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Abstract: Growing evidence indicates that transposons or transposable elements (TEs)-derived
accessible chromatin regions (ACRs) play essential roles in multiple biological processes by interacting
with trans-acting factors. However, the function of TE-derived ACRs in the regulation of gene
expression in the rice genome has not been well characterized. In this study, we examined the
chromatin dynamics in six types of rice tissues and found that ~8% of ACRs were derived from
TEs and exhibited distinct levels of accessibility and conservation as compared to those without
TEs. TEs exhibited a TE subtype-dependent impact on ACR formation, which can be mediated
by changes in the underlying DNA methylation levels. Moreover, we found that tissue-specific
TE-derived ACRs might function in the tissue development through the modulation of nearby gene
expression. Interestingly, many genes in domestication sweeps were found to overlap with TE-
derived ACRs, suggesting their potential functions in the rice domestication. In addition, we found
that the expression divergence of 1070 duplicate gene pairs were associated with TE-derived ACRs
and had distinct distributions of TEs and ACRs around the transcription start sites (TSSs), which may
experience different selection pressures. Thus, our study provides some insights into the biological
implications of TE-derived ACRs in the rice genome. Our results imply that these ACRs are likely
involved in the regulation of tissue development, rice domestication and functional divergence of
duplicated genes.

Keywords: transposable elements; accessible chromatin regions; regulation of gene transcription;
Oryza sativa

1. Introduction

Transposable elements (TEs) have been the subject of much debate since they were
first discovered and described as “controlling elements” in maize (Zea mays) by Barbara
McClintock [1]. They represent a major type of repetitive DNA sequences and account
for large proportions of many plant genomes, such as 40% in rice, 60% in cotton, and
more than 80% in wheat and maize [2–5]. Initially, TEs were considered as foreign DNA
invading the host genome, and their genome-wide propagation, or so-called transposition,
frequently occurs during evolution or in response to biotic and abiotic stresses [6–10].
According to their transposition mechanisms, TEs are usually divided into two distinct
classes [11]. Class I TEs transpose via a “copy and paste” mechanism with a reversely
transcribed RNA as an intermediate. They can be further classified into several subtypes
with distinct DNA sequence features, including long terminal repeat (LTR) elements such
as the Gypsy superfamily and the Copia superfamily, long interspersed nuclear elements
(LINEs), and short interspersed nuclear elements (SINEs). The Class II TEs, referred
to as DNA transposons, transpose via a “cut and paste” mechanism with a DNA as
an intermediate, they can be further grouped into several superfamilies based on their
transposase proteins and sequence structures, such as CACTA, Mutator, Tc1/Mariner, et al.
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In addition, a new type of DNA transposon, Helitron, can transpose via the “rolling circle
replication” model [11]; another type of complex Class II DNA transposons, called Polintons,
transposing in a self-synthesizing manner has been found in several eukaryotic species,
like protists, fungi, and animals [12].

The jumping of TEs frequently disrupts genome structures, resulting in genome insta-
bility, and induces some deleterious mutations in the host genome [13]. The host genomes
have evolved multiple mechanisms to regulate TE transposition, including enzymatic sys-
tems for elimination of TEs and epigenetic mechanisms for silencing TE activities, such as
DNA methylation, histone modifications, and RNA interference (RNAi) [14–17]. However,
accumulating evidence has shown that a subset of TEs can be activated under certain
conditions, such as in a specific tissue or developmental stage or in responses to external
stresses, and they can play vital roles in the regulation of gene transcription, including
generation of novel or abnormal transcripts, formation of novel cis-regulatory elements
(CREs) such as alternative promoters and enhancers essential for the regulation of gene
transcription, and alteration of chromatin features of nearby genes, thereby being involved
in various biological processes [18,19]. These findings indicate that TE transcription leads
to complex outcomes in the host genome.

Open chromatin, also referred to as accessible chromatin, represents unique chromatin
regions with less nucleosome occupancy or nucleosome depletion (nucleosome-free re-
gions) [20]. It usually harbors intricate CREs, such as promoters, enhancers, silencers, and
insulators, which are essential for the modulation of gene transcription through interac-
tions with various trans-acting factors during growth and development and in response
to environmental cues in mammals and plants [21,22]. Open chromatin has been ex-
tensively investigated in eukaryotic genomes, including yeast, mammals, humans, and
plants [23–27]. For instance, chromatin openness exhibits a positive correlation with the ex-
pression of corresponding genes; 25% of open chromatin sites are located in the promoters
of rice genes [23]. Moreover, distal regulatory elements (DREs) in open chromatin regions
have been found to be dynamic across different tissues and associated with tissue-specific
gene expression in rice [28].

Accumulating evidence has shown that TEs can potentially contribute to the formation
of open chromatin owing to partially/fully overlapping open chromatin in mammalian
and plant genomes [26,29–31]. Forty-four percent of open chromatin regions are associated
with TEs in human cells [29]. Over 20% of TEs overlapping open chromatin are potentially
related to tissue development in mouse [31]. Similarly, TE-derived open chromatin has
been reported to regulate gene transcription [30], and three TE families overlapping DNase
I hypersensitive sites (DHSs) can function as enhancer candidates in maize [26]. Some
TEs located in the distal regions of genes contain most of the TF binding sites (TFBSs) in
wheat, and their expansion is associated with the responses of wheat-specific genes to
environmental stimuli [32].

However, relationships between TEs and accessible chromatin regions (ACRs) haven’t
been well characterized in rice as compared with other plants like maize. To this end, we
analyzed the dynamics of chromatin accessibility in six rice tissues, associated accessible
chromatin regions (ACRs) with different TE superfamilies, and characterized the genomic
features of corresponding TEs and ACRs in rice. We also investigated the role of TE-
derived ACRs in the regulation of tissue-specific and duplicated gene expression. Our
study provides some insights into the contribution of TEs in ACRs formation, thereby
advancing our understanding of the biological implications of TE-derived ACRs in the
rice genome.

2. Results
2.1. Identification of TE-Related Accessible Chromatin Regions in Rice

To identify TE-related accessible chromatin regions in rice, we used the published
ATAC-seq (Assay for Transposase-Accessible Chromatin with high throughput sequencing)
data derived from six tissues [33], including young leaf (YL), flag leaf (FL), root (RT),
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stamen & pistil (SP), lemma & palea (LP), and young panicle (YP). The ATAC-seq is a
robust technique widely applied for global profiling of chromatin accessibility through
sequencing DNA fragments preferentially tagged by Tn5 transposase dimer. To minimize
the impact of sequencing depth on peak calling, we down-sampled ATAC reads to the
same amount for each tissue, and identified 43,988, 40,899, 52,601, 55,363, 51,395, and 44,884
ACRs corresponding to YL, FL, RT, SP, LP, and YP, respectively (Figure S1). All ACRs were
further divided into three subgroups, high, middle, and low accessibility, according to the
density of normalized read counts (RPKM value, reads per kilobase per million mapped
reads), reflecting the degree of chromatin accessibility. We then counted TE number across
±2 kb of ACRs with different accessibility levels, and found that the normalized TE number
was negatively associated with the level of chromatin accessibility in each tissue, even
though the overall chromatin openness around TEs was dramatically lower than random
(Figures 1A and S2). After a closer examination, we found that the percentage of ACRs
with at least 1 bp overlapping TEs ranged from 26.2% in SP to 33.4% in YL. Surprisingly, we
found that nearly 90% of the ACRs were located within 1 kb of the nearest TEs (Figure 1B)
and exhibited less variations in the chromatin accessibility levels. In contrast, the chromatin
accessibility of ACRs located more than 1 kb away from the nearby TEs increased with
increasing distance to nearby TEs (Figure 1C), indicating that TE presence does not favor
chromatin openness. After looking into TE types, we found that the majority of the TEs
overlapping with ACRs were DNA transposons (24.4~27.9%) and the rest (3.7~5.5%) were
retrotransposons (Figure 1B).

Next, we calculated the coverage ratio of ACRs by TE sequences and found that only
a small proportion of ACRs were fully covered by TEs (Figure S3). For instance, DNA
transposons hAT and Helitron covered ca. 25% of the full ACR length (the length of ATAC
peak) on average, while PIF_Harbinger and Tcl_Mariner exhibited the least coverage on
ACRs. This was possibly caused by the short length of their DNA sequences. Most Gypsy
can fully cover the overlapping ACRs. These results showed that most ACRs covered the
junctional regions of TE/non-TE DNA, which is similar to the findings in mouse [34]. A
similar trend was observed for the coverage of the ATAC peak summits by the overlapping
TEs (Figure 1D). There were 4288–5380 ACRs (accounting for 8.3~12.0% of all ACRs) with
their summits overlapping with TEs (Figure 1D), and Mutator, hAT, and Gypsy exhibited
more coverage of ACR summits than others (Figure S4).

Taken together, these results indicate that some TE sequences, in combination with
their flanking non-TE DNA sequences, are able to contribute to the formation of ACRs,
implying potential regulatory roles of TEs in rice.

2.2. Profiling of TEs in Proximal and Distal ACRs

It was reported that ACRs harbor cis-regulatory elements (CREs), which can be derived
from TE sequences [21]. To explore whether TEs are also associated with functional
ACRs in the rice genome, we merged ACRs from six tissues and obtained a total of
83,087 ACRs (Table S1). We then divided them into four subtypes according to their
genomic loci, including 38,676 ACRs (46.5%) located within 2 kb upstream of the TSSs of
genes (hereafter designated as promoter ACRs, pACRs); 14,622 ACRs (17.6%) located >2 kb
from their nearest genes (hereafter designated as distal ACRs, dACRs); 16,814 ACRs (20.3%)
overlapping with 2 kb downstream of the TTSs of the genes (hereafter designated as
downstream ACRs, dnACRs); and the remaining 12,975 (15.6%) ACRs overlapping gene
body regions (hereafter designated as genic ACRs, gACRs) (Figure S5). We then calculated
the TE number across ±2 kb around the center of the pACRs and dACRs (Figure 2A). As
shown in Figure 2A, the majority of TEs tended to be absent in the center of ACRs, and
the dACRs exhibited a higher normalized TE number than the pACRs. Unlike other TE
superfamilies, the short elements PIF_Harbinger and Tcl_Mariner were significantly enriched
in the ACR boundary. And the number of Mutator and hAT was higher in the center region
of pACRs compared with dACRs. (Figure 2A). These analyses showed that TEs exhibited a
TE-type dependent distribution in or near the ACRs.
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Figure 1. The TE-overlapping ACRs (accessible chromatin regions) in rice. (A) Curve plot showing
normalized TE number across ±2 kb of ACR center (in flag leaf). All ACRs were divided into three
subgroups (high, mid, low) according to their levels of accessibility. The same number of randomly
selected regions were used as control. (B) Pie plot showing the ratio of ACRs with different distances
to the nearest TEs (0 bp, representing ACRs with at least 1 bp overlap with TEs, 1~170 bp, 171~500 bp,
501~1000 bp, >1000 bp) in six tissues (FL, flag leaf; SP, stamen & pistil; LP, lemma & palea; RT, root;
YL, young leaf; YP, young panicle), 26.2% (SP) to 33.4% (YL) ACRs had at least 1 bp overlap with
TEs (w/o represents “without”, w/ represents “with”). (C) The accessibility of ACRs with different
distances to the nearest TEs in six tissues, the reads of ATAC-seq within ACRs were normalized by
reads per kilobase per million mapped reads (RPKM). (D) Bar plots illustrating the ratio and number
of ACRs with their summits covered by TEs.

It is well known that TEs are hypermethylated, while open chromatin is hypomethy-
lated [35], driving us to assess the DNA methylation levels of TE-derived ACRs. To this
end, we analyzed public BS-seq data derived from young rice leaves [28]. After calculating
the DNA methylation levels in each cytosine context in ±2 kb flank regions and bodies of
related TEs, we observed that the TE body was hypermethylated relative to the flanking re-
gions in CG, CHG and CHH context (Figure 2B), with the methylation level of ACR-related
TEs showing a significant decrease than that of TEs without ACRs in TE bodies (Figure 2B).
In addition, we also found that TEs with ACRs were significantly enriched with active
histone mark (H3K4m3 and H3K27ac) in their bodies than that of TEs without ACRs, while
the repressive mark H3K27me3 was more enriched in the flanking regions of TEs without
ACRs, this further confirmed the relatively open state of TEs with ACRs (Figure S6). In con-
trast, the TE-derived ACRs were hypomethylated in their centers, and the CHH context was
enriched in the region next to the center (Figure 2C), and the TE-derived dACRs showed
a higher methylation level than pACRs. Corresponding to the methylation variations,
we found the TE-derived pACRs were more open than that of dACRs (Figure S7). Thus,
TEs exhibited an overall negative association between DNA methylation and accessible
regions, TE-derived ACRs were prone to form in the hypomethylated regions within TEs.
For instance, a Copia retrotransposon-derived ACR and a Helitron DNA transposon-derived
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ACR showed a hypomethylation level as compared to surrounding areas (Figure 2D,E).
These results indicated that DNA methylation levels might be key determinants of the
formation of TE-derived ACRs.

Figure 2. Distributions of TEs around ACRs and the methylation levels of corresponding ACRs
and TEs. (A) Curve plots showing normalized TE number across ±2 kb of the center of pACRs
(promoter ACRs) and dACRs (distal ACRs). (B) Average methylation level (CG, CHG, CHH) dis-
tribution over TEs with (w/) ACRs and without (w/o) ACRs. (C) The methylation level (CG, CHG,
CHH) across ±2 kb of the center of TE-derived pACRs and dACRs. (D,E) IGV snapshots show-
ing the methylation level around a Copia retrotransposon-derived ACR (D) and a Helitron DNA
transposon-derived ACR (E), the ACRs were hypomethylated while the other regions located in TEs
were hypermethylated.

Taken together, these results demonstrate that the differential distributions of TE types
around dACRs and pACRs may be caused by methylation changes in the underlying
DNA sequences.

2.3. Involvement of TE-Derived ACRs in the Regulation of Tissue-Specific Gene Expression

ACRs have been reported to play vital roles in the regulation of gene expression in
eukaryotic genomes by interacting with trans-acting factors [36,37]. However, the role of
TE-derived ACRs in the regulation of rice gene transcription remains unclear. To address
this, we calculated the genomic distributions of TEs and ACRs and found that all ACRs
and non-TE-derived ACRs tended to be located in genic regions, especially in promoters.
In contrast, TEs and TE-derived ACRs were distributed more in the distal intergenic
regions and downstream of genes (Figure 3A), which is consistent with previous findings
in mammals that TE-derived ACRs can act as potential enhancers [34]. We then divided all
ACRs as either common (n = 70,624) or tissue-specific (n = 12,463) ACRs, according to the
entropy values (Figure S8 and Table S2). Compared with common ACRs, tissue-specific
ACRs were distributed more in the distal regions (Figure 3B). Moreover, we found that less
tissue-specific ACRs were TE-derived (3.5%), including 1.3% of pACRs, 0.8% of dACRs,
0.5% of gACRs, and 0.9% of dnACRs (Figure 3B), while more TE-derived ACRs were
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found in the common ones (8.6%), these TE-derived tissue-specific ACRs were mainly
enriched in hAT, LINE, Gypsy and other LTR retrotransposons, as compared to the whole
genome background (Figure 3C). After calculating the fold-change in accessibility levels
for tissue-specific ACRs in six tissue types, we found a similar variation between TE and
non-TE-derived tissue-specific ACRs (Figure S9), suggesting that TE-derived ACRs can
also be involved in tissue development like regular ACRs. To confirm this, we calculated
the expression levels of TE-derived ACRs nearby genes in six tissues, and found that a
subset of genes exhibited a similar trend to the changes in chromatin accessibility levels
(Figure 3D). As shown in Figure 3E, some TE-derived tissue-specific ACRs were located
at the upstream of subsets of functional tissue-specific genes. For example, a MULE-
derived ACR was located in the promoter of a hydroquinone glucosyltransferase encoding
gene (LOC_Os03g44180), preferentially expressed in root (RT); a hAT transposon related
ACR was located near the TSS of NL1 with higher expression levels in young panicle
(YP), which is a GATA type transcription factor related to the panicle development [38]; a
Gypsy retrotransposon-derived ACR was located in the upstream region of OsBISAMT1, a
gene encoding S-adenosyl-L-methionine related to defense responses, which was specially
expressed in young leaf (YL) [39].

Figure 3. The association between TE-derived tissue-specific ACRs and tissue-specific gene expres-
sion.(A) Sub-genomic distributions of all TEs, all ACRs, ACRs without (w/o) TE and ACRs with (w/)
TEs, including promoters (upstream 2 kb), exons, introns, downstream (2 kb) and distal intergenic
regions. (B) Pie plot showing the ratio of different types of common (left) and tissue-specific ACRs
(right) based on their distances to the nearest genes, 8.6% and 3.5% of these ACRs were TE-derived
ACRs (>50% ACRs length covered by TE sequences), respectively. (C) Bar plot illustrating the
percentage of TE superfamilies associated with tissue-specific ACRs and the percentage of TE super-
families in the whole genome, significance test was determined using hypergeometric test, * p < 0.05,
*** p < 0.001. (D) The expression pattern of the nearest genes of TE-derived tissue-specific ACRs,
the lineplot (upper) showing the mean expression levels of genes in each tissue, each row in the
heatmap (bottom) represents a gene expression variation in six tissue types, the color represents gene
expression levels. The number represents the amount of genes in each tissue. (E) IGV snapshots
showing expressed tissue-specific genes with tissue-specific TE-derived ACRs.

Collectively, our results show that TE-derived ACRs may play vital roles in the regula-
tion of tissue-specific gene expression, thereby being involved in the tissue development
in rice.
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2.4. Impacts of TEs on Chromatin Accessibility and Its Conservation

To investigate how the presence of TEs affects chromatin accessibility, we plotted
normalized ATAC-seq read counts across ±2 kb of the center of ACRs with and without
TEs (Figures 4A and S10), and found that non-TE-derived ACRs were more open than
TE-derived ones. At the sequence level, we found that TEs containing ACRs had a longer
length (Figure 4B). A similar trend was also observed in TEs superfamilies (Figure S11), and
TEs containing ACRs had higher GC content, which facilitates nucleosome formation [40],
as compared to inaccessible TEs (Figure 4C).

Figure 4. Genomic features and conservation of TE-derived ACRs. (A) Curve plot demonstrating
normalized ATAC-seq read density across ±2 kb of the center of ACRs with (w/)/without (w/o)
TEs in flag leaf (FL). (B) Boxplot showing the difference of GC content of TE (with/without ACRs).
Significance test was determined using Wilcoxon rank sum test, *** p < 0.001. (C) Boxplot showing
the difference of TE (with/without ACRs) length. Significance test was determined using Wilcoxon
rank sum test, *** p < 0.001. (D) Averaged phastCons score across 4 kb regions centered by all ACRs
and tissue-specific ACRs, with or without TEs. (E) Boxplot demonstrating mean π values around
2 kb region of ACRs with/without TEs. Significance test was determined using Wilcoxon rank sum
test, *** p < 0.001. (F) Selection signals in the rice genome. The horizontal black dashed lines showing
the genome-wide threshold for domestication sweeps (πw/πc > 4.1). Functional genes overlapped
with TE-derived ACRs under domestication selection were labeled in corresponding chromosomes.

It is well known that the transposition activity of TEs potentially leads to various
genomic mutations during evolution [41]. To explore the conservation of TE-derived
ACRs during rice evolution, we compared the PhastCons score (representing conservation
landscapes among 63 different plant species) for different types of ACRs [42], including the
tissue-specific ACRs shown in Figure 3B. We found that TE-derived ACRs had much lower
PhastCons scores than non-TE-derived ACRs, especially in the center regions of ACRs,
and tissue-specific ACRs showed significantly higher PhastCons scores than all ACRs
(Figure 4D). These results indicated that most of TE-derived ACRs were less conserved
at the sequence level than the non-TE-derived ones and tended to be species-specific
during plant evolution; in contrast, tissue-specific ACRs, exhibited a high conservation
between different plant species, which may be caused by directional selection. We then
calculated the π values, which can reflect the nucleotide diversity within different rice
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varieties, for the ACRs shown in Figure 4D, and found that TE-derived ACRs had higher
π values, while tissue-specific ACRs had much lower π values than all ACRs (Figure 4E),
indicating that conservation changes for different types of ACRs are highly associated with
the presence of TE during rice domestication. Domestication usually leads to adaptive
changes in rice. To determine whether TE-derived ACRs are also involved in domestication,
we identified genomic regions with notable decreases in nucleotide diversity by comparing
the π values between the wild (πw) and cultivated rice accessions (πc). According to
πw/πc values, we identified 187 putative domestication sweeps, containing 270 TE-derived
ACRs (~4%) (Figure 4F). Indeed, we found that in these domestication regions, some
genes essential for the rice development were associated with TE-derived ACRs, including
flower development gene OsK4 [43], hormone-related gene OsCYL1 [44], and several
disease/stress resistance genes (OsCPK4, OsBRR1, RCN1, OsSWEET16, GPCR, OsTCP21,
GF14a, OsRacGEF1, OsHsfA2c) [45–53].

Taken together, these results indicate that TE-derived ACRs may have coevolved with
nearby genes during artificial and natural selection, thereby functioning in the formation of
favorable agronomic traits in rice.

2.5. Relationship between TE-Derived ACR around TSS and Duplicated Genes

Gene duplication is one of the major driving forces for genome complexity and gene
subfunctionalization or neofunctionalization during plant polyploidization and evolu-
tion [54–56]. Growing evidence suggests that epigenetic mechanisms are involved in the
regulation of duplicated gene transcription [57–61]. TEs have been found to affect the
epigenetic status of duplicate genes [62], however, how TE-derived ACRs function in the
regulation of duplicated genes in rice remains unclear. To answer this question, we chose
ATAC-seq data from the stamen and pistil (SP) for analyses because it has the most ACRs
among the six tissues. We plotted normalized ATAC-seq read counts across ±1 kb for all
duplicated genes (Figure 5A and Table S3). We observed that differential read enrichment
levels occurred among genes in different duplicate modes and a significant read abundance
occurred around the TSSs (Figure 5A). Given that epigenetic features around the TSS usu-
ally play an important role in the regulation of gene expression, we specifically counted
duplicated genes (n = 561) with TE-derived ACRs at ±500 bp of the TSS (Table S4) and
observed a similar trend in reads enrichment between these duplicated genes and all genes
shown in Figure 5A. Chromatin was more accessible for the WGD genes, whereas it was
much less accessible for the proximal and tandem duplicated genes (Figure 5B), and the
variation between different duplicate modes was smaller in genes related to TE-derived
ACRs, which may cause by the fewer number of related genes and lower accessibility
of TE-derived ACRs. Since these 561 duplicated genes corresponded to 1070 duplicated
gene pairs in the rice genome (Table S5), we compared the expression level and chromatin
accessibility of these gene pairs and found that the change in chromatin accessibility exhib-
ited a positive correlation with the expression change of gene pairs (Figure 5C), indicating
that the chromatin dynamics of TE-derived ACRs are involved in the regulation of gene
pair expression.

TEs can act as potential novel regulatory sequences in the host genome, and TE
inserted near genes can be selected during evolution [2]. To identify TE-related regulatory
sequences of duplicated genes, we divided all duplicated gene pairs with TE-derived
ACRs around the TSSs into three subgroups: subgroup 1, duplicated gene pairs with both
copies of TE-related ACRs around the TSSs (n = 29); subgroup 2, duplicated gene pairs
with TE-related ACRs around the TSSs for one copy and regular ACR for the other copy
(n = 532); subgroup 3, duplicated gene pairs with only one copy having TE-related ACRs
around the TSSs (n = 509) (Figure 5D). After conducting novel motif enrichment assays, we
found that the majority of motifs overrepresented in ACRs were “G”- or “A”-rich sequences.
In particular, we found that the motif for the binding of the TCP transcription factor was
overrepresented in TE-related ACRs instead of regular ACRs (Figure S12), indicating
that TE insertion can introduce new regulatory DNA sequences, which may be involved
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in the modulation of gene pair expression. Furthermore, we examined the differential
distributions of Ks (synonymous substitutions per synonymous site) among duplicated
gene pairs and observed the descending order of Ks distribution changes among duplicated
genes in three subgroups: subgroup 1 < subgroup 3 < subgroup 2 (Figure 5E), indicating a
distinct TE-derived ACRs distribution between younger (lower Ks value) and older gene
duplicates (higher Ks value). To assess whether genes with the absence/presence of TE-
related ACRs around TSSs were subjected to different intensities of selective constraints,
we calculated Ka (nonsynonymous substitutions per nonsynonymous site)/Ks values for
gene pairs, and found that most of the Ka/Ks were less than 1 (Figure 5F). For subgroups of
gene pairs, we found that subgroups 1 and 2 had the highest and lowest mean levels of
Ka/Ks, respectively (Figure 5F).

These results suggest that TE-derived ACRs related gene pairs are primarily subjected
to purifying selection, and a combination of TEs and ACRs is associated with the strength
of the selection pressure.

Figure 5. The chromatin accessibility for duplicated gene pairs. (A) Genome-wide normalized ATAC-
seq read density of WGD, transposed, tandem, proximal, dispersed duplicated genes. (B) Normalized
ATAC-seq read density of duplicated genes associated with TE-derive ACRs. (C) Correlation between
chromatin accessibility changes and gene expression changes of duplicated gene pairs corresponding
to TE-derive ACRs. All gene pairs were divided into two groups according to their expression
differences: fold change > 2 and fold change <= 2, the chromatin accessibility variations showing
greater differences in the fold change > 2 group. (D) Gene pairs with TE-derived ACRs around TSSs
were divide into three subgroups. Only 29 pairs of duplicated genes had TE-derived ACRs around
TSSs of both copies. (E,F) Comparisons of distributions of Ks (E) and Ka/Ks (F) between duplicated
gene pairs in three groups are illustrated in (D). Significance test was determined using Wilcoxon
rank sum test, *** p < 0.001.

3. Discussion

TEs can induce a wide range of genomic alterations, including chromosome rearrange-
ment, epigenetic regulation, and insertion mutagenesis [63], resulting in genetic diversity
and genome evolution. Various epigenetic mechanisms have been found to regulate TE
activity in plants [64]. The footprint of TE could regulate gene expression by changes in
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epigenetic modifications [2,65]. The function of TEs in the regulation of gene transcription
can be mediated by the formation of open chromatin in maize [66] and mouse [31]. TEs
account for up to 40% of the rice genome and its superfamilies have already been well
characterized [63]. However, the mechanism by which TEs regulate gene transcription in
rice remains understudied. Our study revealed several discoveries by associating TEs with
open chromatin and epigenetic modifications.

Global identification of ACRs helps to mine functional CREs like promoters,
enhancers, et al. Characterization of TE-derived ACRs helps to identify CREs associ-
ated with TEs, thereby advancing understanding of roles of TEs in the regulation of gene
expression. Accumulating evidence shows variations in the formation of TE-derived CREs
among different organisms. For instance, nearly 30% of TEs containing active elements,
with 45% and 20% of them belonging to LTR retrotransposons and DNA transposons,
respectively, were found in the classic model organism D. melanogaster [67]; 25% of TE-
derived CREs were found in humans, and of which the LTRs contain almost all of the
TFBSs [68,69]; About 20% of open chromatin regions associated with TEs were found in
mouse, which mainly consist of LTR and SINE retrotransposons [31]. Similarly, TE-derived
ACRs have also been reported in plants. Over 57% and 26.7% TE-derived DHSs were
found to be associated with LTRs, and DNA transposons in maize, respectively [30]. Our
study showed that ~8% ACRs had more than 50% sequence covered by TEs in rice. It
is worth noting that our analyses cannot distinguish if TE-derived ACRs are from TEs
carrying ACRs or insertion of TEs into pre-existing ACRs within the genome. After a closer
examination, we found that 45.5% of these ACRs were fully covered by TEs, which are
most likely associated with TE-derived ACRs; the remaining ones were partially (50–99%)
covered by TEs, which could be further divided into two groups, the length of TEs is
shorter than that of ACRs, and the TEs overlapping with one edge of ACRs. Technically, it
is not easy (nearly impossible) to distinguish the two distinct cases of TE insertion. In our
opinion, our analyses indicate that as least parts of TEs if not all have the potentials to form
ACRs, which has already been reported in other species [34]. Comprehensive comparisons
of TEs and ATAC-seq data between different genomes help to identify polymorphic TE-
and shared TE-derived ACRs between species. Our study showed that DNA transposons
contributed to most of the TE-derived ACRs in rice, which is different from the findings
reported in aforementioned organisms. This is possibly caused by characteristics of rice
genome. The copy number of DNA transposons far exceed that of retrotransposons, while
most retrotransposons are longer and prone to locate in distal regions of genes. The inser-
tion of some short DNA transposons could influence the activities of nearby genes. We
found the majority of retrotransposons contribute to ACRs in rice were LTR_Copia, it was
reported some solo-LTRs tend to keep TF-specific CREs [70], indicating that functions of
these LTRs in the regulation of gene expression can be mediated through distal interactions
between CREs and TFs or trans-acting factors. Variation of TE-derived CREs could reflect
differentiation of TE activities among different organisms during genome evolution.

The degree of chromatin openness correlated negatively with the density. This is
possibly caused by the overall hypermethylation of TEs in plant genomes [71–73], while
hypomethylation favors the formation of open chromatin [35]. Consistent with findings
about TEs sequestered far from genes derived by purifying selection and genetic drift
during evolution [74], a much higher normalized TE number was observed around dACRs
than around pACRs in rice (Figure 2A). This provided evidence showing TE subtype-
dependent effects on the formation of ACRs, which is possibly mediated by changes in
local DNA methylation. A similar finding was reported in mouse [34], indicating that the
differential functions of TE superfamilies in ACRs formation are conserved between plants
and mammals.

CREs embedded in open chromatin regions can be activated in a tissue-specific
manner [27,31,75,76]. Our study provided evidence that the connections between TEs
and tissue development can be mediated by the formation of TE-derived ACRs that reg-
ulate tissue-specific gene expression. For example, the known functional gene NL1 and
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OsBISAMT1 were found to have tissue-specific TE-derived ACRs in their promoters (Fig-
ure 3E). Similar findings have been reported in humans [77–79]. This implies that the
chromatin status in TE-derived ACRs could be dynamic in order to temporally regulate
nearby gene expression during tissue development or in response to external environmen-
tal cues. In addition, if possible, analyses of TEs among different tissues of a single plant or
between individual plants help to identify tissue or individual plant related polymorphic
TE insertions, which could help to address variations of TE functions at the population
level or a tissue wide.

Chromatin accessibility is positively correlated with the conservation of accessible
chromatin regions [80]. Our study showed that TE-derived ACRs were involved in rice
domestication, as evidenced by the following: TE-derived ACRs were more accessible
than ACRs without TEs; TE-derived ACRs exhibited low conservation and high nucleotide
diversity; and more importantly, domestication sweep regions of rice had some agronomic
trait-related genes with TE-derived ACRs (Figure 4), indicating that these ACRs-related
TE insertions in rice may favor co-selection and domestication of key agronomic traits
as opposed to having detrimental impacts on the genome. The selection is also related
to the epigenetic status of the TEs. For instance, hypermethylated TEs that insert nearby
genes in Arabidopsis are strongly selected against, ultimately resulting in elimination of
related TEs [2].

Expression divergence of duplicated genes results in the neo- or subfunctionalization of
duplicated genes [81], which can be regulated by changes in epigenetic modifications, such
as DNA methylation and histone modifications [57,58,60]. It has been reported that TEs
can affect the evolutionary divergence of duplicated genes through changes in epigenetic
status [62]. Our study indicated that TE-derived ACRs were involved in the divergence
of duplicated gene pairs through the regulation of their expression. This was evidenced
as follows: divergence of TE-derived ACRs was positively correlated with the expression
changes of duplicated genes, which could be mediated by divergence of the underlying
regulatory sequences [82]; gene pairs with both copies having TE-derived ACRs tended
to be younger than others; and duplicated gene pairs having a TE-derived ACR around
the TSSs for one copy and a regular ACR for the other copy (subgroup 2) experienced
stronger purifying selection than those with both copies having TE-derived ACRs around
the TSSs (subgroup1) (Figure 5). Young gene pairs have similar TE environments [62].
The TE insertions affect the selection strength of nearby genes [83,84]. TE-free genes have
stronger purifying selection than TE-rich genes [84], indicating that the presence of TEs has
a potential impact on the selection of subsets of genes.

4. Methods
4.1. Processing of Public RNA-Seq, ATAC-Seq and ChIP-Seq Data

Public RNA-seq and ATAC-seq data with high quality from six rice tissues [33], and
ChIP-seq data from young leaves [28] of rice variety Zhenshan97 were used in this study.
Fastp (v0.21.0) [85] was used to filter the raw reads. Any reads with low-quality values
(Q < 25) and short lengths (<50 bp) were excluded from further analyses. Clean reads of
both data were mapped to the rice MSU7.0 reference genome as the previous study did [33]
using Hisat2 (v2.1.0) [86] and Bowtie2 (v2.2.5) aligner [87], respectively. For RNA-seq data,
featureCounts [88] was used to count the reads mapped to the rice genes. A custom R script
was used to calculate the fragments per kilobase million (FPKM) values, representing the
expression level of each gene.

For the ATAC-seq and ChIP-seq data, PCR duplicates were removed using Picard
MarkDuplicates (http://broadinstitute.github.io/picard/, accessed on 22 March 2022).
Samtools (v1.9) [89] was used to remove aligned reads with a mapping quality (MapQ) less
than 30, followed by the conversion of bam files to bigwig files using deeptools (v3.1.3) [90]
based on the fragments per kilobase per million reads mapped (RPKM) normalization
method. The read distributions of both datasets across the rice genome were visualized
using IGV (v2.4.13) [91].

http://broadinstitute.github.io/picard/
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4.2. BS-Seq Data Analyses

Public BS-seq data generated from young leaves of Zhenshan97 were used for the DNA
methylation assay [28]. The raw paired-end reads were filtered using fastp (v0.21.0) [85]
with the following parameters: lengthrequired = 50 –q 15. Bismark (v0.23.0) [92] was
used for clean read mapping with the default parameters. After removing PCR bias
using the deduplicate_bismark module, all uniquely mapped reads were retained for
further analyses. The extent of methylation of each cytosine site was extracted using the
bismark_methylation_extractor module. Only cytosine sites covered by at least five reads
were retained for the methylation assay. CGmaptools (v0.1.2) [93] was used to convert
cytosine methylation reports to CGmap formats. A custom Python script was used to
calculate the methylation levels for the designated genomic regions.

4.3. Association Analyses of ACRs with Other Genomic Loci

MACS2 software (v2.1.4) [94] was used to define ACRs with the following parameters:
−g 3.73134 × 108 –no model –shift -50 –extsize 100 –q 0.01. Bedtools (v2.29.0) [95] was used
to correlate the ACRs with other genomic loci. ACR-related genes represent genes (from
2000 bp upstream of the TSS to 2000 bp downstream of the TTS) overlapping ACRs. The TE
annotation file was obtained following the published pipeline [96] with rice repeat library
(rice7.0.0.liban) downloading from https://github.com/oushujun/riceTElib (accessed on
20 May 2022). ACRs with more than 50% of their length covered by a TE sequence were
defined as TE-derived ACRs, and the corresponding TEs were also considered as ACR-
related TEs. A custom Python script was used to calculate the normalized ATAC read
counts within the designated genomic regions and genes.

4.4. Identification of Tissue Specific ACRs

A total of 83,087 ACRs were obtained by merging all ACRs in each of the six rice
tissues according to their genomic coordinates, using the merge function from bedtools
(v2.29.0) [95]. The ATAC reads from six tissues located within these ACRs were counted
and normalized to reads per million mapped reads (RPM). The RPM value of each ACR
across the six tissues was used to identify the tissue specificity. By using the Shannon
entropy method [97,98], entropy values of all ACRs were arranged in an ascending order
and the top 15% of ACRs were considered as tissue-specific ACRs.

4.5. Estimation of the PhastCons Scores and π Values for ACRs

The evolutionary conservation of ACRs was measured using phastCons conservation
scores downloaded from PlantRegMap (http://plantregmap.gao-lab.org/cis-map.php,
accessed on 8 June 2022), which were calculated by multiple genome alignments of 63 dif-
ferent plants [42]. Vcftools (version 0.1.16) [97] was used to calculate π values for the
cultivated and wild rice groups. The relative vcf format files and resequencing data were
downloaded from the Rice SNP-Seek database (https://snp-seek.irri.org/_download.zul,
accessed on 8 June 2022). For the wild rice, the resequencing data of 5 O. rufipogon plants
were obtained from the public literatures [99]. For identification of domestication sweeps,
π values were calculated using 100 kb windows, and regions with the top 5% π ratio
(πw/πc) were set as thresholds for putative domestication sweeps, as described in the
previous study [100].

4.6. Identification of Rice Duplicated Genes and Calculation of Ka/Ks Values

The different modes of duplicated genes were identified using the DupGen_finder
pipeline (https://github.com/qiao-xin/DupGen finder, accessed on 10 June 2022) [101].
Briefly, the protein sequences annotated by the Rice Genome Annotation Project (http://rice.
uga.edu, accessed on 10 June 2022) were blasted against themselves with an
E-value < 1 × 10−10. The collinear blocks and syntenic gene pairs were identified us-
ing MCScanX [102] with default parameters. The “duplicate_ gene_ classifier” tools in
MCScanX were used to classify genes into different duplicate modes. The Perl script

https://github.com/oushujun/riceTElib
http://plantregmap.gao-lab.org/cis-map.php
https://snp-seek.irri.org/_download.zul
https://github.com/qiao-xin/DupGen
http://rice.uga.edu
http://rice.uga.edu
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DupGen_finder.pl in DupGen_finder was used to match duplicated gene pairs, and the
transposed duplicated gene pairs were detected using the Zea mays genome as their out-
groups. Ka, Ks and Ka/Ks values of each duplicated gene pair were calculated following
the public pipeline on GitHub (https://github.com/qiao-xin/Scripts_for_GB, accessed on
10 June 2022). Ks values > 5.0 were excluded from further analyses because of the saturated
substitutions at synonymous sites [103]. Gene pairs with p value > 0.05 were also removed.

4.7. Motif Enrichment Analyses

The sequences of designated ACRs were used to identify motifs using the MEME-ChIP
module of the MEME Suite Programs (https://meme-suite.org/meme/tools/meme-chip,
accessed on 12 June 2022) [104,105], with DAP motifs [106] as known motif datasets. Motifs
with E values less than 0.01 were defined as significantly enriched motifs.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/
article/10.3390/ijms23168947/s1.
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