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Abstract

Medical imaging provides a comprehensive perspective and rich information for disease diagnosis. Combined
with artificial intelligence technology, medical imaging can be further mined for detailed pathological infor-
mation. Many studies have shown that the macroscopic imaging characteristics of tumors are closely related
to microscopic gene, protein and molecular changes. In order to explore the function of artificial intelligence
algorithms in in-depth analysis of medical imaging information, this paper reviews the articles published in
recent years from three perspectives: medical imaging analysis method, clinical applications and the develop-
ment of medical imaging in the direction of pathological molecular prediction. We believe that AI-aided medical
imaging analysis will be extensively contributing to precise and efficient clinical decision.
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Introduction

Medical imaging provides clinicians with comprehen-
sive perspectives and rich information. It plays a vital
role in disease screening, diagnosis, treatment selec-
tion and prognostic evaluation. The changes in the mor-
phology or function of the lesion are determined by
many factors such as the patient’s individual genes, cells,
physiological microenvironment, living habits and living

environment. Through data mining technology in con-
ventional imaging diagnosis, the deep characteristics of
diseases can be found, reflecting the changes of human
tissues, cells and genes, which will have a significant
promotion for clinical precision medicine. Since med-
ical imaging can comprehensively, non-invasively and
quantitatively observe the overall tumor morphology,
and monitor the development process and treatment
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response of the tumor at any time, it provides a reli-
able solution to the problem of tumor heterogeneity.
Compared with traditional clinical medicine, which only
interprets medical images from a visual level, radiomics
can dig deeper into the biological features of images and
provide clinical decision support.

Radiomics believes that the macroscopic imaging
characteristics of tumors are closely related to micro-
scopic gene, protein and molecular changes. Common
medical imaging methods currently in clinical practice
include computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound and positron emission com-
puted tomography (PET). The above-mentioned imaging
methods provide a wealth of disease information for
clinical diagnosis. Among them, CT scans a thick layer
with an X-ray beam and the detector can take a cross-
sectional or three-dimensional image of the inspected
part. MRI generates magnetic resonance phenomena by
applying radio frequency pulses to the human body in
a static magnetic field and realizes imaging through pro-
cesses such as MR signal reception, spatial encoding, and
image reconstruction. US scans the human body with
ultrasonic sound beams and obtains images of inter-
nal organs by receiving and processing reflected signals.
PET labels materials with short-lived radionuclides (18F,
11C, etc.), releasing positrons during the decay process
and generating opposite photons. Captured by a highly
sensitive photon camera and processed by a computer,
a three-dimensional image of the aggregation in the
organism can be obtained. Besides these non-invasive
medical imaging methods, pathological examination is
another important technique for clinical analysis and
is the gold standard for judging the state of sampled
tissues. Advances in equipment have made it possible
to preserve and transmit the whole-slide pathological
images, therefore promoting the application of artificial
intelligent (AI) in pathological image analysis.

The large-scale application of AI technology provides
an opportunity for in-depth analysis of medical images.
The advantage of AI is that it can use more accurate and
generalized models to capture subtle features, powerful
classification and prediction capabilities, and provide the
possibility to predict microscopic pathology for medical
image analysis. AI combined with medical imaging fur-
ther expands the analysis function of radiomics. Gradu-
ally, the macroscopic judgment of the lesion as simply
benign or malignant is developing towards the micro-
scopic prediction of molecular typing; the disease state
analysis is developing in the direction of gene muta-
tion prediction; the non-invasive imaging prediction is
approaching the results of pathological analysis. AI and
medical imaging together provide an effective way for
precision medicine and is expected to provide a reliable
auxiliary analysis method for clinical decision-making.

In the following, this paper will review the articles
published in recent years from three perspectives: med-
ical imaging analysis method, clinical applications and
the development of medical imaging in the direction
of pathological molecular prediction. The second part

focuses on the main methods of medical imaging anal-
ysis. In the third part, it introduces the application of
CT, MRI, PET, Ultrasound and pathological examination,
and analyzes the application scope and effect. The fourth
part is a summary and prospect of the existing technol-
ogy and application. It is hoped that this article can pro-
vide field overview and research ideas for researchers in
related fields.

Methodology of medical imaging analysis
Methodological framework

The development of medical imaging analysis is based
on the assumption that detailed information can be
extracted, thereby providing useful diagnosis informa-
tion for disease prediction.1–3

Typical radiomics workflow includes four steps: 1)
medical image acquisition; 2) segmentation, areas of
interest (ROI) delineation; 3) data cleaning and data
enhancement, feature extraction and selection; and 4)
modeling and analysis (Fig. 1).4 The first important step
is to obtain high-quality medical images with uniform
standards. Ideally, image resolution, uniform collection
parameters, imaging parameters, and others all need to
be standardized.5–7 In the second step of feature division,
target areas (ROI) need to be delineated. The method of
segmentation can be manual, semi-automatic, or auto-
mated execution. The manual method needs to rely
on experienced doctors to divide one by one, and the
workload is large. Semi-automatic is a combination of
manpower and machine. It requires experienced doc-
tors to identify and modify the boundaries of automatic
separation, saving a part of manpower. The automated
method does not require human involvement and is
more suitable for processing large data sets. The third
step is feature extraction. Feature extraction can include
shape and geometry features of the ROI area; texture fea-
tures; intensity features, in which the density distribu-
tion reflects tumor heterogeneity. Medical imaging fea-
tures can also be combined with clinical characteristics,
such as clinical and pathological staging, etc. The fourth
step of model construction and analysis is to establish a
corresponding feasible model.

Traditional method

Traditional algorithms are often in three steps: medical
image segmentation, feature extraction and model con-
struction. Segmentation algorithm is mainly applied for
automatic ROI delineation.

Feature extraction and selection directly affect the
analysis results of the model. For clinical application,
features are usually composed of two parts, including
the clinical characteristics and the radiomics features
(Table 1). The effect and repeatability of feature extrac-
tion from medical images affects the construction of
radiomics model. The extracted features are mainly mor-
phological characteristics, including volume, diameter,
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Figure 1. Typical radiomics workflow.

Table 1. Classification of clinical characteristics and radiomics features.

Classification of basic feature Common features Statistic feature
Clinical characteristics Age, BMI, Sex, clinical dementia rating,

histological type, clinical staging
Statistics and partition representation

Radiomics features4 Volume, diameter, size, shape, location Histogram statistics
Texture Gray-level co-occurrence matrix (GLCM)

Gray-level neighborhood difference matrix
(GLNDM)

Gray-level run length matrix (GLRLM)
Gray-level size zone (GLSZM)

Image feature Fourier, Gabor, Wavelet and Laplacian
transforms

texture and several transformation functions. The fea-
ture evaluation method can be statistics, which evalu-
ates the distribution of gray values or the irregularity of
the area; also based on transformation, and the spatial
information is converted into frequency.8

The construction of medical imaging analysis model
depends on the clinical problem to be solved and the
function to be realized. For classification and prediction,
the commonly used methods are statistical and machine
learning methods. The commonly used machine learn-
ing methods include principal component analysis (PCA),
decision tree, random forests (RF), Logistic regression,
support vector machine (SVM), least absolute shrinkage
and selection operator (LASSO) method, etc.9–13

Deep learning method

Convolutional neural network (CNN) has now been used
extensively in medical image classification.14 The mostly
commonly used models include LeNet,15 Alexnet,16

VGG19,17 GoogLeNet18 and ResNet.19

Nibali et al.20 fine-tuned a pre-trained ResNet model
to evaluate the classification performance of malignant
tumors in lung nodules by using deep learning model.
The results show that the combination of deep residual
learning and transfer learning can achieve higher accu-
racy of nodule classification. Nishio et al.21 used VGG16
to extract features from CT images of lung nodules,

demonstrating that transfer learning methods outper-
formed hand-crafted features and traditional machine
learning methods in lung cancer. Marentakis et al.22

found that in the classification of non-small cell lung
cancer(NSCLC) into adenocarcinoma(AC) and squamous
cell carcinoma(SCC), the use of CNN combined with long
short-term memory (LSTM) network (CNN + LSTM accu-
racy = 0.74, AUC = 0.78) was more effective and would
yield better results than the use of CNN only (the best
CNN accuracy = 0.67, AUC = 0.74). An et al.23 used CNN
to extract high-risk features of images. Dual-energy com-
puted tomography (DECT) is a new imaging technique
that enables X-ray attenuation data to be obtained at two
different energy levels, 100 and 150 keV. Their method
uses CNN to extract image features at 100 keV, 150
keV and virtual monoenergetic images (VMI) at 40 keV,
respectively; the extracted features were concatenated,
and six models were built, including VMI 40 keV model,
100 keV model, 150 keV model, 100 + 150 keV model,
100 + 150 keV and clinical + 100 + 150 keV model. The
dataset consisted of 148 patients and was divided into
two groups. The first 113 patients were used to train the
network and the remaining 35 patients were used to test
the performance of the model. The results showed that
the model combining 100 + 150 keV and clinical data pre-
dicted the most accurate results.

Deep learning has been applied in the clinical diag-
nosis of many tumors and has shown beneficial effect.
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The AI method benefits from the technological advance-
ment of computer hardware (graphics processing unit,
GPU), and its computational timeliness is also sharply
improved.24,25 At the same time, more and more open-
source and effective calculation framework codes and
pre-training models also provide more evolutionary
steps for the algorithm iteration to the AI of medical
images. In the work of Zheng et al., 584 breast cancer
patients were enrolled, and ultrasound images were col-
lected. The prediction of axillary lymph node status was
realized by radiomics model based on deep learning, with
prediction AUC of 0.902.26 Marentakis et al. Enrolled 102
lung cancer patients using LSTM and Inception model for
histological classification analysis, with an AUC of 0.78.22

To predict EGFR mutation status in pulmonary adenocar-
cinoma, Zhao et al. used deep learning analysis method
based on 3D DenseNets and the AUC reached 0.75.27 Sim-
ilarly, for the prediction of EGFR, Wang et al. enrolled
844 patients with lung adenocarcinoma and improved
AUC to 0.81 by using the self-built deep learning model.28

This noninvasive prediction of EGFR is beneficial for tar-
geted therapy. Yan et al. applied bayesian regularization
nueral networks to the prediction of IDH and TERT status
with 357 glioma patients.29 Burlingame et al. proposed a
deep learning system named ‘speedy histopathological-
to-immunofluorescent translation (SHIFT)30 which used
cycle GAN algorithm31 to learn the spatial pattern of
paired hematoxylin and eosin (H&E) and immunohisto-
chemistry IHC images. The model is capable of making
predictions of DAPI, α-SMA and PanCK distribution using
H&E stained images as inputs. This work further demon-
strated the capacity of artificial intelligence in histologi-
cal analysis tasks.

Applications of medical imaging analysis

We here summarize the use of CT, MRI, PET, ultrasound
and pathological examinations, as well as their realiza-
tion of clinical application and molecular pathological
analysis, in diagnosing tumors including breast cancer,
hepatocellular tumor, lung cancer, glioma, and others
(Fig. 2).

CT clinical application

Medical images are now used for a wide range of medical
applications such as early diagnosis, detection and eval-
uate patients for treatment in a non-invasive manner.32

Among the many imaging modalities, the wide range and
high speed of imaging are the characteristics of com-
puted tomography (CT).33 CT produces a cross-sectional
image of the measurement subject by rotating the X-ray
tube with a detector at its relative position to collect the
X-ray, using the difference in the attenuation coefficient
of the X-ray as they pass through different tissues.34

In CT images, the grey level corresponds to the atten-
uation of X-rays and reflects the proportion of X-rays that
are scattered or absorbed.35 Given the wealth of detail
contained in CT images, their interpretation requires an

experienced clinician. Medical staffs can benefit from
computer-aided decision-making.36 As a result, machine
learning and deep learning related to image processing
have been widely used in the field of medical imaging
analysis (Table 2).37,38

MRI clinical application

Recent studies have shown significant heterogeneity in
tumor lesions, including variability between tumors and
within the same tumor. MRI is a more specific and
sensitive method for lesion identification and diagno-
sis among all available tools because of its higher image
resolution. However, for the diagnosis and prediction
of tumor at the molecular level, there are limitations
in MRI images observed by the naked eye alone. For-
tunately, radiomics is increasingly used in tumor diag-
nosis, prognosis, and treatment selection. The potential
of radiomics in precision medicine practice is further
enhanced by the ability to consistently acquire micro-
scopic features of medical images that are not visible to
the naked eye of human experts (Fig. 3).

The application of MRI radiomics in molecular level
of breast cancer (BC) mainly refers to the prediction
of molecular subtype. Hormonal status of BC was ana-
lyzed by immunohistochemistry (IHC) and divided into
three molecular subgroups: HR+ and HER2-, HER2+,
and triple negative.53–55 Various molecular subtypes have
been shown to correlate with treatment planning and
prognosis. Among them, IHC only analyzes localized tis-
sue samples of breast cancer, which may not accurately
represent the microscopic state of the entire tumor due
to the complexity and heterogeneity of the tumor. How-
ever, molecular subtypes are confirmed by IHC analysis
of sample tissues, which may not reflect the complex-
ity and heterogeneity of the whole tumor. Recent stud-
ies have shown that radiomics is expected to be a new
imaging label for identifying molecular subtypes of BC
patients because of its good performance.56–62 Lee et al.57

found that textural parameters correlated with hormone
receptor (HR), HER2 and Ki67 status, and molecular sub-
types (p < 0.002). The status of HR and Ki67, grading
and molecular subtypes were also correlated with perfu-
sion parameters (P < 0.003). Bitencourt et al.58 used three
MRI parameters (two clinical, one radiomic) to achieve
the prediction of HER2 burden, then they predicted
whether BC patients with HER2+ who received neoad-
juvant chemotherapy (NAC) would achieve a pathologi-
cally complete response (PCR). One study confirmed that
texture features extracted from quantitative ADC map
and DCE Map (Flush and Rinse) were able to identify
triple negative BC (TNBC) by histogram analysis. The
AUC of these models were 0.710 (Luminal A vs. TNBC),
0.763 (HER2+ vs. TNBC) and 0.683 (non-TNBC vs. TNBC),
respectively.63

The molecular-level prediction tasks of MRI radiomics
on hepatocellular carcinoma (HCC) include predicting
molecular states related to tumor and immunotherapy.
Chen et al. proposed a machine learning model based on
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Figure 2. Medical imaging analysis model for pathological and molecular prediction.

Figure 3. MRI radiomics applied at the molecular level of various tumors.

gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-
DTPA)-enhanced MRI to predict the immunoscore related
to the density of CD3+ and CD8+.64 The AUC of this
model based on the selected intratumoral and peritu-
moral radiomics features and clinical data is up to 0.926.
They also illustrated that using combined radiomics fea-
tures can obtain better predicting performance than
only using intratumoral radiomics features. Gu et al.
established a nomogram model based on ten radiomics
features and a clinical characteristics (α-fetoprotein
(AFP)) by multivariable logistic regression to predict the

Glypican 3 (GPC3) expression which is a biomarker asso-
ciated with the prognosis of HCC patients.65 The imag-
ing sequence used in their research is contrast-enhanced
T1-weight MRI. This model achieved higher AUCs of
0.926 in training and 0.914 in validation cohorts com-
pared with only using radiomics features. Wang et al.
incorporated the level of AFP, enhancement patterns of
tumor in the arterial phase, irregular margin of tumor,
and 11 radiographic features extracted from gadoxetic
acid-enhanced MRI images into the final nomogram
model to predict the status of cytokeratin (CK) 19 in
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HCC patients.66 The AUCs of this model for predicting
CK 19 status can achieve 0.959 and 0.846 in training and
validation cohorts. Hectors et al. explored the correlation
between qualitative or quantitative radiomics features
based on contrast-enhanced T1-weighted and diffusion-
weighted images.67 This study proved that radiomics
features are correlated with immunohistochemical cells
such as CD3, CD68 and CD31. At protein and mRNA
expression level, the radiomics features also have corre-
lation with PD-L1, PD1 and CTLA4.

Noninvasive preoperative grading and detection of
key tumor markers in glioma are useful for surgeons.
Recent studies have shown that MRI radiomics can
extract micropathological features of gliomas from med-
ical images, which may further understand some phys-
iological behavior of gliomas. Studies have found that
image fusion models combining radiomic features based
on contrast-enhanced T1-weighted imaging (cT1WI) and
apparent diffusion coefficient (ADC) achieved AUCs of
0.884 for status of IDH prediction and 0.669 for pre-
dicting TERT status. The cT1WI radiomic features per-
formed well with AUC of 0.815 for 1p/19q status predic-
tion.68 In addition, this study confirmed that MRI-based
radiomics can be used to noninvasively detect molec-
ular populations and predict glioma survival regardless
of glioma grade. These findings have been confirmed
by other investigators.69–74 Yogananda et al.75 proposed
a new deep learning network named MGMT-net that
can efficiently identify the status of MGMT promoter
methylation based on T2-weighted images (T2WI), with
good accuracy of 0.947 in the validation cohort confirmed
by tri-fold cross-validation. Akbari et al.76 constructed
a study cohort of 129 patients with new glioblastoma.
Then they obtained imaging labels of EGFRvIII from MRI
images using radiomics techniques and achieved accu-
racy of 0.853 and 0.87 for identifying EGFRvIII mutated
status in validation and test cohort, confirming that
imaging signature of EGFRvIII can reveal a complex and
unique macro glioblastoma phenotype.

One common childhood brain tumor is medulloblas-
toma (MB), which has a very high degree of malignancy.
A study by Yan et al.77 found that clinical and MRI imag-
ing information from routine preoperative examinations
could predict molecular subgroups of MB with high accu-
racy by using a machine learning algorithm. The model
showed excellent predictive performance for wingless
with an AUC of 0.9097 and accuracy of 0.8, and for
sonic hedgehog with an AUC of 0.8654 and accuracy of
0.867. Recent studies have shown that some patients
with astrocytoma, the most common type of glioma with
a poor prognosis, have improved survival by respond-
ing well to temozolomide (TMZ) chemotherapy.78,79 The
reason is that these patients were grade II-IV astrocy-
tomas with methylation of the oxy-6-methylguanine-
DNA methyltransferase.80,81 Wei et al.82 found that in
the training and validation cohort, fusion radiomic fea-
tures exhibited the highest ability in predicting methy-
lation of MGMT promoter, with AUCs of 0.925 and 0.902
respectively. Additionally, MRI radiomics performed well

in predicting overall survival for patients who completed
TMZ chemotherapy (P = 0.003 for high risk vs. low risk).
Zormpas-Petridis et al.83 revealed that MRI-based func-
tional imaging can detect apoptotic responses to MYCN-
targeted small-molecule inhibitors in a genetically engi-
neered murine model of MYCN-driven neuroblastoma.

In summary, fusion radiomic features based on MRI
images are important for predicting molecular subtype
and prognostic analysis of lesions in various malignan-
cies. Current studies have aimed to assess potential asso-
ciations between tumor microscopic features and MRI
radiomic features, but results have not yet been uni-
form. From the development of various radiomic mod-
els to their actual application in clinical practice (such as
prediction of histopathological features), more and more
extensive studies are necessary.

PET clinical application

PET is a functional imaging modality that noninva-
sively shows the metabolic processes of disease in vivo.
It is widely applied in clinical practice for diagnosis,
staging, assessment of therapeutic response, and pre-
diction of gene mutations and prognosis. The intro-
duction of radiomics has stimulated a new platform
for non-invasive tissue characterization based on func-
tional imaging. Some studies have predicted clinical
outcomes based only on the radiomics of PET images.
In the study of Li et al.,84 radiological characteristics
were extracted and evaluated from static images, early
summary images, and dynamic 18F-FET-PET images to
predict TERTp-mutation status in isocitrate dehydroge-
nase (IDH) gene-wild-type high-grade glioma patients,
where recursive feature elimination and logistic regres-
sion are used; the study showed that the model based on
dynamic 18F-FET-PET features could anticipate TERTp-
mutation status (AUC 0.82, sensitivity 92.1%). In two
other studies also targeting gliomas, they used dif-
ferent radioactive tracers for functional imaging. Qian
et al.85 demonstrated that radiological features of 18F-
DOPA-PET imaging can be used to predict pathological
O6-methylguanine methyltransferase status (accuracy
80%±10%). Li et al.86 used support vector machines to
generate 18F-FDG-PET imaging features combined with
clinical features to predict the potential of IDH genotype
status in patients with glioma, and verified the effective-
ness of the model.

Since PET presents limited details on the morphol-
ogy of lesions, it is often used in combination with CT
(PET/CT, Fig. 4) or MRI (PET/MRI) to obtain both metabolic
and structural information. Such multimodal imaging
analysis shows good application results.

PET/CT-based radiomics applications
The prediction of specific biomarkers in lung cancer is
a typical example of PET/CT-based radiomics applica-
tions. Mu et al. used small residual convolutional net-
works to analyze 18F-FDG-PET/CT images of 697 non-
small cell lung cancer (NSCLC) patients from three
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Figure 4. PET combined with CT for medical imaging analysis.

institutions and to develop deep learning scores to antic-
ipate PD-L1 expression status. Their work was well vali-
dated in training, and testing cohorts (AUC ≥ 0.82), which
could be used to identify patients with immune check-
point inhibitor sensitive NSCLC.87 Similarly, Zhang et al.88

used LASSO algorithm to select radiologic features that
predict EGFR mutations based on 18F-FDG PET/CT images
from 248 NSCLC patients. They found that the best pre-
diction for EGFR mutations was with the nomogram
developed using a combination of radiological charac-
teristics score and clinical variables (AUC = 0.87). While
another study used AI software to extract radiological
features from PET/CT images of patients with lung ade-
nocarcinoma, 22 radiological features and 3 clinical fea-
tures were selected to establish a model which pre-
dicted ALK rearrangement status (AUC = 0.88).89 18F-
PET/CT-based radiomics are also suitable for patients
with NSCLC who are preparing for stereotactic body radi-
ation therapy (SBRT), which can predict the potential of
circulating tumor cells before and after SBRT to co-guide
patients’ subsequent treatment.90 In addition, artificial
intelligence radiomics has made new advances in other
malignancies based on PET/CT images. Feature extrac-
tion (SUVmax, histogram parameters and texture fea-
tures) was performed on 18F-FDG PET images of 38 non-
metastatic luminal breast cancer patients in one study
and correlation of these extracted features with proges-
terone receptor and estrogen receptor expression was
observed.91 While another study population was early-
stage cervical cancer patients, Li et al. demonstrated that
PET-CT-based radiomics integrating the primary tumor
and perineural regions could predict E-cadherin.92 Dif-
ferent from the above studies with better predictive
value, Saadani et al. explored the use of radiomic 18F-
FDG PET/CT features to predict B-rapidly accelerated
fibrosarcoma valine 600 (BRAFV600) mutation status in
melanoma patients and explored six different meth-
ods of feature selection. The results showed that the
AUC for radiomics prediction of BRAFV600 mutation in
melanoma patients ranged from 0.54 to 0.62 and are
influenced by the feature selection method.93

PET/MRI-based radiomics applications
A new trend in PET imaging technology introduced in the
last few years is the PET-Magnetic Resonance Imaging
(PET-MRI) system. This system uses MRI as an alterna-
tive to CT to eliminate additional radiation dose and can
greatly improve the clarity of soft tissue imaging that CT
tissue cannot provide. In Umutlu et al.’s study,52 the per-
formance of synchronous 18F-FDG PET/MRI as a compre-
hensive radiological platform for breast cancer subtype
analysis, hormone receptor status, and proliferation rate
was investigated. They used LASSO regression to select
the most significant radiological characteristics in 18F-
FDG PET/MRI images from 124 breast cancer patients.
Then, support vector machines were used for five-fold
cross-validation to form a prediction model for the com-
bination of various imaging data series. Finally, 18F-FDG
PET/MRI can be used to obtain morphological, functional
and metabolic data simultaneously for comprehensive
and high-quality radiomic analysis of breast cancer
phenotype and tumor decoding. Zaragori et al.94 used
18F-FET PET-MRI radiomics to non-invasively predict
IDH genotype, O6-methylguanine methyltransferase pro-
moter methylation status and alpha thalassemia/mental
retardation syndrome X-linked (ATRX) genotype with
1p/19q coding deletion, both of which showed good pre-
diction.

Four-modalities model
Different from above, Matsui95 diagnose the molecu-
lar subtype of lower-grade gliomas based deep learn-
ing (DL) and multi-modalities analysis. They designed a
four-modalities (MRI, PET, CT and clinical information)
deep learning model to learn and extract relative features
automatically.

Ultrasound clinical application

Ultrasound imaging is a simple, flexible, low-cost and
radiation-free imaging modality, especially suitable for
imaging thyroid, breast and liver tissues. However,
because ultrasound imaging has a lower resolution than
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Figure 5. The workflow of (A) machine learning and (B) deep learning ultrasound radiomics for molecular subtype prediction.

other modalities and is greatly affected by the operator,
the image quality is relatively poor and unstable, and
the tumor boundary is often not particularly clear. These
disadvantages often limit the accuracy of direct analysis
of ultrasound images by radiologists. With the develop-
ment of artificial intelligence, ultrasound radiomics has
been widely used in diagnosis and prediction tasks with a
good performance. In recent years, ultrasound radiomics
has gradually involved cancer-related molecular predic-
tion tasks. The application of ultrasound radiomics at
the molecular level is mainly focused on the classifica-
tion of breast cancer molecular subtypes. Machine learn-
ing is also an important technique for feature selec-
tion and model development (Fig. 5A). Cui et al. used
the ultrasound features, according to the fifth edition
of Breast Imaging Reporting and Data System (BI-RADS)
and the elasticity ultrasound features specified by the
WFUMB guidelines to construct Ki67 and P53 expression
prediction models.96 It was found that the high expres-
sion of Ki67 was associated with the loss of echo halo,
posterior acoustic enhancement and high BI-RADS cat-
egory. The high expression of P53 was correlated with
the loss of echo halo and high classification of BI-RADS.
The AUC of prediction models reached0.78 for Ki67 and
0.71 for P53. The above research only used the clin-
ical appearance features of ultrasound images, ignor-
ing more valuable image features such as grayscale and
texture features, thus the prediction accuracy is not
high. Wu et al. proposed six machine learning mod-
els with a series of handcraft image features that are
able to predict the expression of multiple breast duc-
tal carcinoma-related molecules including ER, PR, HER2,
Ki67, P16 and P53.97 The features used in this study con-
tained 5234 image features with mathematical mean-
ing, and different machine learning models for fea-
ture selection were used for different molecular pre-
diction tasks. In the end, the AUC of the test cohort
was up to 0.84 for ER, 0.78 for PR, 0.74 for HER2, 0.86
for Ki67, 0.78 for P16 and 0.74 for P53 expression pre-
diction. Recently, more and more studies have applied

deep learning to the prediction of breast cancer molec-
ular subtypes. Compared with machine learning meth-
ods based on manual selected features, deep learning
model can adaptively extract high-level advanced fea-
tures of images that are highly correlated with these
molecules through data-driven learning (Fig. 5B). In the
case of big data, the prediction performance of molec-
ular expression can be further improved by using deep
learning models. Zhang et al. proposed one deep learning
model for molecular subtype diagnosis.98 This study con-
tains a multicenter and big dataset including more than
3 000 ultrasound images and 2 000 patients to train and
test the model. The model achieved high performance in
identifying different molecular subtypes of breast can-
cer. The AUCs of the test cohort was 0.864 for identify-
ing triple-negative breast cancer, 0.811 for HER2+ and
0.837 for HR+ breast cancer. Similarly, Jiang et al. also
developed the deep learning model for breast cancer
molecular subtype assessment based on a multicenter
dataset with more than 4 828 ultrasound images and
1 275 patients.99 This model achieved higher prediction
performance, identifying the four breast cancer molecu-
lar subtypes including Lumina A, Lumina B, HER2+ and
triple-negative, with accuracy ranging from 80.07% to
97.02% and 87.94% to 98.83% in two test cohorts, respec-
tively. Furthermore, this study also proposed an addi-
tional deep learning model for distinguishing luminal
disease from non-luminal disease. The positive predic-
tive value on the two test cohorts reached 93.29% and
88.21%, respectively. Zheng et al. proposed a model by
using deep learning method for predicting axillary lymph
node status in early-stage breast cancer, with AUC value
of 0.902 for lymph node metastasis.26

Pathological examination

Over the past few decades, faster computation capac-
ity and cheaper storage have enabled digital pathology
to gain rapid development.100–105 Pathologists can study
digital pathological images more easily and flexibly than
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Table 3. Application of AI in pathological examination.

Application category Application examples
Diagnosis Benign and malignant diagnosis113

Tumor aggressiveness classification114,115

Tumor differentiation prediction116

Efficacy prediction Tumor regression grade of neoadjuvant therapy prediction117

Gene prediction Classification and mutation prediction from non-small cell lung cancer118

Microsatellite instability prediction25

Biomarker prediction Prediction of fluorescence label distribution in unlabeled images109

Predictions of DAPI, α-SMA and PanCK distribution31

Predictions of the distribution of PanCK, DAPI, CD3 and CD20 biomarkers111,112

Prognosis prediction Survival prediction119–123

in the past. The past 20 years have seen the beginning
and development of digital imaging in pathology, which
allows whole slides to be imaged and stored permanently
at high resolution. These progresses have facilitated the
application of deep learning-based methods in patholog-
ical examination analysis. AI is an emerging approach
and has been widely applied in medical image analysis,
such as nuclei segmentation,106 cancer diagnoses103,107

and cancer subtype classification.108

Christiansen et al. proposed a method based on deep
learning to predict the distribution of fluorescent mark-
ers in unlabeled images by using a deep neural net-
work that trains unlabeled and labeled images in pairs.109

The results showed that the fluorescence labeling algo-
rithm based on deep learning can be used to predict the
fluorescence labeling of transmitted light images. This
demonstrates the potential of the DL-based approach
in histological image synthesis tasks. Diao et al. pro-
posed a computational pathology process that integrated
high-resolution cell-level information from whole-slide
images to predict molecular derived phenotypes for five
different cancer types.110 The proposed approach com-
bines the deep learning method with the interpretabil-
ity of human interpretable features. It can integrate prior
knowledge and achieves the performance of an end-to-
end model. Bian et al. utilized convolutional neural net-
works to learn the spatial patterns incorporated within
H&E images and make predictions of the distribution of
PanCK, DAPI, CD3 and CD20 biomarkers.111,112 The pro-
posed works showed that artificial intelligence can be
used in biomarker distribution prediction tasks, which
can help aid pathologists in image analysis. The appli-
cations of AI in pathological examination are shown in
Table 3.

Artificial intelligence demonstrates exciting potential
in the challenge of digital pathological image quanti-
tative analysis and prediction model construction. The
method can be summarized into expert-driven fea-
ture engineering methods and data-driven deep learn-
ing methods.124,125 The expert-driven feature engineer-
ing method usually includes three steps: artificially
defined pathology image feature extraction, feature
selection, and modeling.119,120 The extracted features are
used to quantitatively describe cell-level events such
as cell mitosis, multi-nucleation process, and cell sub-
types, which was further for the description of spatial

architecture and arrangement of cells. After these fea-
tures are screened, the features are integrated through
machine learning, and models are constructed for spe-
cific prediction tasks. The data-driven deep learning
method employs convolutional neural networks (CNN)126

to predict the patch of whole slide image (WSI) end-
to-end, and then integrates the prediction results of
multiple patches through a voting machine to obtain
patient-level prediction results based on several patch-
level results.118,121 Compared with expert-driven fea-
ture engineering method, data-driven deep learning
method reduces the dependence on prior patholog-
ical knowledge and automatically learns meaningful
features from data. In this way, feature design iter-
ations and repeated expert discussions are reduced
greatly.114,124,127 Currently, AI-based quantitative analy-
sis methods of pathological images have been success-
fully tried in clinical needs such as diagnosis,113–116,127

efficacy prediction,117 gene prediction,25,118 and prog-
nosis prediction119,121,122 of multiple cancers, and have
shown good patient benefits. The cancer types involved
include breast cancer, prostate cancer, rectal cancer,
and many others. The clinical challenges that have
been solved involve benign and malignant diagnosis,113

tumor aggressiveness classification,114,115 tumor differ-
entiation prediction,116 microsatellite instability predic-
tion,25 tumor regression grade of neoadjuvant ther-
apy prediction117 and survival prediction.119–123 The AI
showed significant improvement in the evaluation of
classification accuracy, sensitivity, specificity, and other
indicators.24 The combination of pathologists’ diagnosis
results and AI methods can effectively improve the con-
sistency of diagnosis among doctors of different expe-
riences and achieve better performance than doctors in
some specific tumor problems.114,115 Hopefully, AI is able
to provide an effective micro-information reference for
precise and personalized treatment, thereby improving
patient benefits.

Discussion and conclusion

Medical imaging provides an important source of clin-
ical information for medical diagnosis, efficacy evalua-
tion, and patient prognosis and survival prediction. With
the development of machine learning, artificial intelli-
gent technology can extract key information, which is
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vulnerable to be missed by human observation, from a
large amount of data. The combination of artificial intel-
ligence and medical imaging provides a possible techni-
cal means for precision medical analysis. Especially cor-
relation studies have found that pathological and molec-
ular level information is highly correlated with medical
imaging features.128–130 This allows medical imaging to
provide the possibility of molecular-level biological fea-
ture diagnosis.

This article mainly analyzes the current research sta-
tus of medical imaging technology combined with arti-
ficial intelligence, especially the systematic research on
this method to explore molecular pathology informa-
tion. The survey results have also proved the feasibility
of radiomics to analyze molecular pathology.

However, there are also some limitations and chal-
lenges, which require continuous research in the future
to further overcome the deficiencies of medical imaging.
Specifically, for data acquisition, the protocol and instru-
ment changes between different institutions will reduce
the robustness of the radiomics model. Data sharing
between institutions involves challenges in patient pri-
vacy, which may be a limiting factor in the development
of a unified model. This requires standard imaging pro-
tocols, repeatable and consistent image processing, and
collaboration between agencies to create large amounts
of annotated datasets. In addition, it is necessary to
design robust imaging features,131 and specify unified
algorithm design standards and evaluation standards,
which will help establish a reliable radiomic model. Fur-
thermore, studies have shown that radiomics, when
combined with histopathology, genomics or molecular
classification, and immunophenotype, can achieve more
precise results in predicting patient prognostic charac-
teristics.132

In the future development, medical imaging analysis
will focus on data sharing, carefully designed, forward-
looking and comprehensive research. It has great poten-
tial in helping understanding of the in vivo physiol-
ogy of tumors and provides opportunities for optimizing
patient clinical care.133 By incorporating more data and
making the model more robust, the increasing predic-
tion accuracy of medical imaging analysis will continue
to contribute to personalized medicine. Real-time predic-
tive analysis can be obtained from large semi-automatic
patient data sets and electronic medical records to pro-
vide insights into various disease processes. In conclu-
sion, in the new era of precision medicine, AI-aided med-
ical imaging analysis will be extensively contributing to
clinical decision.
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