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Marginal ice zone fraction benchmarks sea ice
and climate model skill
Christopher Horvat 1✉

Global climate models (GCMs) consistently underestimate the response of September Arctic

sea-ice area (SIA) to warming. Modeled SIA losses are highly correlated to global mean

temperature increases, making it challenging to gauge if improvements in modeled sea ice

derive from improved sea-ice models or from improvements in forcing driven by other GCM

components. I use a set of five large GCM ensembles, and CMIP6 simulations, to quantify

GCM internal variability and variability between GCMs from 1979–2014, showing modern

GCMs do not plausibly estimate the response of SIA to warming in all months. I identify the

marginal ice zone fraction (MIZF) as a metric that is less correlated to warming, has a

response plausibly simulated from January–September (but not October–December), and has

highly variable future projections across GCMs. These qualities make MIZF useful for eval-

uating the impact of sea-ice model changes on past, present, and projected sea-ice state.
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The rapid decline of the Arctic sea ice cover is a primary
indicator of Earth’s changing climate. Yet the response of
September sea-ice area or extent (SIA/SIE) to a unit

increase in carbon emissions is underestimated compared to
observations in nearly all global climate models (GCMs): only
models that overestimate resulting global warming can reproduce
observed trends in sea ice loss1. Accordingly, the failure of GCMs
to represent declining trends in observed SIE2,3 has contributed to
efforts to improve the representation of sea ice in GCMs4–6. Still,
a majority of GCMs submitting to phase 6 of the Coupled Model
Intercomparison Project7 (CMIP6) remain unable to produce
plausible estimates of the observed decline of September Arctic
sea ice8.

The use of SIE/SIA to evaluate sea-ice model improvements is
confounded by the parametric relationship between modeled SIA
and carbon emissions; and by extension global mean temperature
(GMT), one that holds across sea ice and climate models of a
wide range of complexities8–13, and references within. The
underestimation of September SIA loss has improved across
CMIP generations, but the link between SIA and GMT makes it
challenging to judge whether improvements in modeled sea ice
originate in improvements in sea-ice model physics or are due
primarily to improvements in the external forcing of sea ice14,
like changes to aerosol forcing8,15–17 noted that the inaccur-
acurate representation of SIA trends in CMIP5 models can be
explained as the result of inherent internal variability in modeled
climate, which in this study will be referred to as “model internal
variability”. Because of the low number of ensemble members
contributed by each model group in CMIP5, it was not possible to
directly evaluate model internal variability over the global
warming period. Instead,17 used year-to-year variance from a
single model realization over a long pre-industrial simulation to
represent model internal variability. The recent publication
of large (20+ member) ensembles18–20, and the contribution of
multiple historical runs to the 6th CMIP from a number of
modeling centers (see Table 1) now allows for a direct evaluation
of model internal variability for several independent models, and
over the same period that sea ice has declined.

The marginal ice zone (MIZ) has been a point of focus as a
critical region for polar climate and ecology21–23, and can be
observed using the same passive microwave observations used to
estimate SIA/SIE24. MIZ location and variability is set through
the coupled interaction of oceanic, atmospheric, thermodynamic
and sea ice dynamical processes that are the focus of many recent
modeling efforts25–29. However, September MIZ extent has gen-
erally been unchanged over 1979–201830, with September MIZ

fraction (MIZF), the percentage of the September Arctic sea ice
cover that is MIZ, increasing as SIA has declined.

Here I evaluate model representations of SIA, MIZF, and GMT
against observations, incorporating both climate model internal
variability and inter-model differences. I use five 20-50 member
ensemble simulations submitted to the CLIVAR large ensemble
project20, CLIVAR-LE (Table 1, top). As mentioned above, these
large (20+member) ensembles18–20 permit a direct assessment of
model internal variability from ensemble variance. To assess
inter-model differences, I create an “ensemble-mean-ensemble”
(CMIP6-EME) from the ensemble-mean statistics of 8 climate
models which submitted relatively large sets (10+ member) of
historical simulations to CMIP6 (Table 1, bottom). These model
ensembles are compared to three satellite observational products
from which I derive observational uncertainty.

Across this set of 5+ 1 ensembles, I consider two main
quantities: SIA and MIZF, and their sensitivities to warming—the
relationship between a unit change in SIA/MIZF and a unit
change in GMT. I find that after accounting for model internal
variability, inter-model variance, and observational uncertainty,
modern GCMs are generally unable to produce plausible esti-
mates of SIA sensitivity to warming at any point during the year.
On the other hand, I demonstrate that MIZF is weakly correlated
to warming, and a useful benchmark for understanding GCM and
sea-ice model skill. Five of six ensembles produce plausible esti-
mates of MIZF sensitivity in 7 months or more, including Sep-
tember. The exception is during the fall freeze-up period from
October-December, which suggests a target for improvement in
current-generation sea-ice models. As future projections of Sep-
tember and December MIZF differ radically between models,
MIZF may also be a useful way to determine in real-time whether
current models make skillful predictions of future Arctic sea ice
variability.

Results
GCM estimates of September sea ice and MIZF change. With
the largest percentage changes in Arctic sea ice coverage occur-
ring in September31, the ability of GCMs to reproduce September
trends in sea ice coverage is paramount. Figure 1a plots Sep-
tember Arctic SIA for CLIVAR-LE models (colors) and the
merged observational product (black), with the CMIP6-EME
mean plotted as a dotted line (see methods for details on the
CLIVAR-LE, how the CMIP6-EME is constructed, observational
products, and how SIA, MIZF, and trends are calculated). Con-
sistent with the model-mean behavior of the 5th and 6th

Table 1 Global climate models used in this study.

Modeling center Version No. members Sea-ice model Ocean model doi

CLIVAR-LE
CCCma CanESM2 50 CanSIM1 CanOM4 10.1175/JCLI-D-16-0412.1
NCAR CESM1 40 CICE4.0 POP2 10.1175/BAMS-D-13-00255.1
CSIRO MK3.6 30 CSIRO-SIM MOM2.2 10.22499/2.6301.001
GFDL CM3 20 SISp2 MOM4.1 10.1175/JCLI-D-18-0134.1
GFDL ESM2M 30 SISp2 MOM4.1 10.5194/bg-12-3301-2015

CMIP6-EME
NCAR CESM2 11 CICE5.1 POP2 10.22033/ESGF/CMIP6.2185
EC EC-Earth3 14 LIM3 NEMO3.6 10.22033/ESGF/CMIP6.4700
GISS E2-1-H 10 GISS SI HYCOM 10.22033/ESGF/CMIP6.1421
INM CM5-0 10 INM-ICE1 INM-OM4 10.22033/ESGF/CMIP6.1423
IPSL CM6A-LR 32 LIM3 OPA 10.22033/ESGF/CMIP6.1534
JAMSTEC MIROC6 10 COCO4.9 COCO4.9 10.22033/ESGF/CMIP6.881
MPI ESM1-2-LR 10 MPI-SIM MPIOM1.63 10.22033/ESGF/CMIP6.742
NCC NORCPM1 27 CICE4 MICOM1.1 10.22033/ESGF/CMIP6.10843
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CMIPs3,8, while there is broad disagreement in the magnitude of
SIA among individual models, the CMIP6-EME mean generally
tracks observed September SIA.

For each ensemble member, a normalized SIA trend is
computed (x axis, ΔSIA, see methods), scattered against the
trend in GMT (y axis, ΔGMT) over the period 1979–2014.
Because of the large difference between models in SIA and MIZF
mean states, trends are expressed as a percentage change per year
(this choice is examined in more detail in the Discussion below).
While individual CLIVAR-LE models do not produce plausible
estimates (see methods) of ΔSIA in September (red boxes,
Fig. 1e), the CMIP6-EME does (blue box, Fig. 1e), again
consistent with3,8. I show below, as in ref. 1, that this apparent
agreement is a result of an inaccurate SIA sensitivity to warming.
The scatter of ΔGMT vs. ΔSIA in Fig. 1c illustrates their known
parametric relationship11,12,32, e.g., September ΔSIA and ΔGMT
are significantly correlated (p < 0.01) with a bivariate correlation
coefficient of r=−0.81: variation in ΔGMT across all simulations
can explain 66% of the variance in ΔSIA.

The same analysis applied to marginal ice zone fraction (MIZF;
Fig. 1b, d, f) reveals a different response. There is greater
observational uncertainty in ΔMIZF trends than ΔSIA, as the
distribution of sea ice concentration is sensitive to the algorithm
used to recover ice concentration from satellites16. All three
observational estimates show positive ΔMIZF from 1979–2014.
The CMIP-EME and four of five members of the CLIVAR-LE
produce plausible estimates of September ΔMIZF over this period.

In Fig. 2 I plot coefficients of determination (Pearson’s r2)
between annual ΔGMT and monthly ΔSIA (red) and ΔMIZF

(blue) trends, with significant correlations filled circles. SIA
trends are significantly correlated with GMT trends in all months,
whereas MIZF has no significant correlation (p > 0.01) with GMT
in four: February, May, August, and September. The coefficient of
determination of SIA exceeds that of MIZF in all months which
can be expected as MIZF involves a ratio of MIZ area to SIA (see
methods). In September, with a bivariate correlation coefficient of
r= 0.17, only 3% of the variability in ΔMIZF across the
simulations can be explained by ΔGMT variability.

Seasonal GCM estimates of SIA and MIZF sensitivities. The
preceding analysis demonstrated that September MIZF trends

(a) (b)

(c) (d)

(e) (f)

Fig. 1 September sea ice statistics, sensitivities, and trends. a Annually averaged SIA for all CLIVAR-LE and CMIP6-EME simulations. Solid lines are
CLIVAR-LE ensemble means. Dotted line is the CMIP6-EME ensemble mean. Colored areas are one unbiased sample standard deviation from ensemble
means (see “Methods”). Black lines and shaded region is the same for observations and observational uncertainty. c Scatter plot of 1979–2014 trend in
global mean temperature vs normalized trend in sea-ice area (expressed as a percentage per year). Crosses are observations. e Box plots of sea-ice area
trends for models shown above and observations. Whiskers extend the boxes ± 3 standard deviations from the mean in each month and vertical line is
ensemble median. Dashed black line extends the median observed trend. Blue boxes are plausible estimates given the observation (black boxes, see
methods), red boxes are implausible estimates (at p= 0.01). b, d, f Same as (e) but for MIZF.

SIA
MIZ

Fig. 2 Correlation between SIA/MIZF and GMT. Seasonal cycle of
explained variance (r2) of SIA trends (red) or MIZF trends (blue) by annual
GMT trends across all CLIVAR-LE and CMIP6-EME simulations. Solid
circles are significant correlations (p < 0.01).
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alone are plausibly estimated when considering both internal
variability (in 4/5 CLIVAR-LE models) and inter-model varia-
bility (computed via the CMIP6-EME). September MIZF trends
are also not correlated with GMT trends, and no members of the
CLIVAR-LE plausibly estimate the observed change in September
SIA. Still, the bias in modeled September SIA could plausibly be
explained as a consequence of inter-model variability in the
CMIP6-EME, though this does not take into account the corre-
lation between GMT and September SIA. Here I investigate this
correlation, examining SIA and MIZF sensitivity to warming
across the seasonal cycle, where the sea ice sensitivity (or MIZF
sensitivity), ρSIA, is defined as the percent change in SIA per
degree change in GMT (units %/K). A declining SIA with
increasing GMT therefore yields a negative ρSIA.

Figure 3 (top row) shows box plots of the seasonal cycle of sea
ice sensitivity, which is defined as the percent change in sea ice
extent per unit of warming (ρSIA, units %/K), for each of the 5+
1 ensembles. Note that observed global warming over 1979–2014
was ~0.634 K, and therefore ρSIA= 50%/K would correspond to
a −30% change in SIA over that period.

The plausibility of a given model estimate of sensitivity is
evaluated via a two-sided t-test (see “Methods” for the rationale
behind this choice). Red boxes plot where the null hypothesis—
that model estimates and observational estimates come from
distributions with the same mean—is rejected at the 5%
significance level. Each of the ensembles reproduces the
qualitative seasonal cycle of ρSIA, with the largest magnitude
sensitivity to warming from June to September. In all months,
and across all of the ensembles, observed values of ρSIA are more
negative than model estimates. This includes an underestimation
of September sea ice sensitivity, as previously observed by
many1,2,8, e.g., However, controlling for internal variability (in
the CLIVAR-LE) or inter-model variability (in the CMIP-EME),
no models make plausible estimations of September ρSIA, or in
more than 3 months of the year (blue boxes). This differs from
the results of[ 8,17, who found that estimates of September sea ice
sensitivity in CMIP5/6 class models were plausible when
accounting for internal variability—although in those studies
internal variability was quantified using different methodologies

to account for having fewer ensemble members (see “Discussion”,
below).

Each ensemble also qualitatively reproduces the observed
seasonal cycle of MIZF sensitivity, ρMIZF (bottom row, Fig. 3):
increasing after January, peaking between August and October
and declining to December. Accounting for internal or inter-
model variability, 4/5 CLIVAR-LE members and the CMIP-EME
plausibly predict MIZF sensitivity in at least 7 months. The
exception is the GFDL-ESM2M model, which does in 6 months.
Observational uncertainty in ρMIZF is significantly higher than
ρSIA because of algorithmic differences between the three
observational products, which may increase the plausibility of
the modeled sensitivities. However, repeating the analysis for
ρMIZF, but synthetically using the significantly lower observa-
tional uncertainty for ρSIA (see Methods, Supporting Fig. S2),
yields qualitatively and quantitatively similar results, as does
repeating this analysis using any two of the three observational
estimates instead of all three.

Despite producing generally plausible estimates of ρMIZF from
January-September, all but one of the 5 CLIVAR-LEs fail to
estimate ρMIZF from October to December (the exception,
CSIRO-MK36, provides a plausible estimate in November). These
three months are those with the highest annual correlation
between ΔMIZF and ΔGMT and therefore likely the most
sensitive to forcing biases. The CMIP-EME does plausibly
estimate ρMIZF in October and November.

Future projections of MIZF variability. Accounting for internal
variability, historical estimates of MIZF sensitivity are generally
plausible from January to September. From October to December,
internal variability cannot explain incorrect estimates of ρMIZF,
but inter-model variability (expressed by the CMIP-EME) may.
Thus MIZF may prove a useful benchmark for characterizing
future model projections of sea ice change. Figure 4 repeats
Fig. 1d, f, focusing on the future (2020–2055) projections of
September ΔMIZF (a, c) and December ΔMIZF (b, d). Only the
CLIVAR-LE simulations are considered here as no 10+ member
ensembles of CMIP6 data were available under the RCP8.5
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Fig. 3 Seasonal plausibility of GCM estimates of SIA/MIZF sensitivity. (Top row) Seasonal cycle of sea ice sensitivity ρSIA (units %/K), for CLIVAR-LE
members or CMIP6-EME over 1979–2014. Boxes cover the interquartile range and horizontal whiskers the ensemble median. Vertical whiskers extend to
±3σ from the ensemble mean (95% of normally distributed data). Black solid line is the mean from observations. Dashed lines bound observational
uncertainty (see “Methods”). Red shaded boxes are implausible estimates of sensitivity, and blue are plausible estimates (see “Methods”). (Bottom row)
Same, but for MIZF sensitivity ρMIZF (units %/K).
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pathway at the time this manuscript was compiled. I choose
September for three reasons: it is the month of the annual sea ice
minimum, there is no significant correlation between historical
ΔMIZF and GMT, and it is well-predicted, with 4/5 CLIVAR-LE
members and the CMIP6-EME plausibly estimating historical
September ΔMIZF. Because of the historical similarities between
CLIVAR-LE members, a divergence in future projections of
September ΔMIZF can help differentiate between models.
December is chosen because it has the largest annual differences
in predicted ΔMIZF between models.

On the basis of September and December SIA projections, the
models fall into three general groups. Two (GFDL-ESM2M and
CSIRO-MK36) show MIZF trends that are ≈2%/yr in September,
but are indistinguishable from zero in December. Two others
(GFDL-CM3 and CANESM2) have near-zero trends in Septem-
ber but large (>10%/yr) ΔMIZF in December. The final, CESM,
has a positive MIZF trend in September but weaker positive trend
(ΔMIZF ≈ 2%/yr) in December. There is a difference in ΔMIZF
for models with similar predicted ΔGMT. For example, between
CESM and GFDL-CM3, ensemble-mean values of ΔGMT vary by
<8% (0.044∘/yr vs 0.0472∘/yr), and ensemble mean values of
ΔMIZF vary by more than 600% (2.2%/yr vs 15.9%/yr).

Discussion
Despite significant efforts to improve sea-ice models, GCMs
underestimate the rate of September sea ice loss as a function of
overall warming. Previous work examined whether this under-
estimation may be the result of internal variability in individual
GCMs. Yet here, using five large ensembles and ensemble-mean
output from CMIP6 over the period from 1979 to 2014, I show
that the underestimation of September sea ice sensitivity persists
and extends to the entire seasonal cycle. By using these ensembles
to quantify both forced internal variability and inter-model
variability, I show this underestimation cannot plausibly be
explained as the result of either. As a consequence of the high
correlation between SIA/SIE trends and GMT trends found across
GCMs, it is challenging to understand whether improvements in
modeled SIA/SIE over time are due to changes to sea-ice models
themselves, or due to improvements in other components of
GCMs that lead to better representation of GMT trends.

On the other hand, GCMs capably simulate changes in MIZF
in most months of the year over 1979–2014, and changes to
Arctic MIZF are less determined by changes to GMT. The result

of this weaker covariance, especially in September, suggests that
changes in MIZF, for example between model versions or over
time, can be used to evaluate whether sea-ice models and their
modeled responses to warming are improving on their own.

Accounting for observational uncertainty and internal varia-
bility, all five members of the CLIVAR-LE produce plausible
estimates of MIZF change over January-September. While they
fail to do so from October-December, this bias (a) is during the
annual period where MIZF is most determined by GMT change
(Fig. 2), and (b) can be explained as a result of inter-model dif-
ferences using the CMIP6-EME. Understanding how the repre-
sentation of historical MIZF changes with changes to sea-ice
models could be useful for evaluating improvements or declines
in sea-ice model skill.

The results presented here are consistent with the general
consensus that sea-ice models are not sufficiently sensitive to
warming. However, the result that model internal variability
cannot explain the sensitivity of September sea ice (nor most
other months), to warming (Fig. 3, top row) differs from the
analysis of refs. 8,17. I suggest two main explanations for this
difference. First, different data and methodology17: sought to
solve the problem of assessing internal variability for small forced
ensembles, using an ergodic assumption to convert control
simulation variability to ensemble variability. Here, with a large
number of members in each of the 5+ 1 ensembles, a more direct
and simpler evaluation of internal variability is possible, one with
a significantly tighter constraint on internal variability than is
possible for smaller ensembles (see “Methods”) and therefore a
less permissive test of plausibility. In addition, in ref. 8, an average
estimate of model internal variability was defined by pooling all
CMIP6 models that contributed three or more simulations, and
here I compute the model internal variability for each CMIP6
model on its own. Second, we examine slightly different fields. I
find that trends in SIA alone are plausibly produced by the
CMIP6-EME (Fig. 1e), however as shown here and identifed by
refs. 1,8, the sensitivity of SIA to warming is not (Fig. 3). With a
large spread in simulated mean state between model groups, I
evaluate trends in dimensionless sea ice fields, though evaluating
the trends of dimensional fields yields similar results (SI, Sup-
porting Fig. S1). This choice is guided by the fact that sea ice
feedbacks are highly state-dependent33–36. A loss of 1 million
sq km of sea ice for a simulation with a mean state of 5 million
sq km, versus a mean state of 10 million sq km may have the

GFDL-ESM2M CANESM2 GFDL-CM3 CESM CSIRO-MK36

(a)

(b)

(c)

(d)

Fig. 4 Future MIZF variability in the CLIVAR-LE. a Scatter plot of October 2020–2055 trend in global mean temperature vs normalized trend in MIZF
(expressed as a percentage per year). b Box plots of MIZF trends alone. c, d Same as (a, b) for December.
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same immediate geophysical impact but carries double the
feedback effect.

MIZF is a quantity that suffers from a high level of observa-
tional uncertainty, which may increase the plausibility of modeled
MIZF sensitivity to warming. Passive microwave estimates of sea
ice concentration used to estimate MIZ coverage can provide
significantly different estimates of local sea ice concentration for
the same return, a particular challenge in summer when sea ice is
covered in melt ponds16. Accordingly observational uncertainty is
highest in these months (reaching 45% in July, for a trend of
±1.1%/yr over the historical period)—reducing the ability to
differentiate plausible model estimates of ρMIZF from implau-
sible ones and potentially limiting the ability to differentiate
model estimates from one another in the future. The wider error
bounds for MIZF, however, do not affect the plausibility of
modeled MIZF. The results presented here hold generally even if
the uncertainty in observed MIZF is artificially reduced to be the
same as for observed SIA (see “Methods”, Supporting Fig. S2). In
addition, projected increases in MIZF change over 2020–2055 for
those models that expand in either September or December
greatly exceed observational uncertainty in those months. His-
torical observational MIZF uncertainty is 37% (~1%/yr) in Sep-
tember and 4% (≈0.1 %/yr) in December—with “expanding”
models growing at 10% or more per year, the signal of a growing
MIZF will quickly emerge from the observational uncertainty
especially in December. Improvements in retrieving the MIZF, for
example through improved spectral unmixing and machine
learning techniques37 or new satellite methodologies38 will permit
cleaner discrimination of GCM output against observations.

Many of the sea-ice models used in modern GCMs share
common parameterizations or development histories, and the
interrelation of sea ice and ocean models could impact estimates
of inter-model variability39. Developing a method to properly
weight ensemble mean statistics based on climate model inter-
dependence to form the CMIP-EME is not within the scope of
this study, and I note that despite sharing the same sea ice and
ocean model components, the two GFDL contributions to
CLIVAR-LE diverge significantly in predictions of future MIZF.

Indeed, individual GCMs make highly differentiable predic-
tions about future MIZF, which can be more readily disentangled
from future warming than SIA or SIE. Examining projections of
September and December MIZF under the RCP8.5 forcing sce-
nario, the five CLIVAR-LE models can be loosely grouped into
three categories: those predicting a large September MIZF
expansion (CESM), those predicting a large December MIZF
expansion (CANESM2,GFDL-CM3), and those predicting weak
to no MIZF expansion over the next 35 years (GFDL-ESM2M,
CSIRO-MK3.6). The magnitude of projected trends in the two
“expanding” cases is much larger than historical values of MIZ:
for example, CESM projects a 10%/yr increase in MIZF from
2020 to 2055 following the RCP8.5 pathway, but MIZF expanded
by <1%/yr from 1979–2014. Because the projected signals of
MIZF expansion are high (increases of 10% per year, compared to
typical historical trends of 1–2% per year), and in September
MIZF changes are not correlated with GMT changes, it may be
possible to use MIZF forecasts in real time to assess and analyse
the impact of changes to sea-ice model physics on Arctic sea ice,
independent of whether models accurately represent warming.

Processes that affect the variability and expansion of the MIZ
are present around the sea ice margin, and may not vary greatly
in effect over time but simply move north as sea ice retreats as
suggested by ref. 30. This could explain why MIZF trends are less
correlated to GMT trends in several months. MIZF trends are
also poorly predicted by the models considered here during the
period of sea ice freeze-up and expansion, from October to
December. This may point to the parameterization of new ice

growth as an area of sea-ice model weakness, although the growth
of new sea ice is highly tied to local temperature, and these
months are also those with the highest correlation between MIZF
trends and GMT trends. This period of the year is also that in
which the effect of waves is most pronounced in Arctic sea ice38,
and none of the CLIVAR-LE models nor any models submitting
to CMIP6 incorporate the coupled evolution of sea ice and waves,
one of the most significant drivers of MIZ variability40. Progress
is being made at incorporating wave and responsive floe size
distribution models29,41–43 in GCMs, and understanding how
parameterizations of coupled wave, thermodynamic, and
dynamic processes influence model estimates of MIZF will be a
key area for future efforts.

Methods
CLIVAR large ensemble data. I use five contributing members to the CLIVAR
large ensemble that provide sea ice concentration fields to the EarthSystemGrid
data portal (CSIRO-Mk3.6, GFDL-ESM2M, GFDL-CM3, CANESM2, and
CESM1), which are listed in Table 1). These simulations are branched from pre-
industrial spinups and output encompasses at least 1950–2100. Information about
the initialization of and historical forcing of ensemble members is provided in
ref. 20. Historical forcing is applied until 2014, at which point model forcing follows
the RCP8.5 pathway.

CMIP6-EME data. I also use eight available CMIP6 models with historical sea ice
output available on the Earth System Frontier Grid as of 5/1/2020, that submitted
10 or more ensemble members, and are used to create the multi-model ensemble
CMIP6-EME (listed in Table 1). As each individual modeling center submits a
varying number of runs, the mean value of a statistic across all CMIP6 simulations
is biased towards those models with more contributions. Thus CMIP6-EME is
composed of “ensemble members” which are the ensemble mean value of the runs
submitted by an individual model. The CMIP6-EME has a total of eight ensemble
members. Internal variability expressed in the CMIP6-EME reflects inter-model
variability. For example, while there are 11 contributions to CMIP6 from CESM2,
one member of CMIP6-EME consists of the ensemble mean statistics from these 11
CESM2 simulations. Similarly, there are only two contributions from MPI-ESM-1-
2-HAM: that model is not included as a CMIP6-EME member. No CMIP6 models
contributed 10 ensemble members under the same RCP8.5 forcing scenario as the
CLIVAR-LE, and therefore CMIP6-EME is not included in future projections.

Global observations. For observations of GMT, I use the un-smoothed NASA
Global Land-Ocean Temperature Index, which spans 1880–2019. Observations of
sea ice concentration are gridded daily data from three passive-microwave-derived
estimates of sea ice concentration: NASATeam44, Bootstrap45, and OSISAF46. For
comparison with model output, monthly maps are computed as the monthly
average of the daily gridded product. Pole holes in the NASAteam and Bootstrap
products are filled by taking the average concentration around the perimeter of the
pole hole as in ref. 47. The OSISAF-provided pole hole filling is used for that
product.

Calculation of global sea ice metrics. Both observational and model products are
available as gridded products. To avoid introducing additional bias through
regridding, I compute all sea ice metrics on their original grid. I examine SIA and
MIZ area (MIZA) rather than sea-ice extent to limit grid-related uncertainty16.

SIA is calculated as the sum of sea ice concentration multiplied by grid cell area
in all grid cells above 0∘N. Marginal ice zone area (MIZA) is computed as the sum
of sea ice concentration for all grid cells with <80% concentration. The MIZA
fraction is then MIZF=MIZA/SIA. While SIA should not be sensitive to a
changing grid, MIZA may be, as whether a given geographical region is above or
below 80% sea ice concentration can depend on how the grid is drawn16. I do not
consider this source of grid-related uncertainty here.

To evaluate linear trends, I perform a linear regression of the 36-year
(1979–2014) time series against time and a constant term for each month (for sea
ice products) or the annual average (for GMT). The trend ΔSIA9, for example, is
the slope of this linear fit for September SIA. Sensitivites are computed as the
negative of the ratio of sea ice trends to annual GMT trends, for example:

ρSIA9 ¼
ΔSIA9

ΔGMT
: ð1Þ

Thus a negative value of ρX corresponds to a negative trend in X for a
positive ΔGMT.

Uncertainty quantification. The uncertainty associated with internal variability is
quantified for each model using the unbiased sample standard deviation. Bessel’s
correction is applied to the sample variance, and Cochran’s theorem corrects for
the bias in the standard deviation. For an uncorrected sample standard deviation σ0
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over N ensemble members, this ultimately corrects σ upwards as:

σ ¼ σ0

ffiffiffiffi

N
2

r

Γ N�1
2

� �

ΓðN=2Þ ; ð2Þ

where Γ is the gamma function. For N= 3, as used in the pooled uncertainty metric
by8, this corrects the sample standard deviation upwards by 38%. For N= 8, as
used to compile the CMIP6-EME ensemble, the correction is 11%. For N= 20, the
smallest size of a CLIVAR-LE ensemble set, the correction is 4.0%.

For evaluating the plausibility of LE trends or statistics relative to observations,
color coding in Figs. 1 and 3 are results of a two-sided (Welch’s) t-test, where the
null hypothesis is that the model and observational distributions are drawn from a
normal distribution with the same mean but not necessarily the same variance,
evaluated at the 95% confidence interval. The unequal variance test is chosen as
model variance (related to internal variability) and observational variance (related
to observational uncertainty) are not expected to be the same. Red values reject the
null hypothesis at the 5% significance level. Whisker plots extend the model data
three (unbiased) standard deviations from the mean, and dashed lines extend the
observational estimate one (unbiased) standard deviation from the mean.

For visual comparison, assume the null hypothesis that ensemble statistics and
observational statistics are drawn from normal distributions with different
variances but the same mean. Then the likelihood that whiskers in Figs. 1 and 4 do
not overlap is bounded above by expð�6Þ=4 � :06%. The likelihood that box
whiskers and dashed lines in Fig. 3 do not overlap is bounded above by
expð�4Þ=4 � 0:5%.

Testing plausibility with artificially reduced observational uncertainty. To test
whether the increased plausibility of ρMIZF estimates is due only to higher
observational uncertainty, I create a synthetic dataset of ρMIZF composed of the
observational ρMIZF mean and two-time series spaced at ±2 standard deviations
from the mean, but where those standard deviations are computed instead as the
observational uncertainty for ρSIA. I reproduce Fig. 3 in the Supplementary
Information (Supporting Fig. S2) using this artificially reduced uncertainty. The
plausibility of model estimates of ρMIZF are qualitatively similar compared to
using the true (higher) observational uncertainty: the CMIP-EME is plausible in
September, though 4/5 CLIVAR-LE models are not.

Data availability
CLIVAR-LE data used in the model study is available via the NCAR Climate Data
Gateway at https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CLIVAR_LE.html.
CMIP6 data used in this study are available at the Earth System Federated Grid at https://
esgf-node.llnl.gov/projects/cmip6/ and were downloaded using code developed for the
Sea-Ice Model Intercomparison Project8,48 by Jakob Doerr.

Code availability
Marginal Ice Zone Fraction Benchmarks Sea Ice and Climate Model Skill. https://doi.org/
10.5281/zenodo.4321849 and Code49 used to produce figures in this manuscript is
available at https://github.com/chhorvat/MIZ-SIE/. Python code used to download
CMIP6 data is provided by Jakob Doerr at https://github.com/jakobdoerr/SIMIP_2020
under an MIT license.
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