrug-
ineus infestation creates a substantial economic impact on the plantation and food supply.
Many infested trees need to be cut down to prevent dispersion towards other trees. More-
over, farmers and planters have to spend more on preventive and curative treatments to
prevent the infestation from spreading. Although chemical treatments are effective, they
have numerous drawbacks, including pest resistance, worker’s health, and environmental
concerns. Therefore, alternative methods can provide a safer approach yet more effective
in overcoming this infestation case of R. ferrugineus. Microbial entomopathogens are ef-
fective biological control agents since each organism has its approach and strategies for
invading its potential host. Entomopathogenic nematodes (EPNs) are proven to be effective
biological control agents in managing RPW infestation in various studies. EPNs and their
symbiotic bacteria are the significant mutualistic duo that can give promising results in
overcoming this infestation issue of R. ferrugineus. For a more specific outcome, many
approaches can be explored in leveraging the pathogenicity properties of the EPNs and
their symbiotic bacteria.
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