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As a novel type of post-translational modification, lysine 2-Hydroxyisobutyrylation (Khib)
plays an important role in gene transcription and signal transduction. In order to
understand its regulatory mechanism, the essential step is the recognition of Khib sites.
Thousands of Khib sites have been experimentally verified across five different species.
However, there are only a couple traditional machine-learning algorithms developed
to predict Khib sites for limited species, lacking a general prediction algorithm. We
constructed a deep-learning algorithm based on convolutional neural network with the
one-hot encoding approach, dubbed CNNOH. It performs favorably to the traditional
machine-learning models and other deep-learning models across different species, in
terms of cross-validation and independent test. The area under the ROC curve (AUC)
values for CNNOH ranged from 0.82 to 0.87 for different organisms, which is superior
to the currently available Khib predictors. Moreover, we developed the general model
based on the integrated data from multiple species and it showed great universality
and effectiveness with the AUC values in the range of 0.79–0.87. Accordingly, we
constructed the on-line prediction tool dubbed DeepKhib for easily identifying Khib sites,
which includes both species-specific and general models. DeepKhib is available at
http://www.bioinfogo.org/DeepKhib.

Keywords: post-translational modification, lysine 2-hydroxyisobutyrylation, deep learning, modification site
prediction, machine learning

INTRODUCTION

Protein post-translational modification (PTM) is a key mechanism to regulate cellular functions
through covalent modification and enzyme modification, which dynamically regulates a variety of
biological events (Beltrao et al., 2013; Skelly et al., 2016). Recently, an evolutionarily conserved
short-chain lysine acylation modification dubbed lysine 2-hydroxyisobutylation (Khib) has been
reported, which introduces a steric bulk with a mass shift of+86.03 Da (Supplementary Figure 1A)
and neutralize the positive charge of lysine (Dai et al., 2014; Xiao et al., 2015). It involves various
biological functions including biosynthesis of amino acids, starch biosynthesis, carbon metabolism,
glycolysis / gluconeogenesis and transcription (Dai et al., 2014; Huang et al., 2017, 2018a; Li et al.,
2017; Meng et al., 2017; Yu et al., 2017; Wu et al., 2018; Yin et al., 2019). For instance, the decrease
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of this modification on K281 of glycolytic enzyme ENO1 reduces
its catalytic activity (Huang et al., 2018b). The three-dimension
structure of the peptide containing K281 in the center was shown
as Supplementary Figure 1B.

Thousands of Khib sites have been identified in different
species including humans, plants and prokaryotes through
large-scale experimental approaches (Dai et al., 2014; Huang
et al., 2018a), which is summarized in Supplementary Table 1.
The experimental methods, however, are time-consuming and
expensive and thus the development of prediction algorithms
in silico is necessary for the high-throughput recognition
of Khib sites. Two classifiers (i.e., iLys-Khib and Khibpred)
have been reported for predicting the Khib sites in a few
species (Ju and Wang, 2019; Wang et al., 2020). As many
different organisms have been investigated and the number
of Khib sites has increased, it is indispensable to compare
the characteristics of this modification in different species and
investigate whether it is suitable to develop a general model with
high confidence. Additionally, the reported models were based
on traditional machine-learning (ML) algorithms (e.g., Random
Forest (RF)). Recently, the deep learning (DL) algorithms, as the
modern ML architecture, have demonstrated superior prediction
performance in the field of bioinformatics, such as the prediction
of modification sites on DNA, RNA and proteins (Wang et al.,
2017; Huang et al., 2018c; Long et al., 2018; Tahir et al., 2019;
Tian et al., 2019). We have developed a few DL approaches for the
prediction of PTM sites and they all demonstrate their superiority
over conventional ML algorithms (Chen et al., 2018a, 2019; Zhao
et al., 2020). Therefore, we attempted to compare the DL models
with the traditional ML models for the prediction of Khib sites.

In this study, we constructed a convolutional neural network
(CNN)-based architecture with one-hot encoding approach,
named as CNNOH . This model performed favorably to the
traditional ML models and other DL models across different
species, in terms of cross-validation and independent test. It is
also superior to the documented Khib predictors. Furthermore,
we constructed a general model based on the integrated data
from multiple species and it demonstrated great generality and
effectiveness. Finally, we shared both species-specific models and
the general model as the on-line prediction tool DeepKhib for
easily identifying Khib sites.

MATERIALS AND METHODS

Dataset Collection
The experimentally identified Khib sites from five different
organisms including Homo sapiens (human), Oryza sativa (rice),
Physcomitrella patens (moss) and two one-celled eukaryotes
Toxoplasma gondii and Saccharomyces cerevisiae. The data
of the species were pre-processed and the related procedure
was exemplified using the human data, as listed below
(Supplementary Figure 2).

We collected 12,166 Khib sites from 3,055 human proteins
(Wu et al., 2018). These proteins were classified into 2,466
clusters using CD-HIT with the threshold of 40% according to
the previous studies (Li and Godzik, 2006; Huang et al., 2010).

In each cluster, the protein with the most Khib sites was selected
as the representative of the cluster. On the 2,466 representatives,
9,473 Khib sites were considered positives whereas the remaining
K sites were taken as negatives. We further estimated the potential
redundancy of the positive sites by extracting the peptide segment
of seven residues with the Khib site in the center and count
the number of unique segments (Chen et al., 2018a; Xie et al.,
2018). The number (9,444) of the unique segments is 99.7%
of the total segments, suggesting considerable diversity of the
positive segments. The number of the negative sites (103,987)
is 11 times larger than that of the positive sites. To avoid
the potential impact of biased data on model construction, we
referred to previous studies and balanced positives and negatives
by randomly selecting the same number of negative sites (Huang
et al., 2018c; Tahir et al., 2019). These positives and negatives
composed the whole human dataset.

To determine the optimal sequence window for model
construction, we tested different sequence window sizes ranging
from 21 to 41, referring to the previous PTM studies where
the optimal window sizes are between 31 and 39 (Wang et al.,
2017; Chen et al., 2018a; Huang et al., 2018b). The window
size of 37 corresponded to the largest area under the ROC
curve (AUC) through 10-fold cross-validation (Supplementary
Figure 3) and was therefore selected in this study. It should
be noted that if the central lysine residue is located near the
N-terminus or C-terminus of the protein sequence, the symbol
"X" is added at the related terminus to ensure the same window
size of the sequences.

Figure 1 showed the flowcharts for all the species. The dataset
of each species was randomly separated into five groups of which
four were used for 10-fold cross-validation and the rest for
independent test. Each group contained the same number of
positives and negatives. Specifically, the cross-validation datasets
included 15,156/15,464/10,204/12,354 samples for H. sapiens/T.
gondii/O. sativa/P. patens, respectively. Accordingly, the
independent test sets comprised 3,790/3,866/2,552/3,090 samples
for these organisms, separately. These datasets are available at
http://www.bioinfogo.org/DeepKhib.

Feature Encodings
The ZSCALE Encoding
Each amino acid is characterized by five physiochemical
descriptor variables (Sandberg et al., 1998; Chen et al., 2012).

The Encoding of Extended Amino Acid Composition
(EAAC) Encoding
The EAAC encoding is based on the calculation of the amino acid
composition (AAC) that indicates the amino acid frequencies
for every position in the sequence window. EAAC is calculated
by continuously sliding using a fixed-length sequence window
(the default is 5) from the N-terminus to the C-terminus of each
peptide (Chen et al., 2018b). The related formula is listed below:

f (t,win) =
N (t,win)
N (win)

, t ∈ {A,C,D, · · · , Y} ,

win ∈
{
window1,window2, · · · ,window37

}
(1)
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FIGURE 1 | The flowchart of dataset process for H. sapiens (A), P. patens (B), O. sativa (C), T. gondii (D), and S. cerevisiae (E). All the datasets were separated into
cross-validation and independent test datasets except the S. cerevisiae dataset.

where N (t, win) is the number of amino acid t in the sliding
window win, and N(win) is the size of the sliding window win.

The Enhanced Grouped Amino Acids Content
(EGAAC) Encoding
The EGAAC feature (Zhao et al., 2020) is developed based on
the grouped amino acids content (GAAC) feature (Chen et al.,
2018b, 2020). In the GAAC feature, the 20 amino acid types are
categorized into five groups (g1: GAVLMI, g2: FYW, g3: KRH,
g4: DE and g5: STCPNQ) according to their physicochemical
properties and the frequencies of the groups are calculated for
every position in the sequence window. For the EGAAC feature,
the GAAC values are calculated in the window of fixed length
(the default as 5) continuously sliding from the N- to C-terminal
of each peptide sequence.

The One-Hot Encoding
The one-hot encoding is represented by the conversion of the
20 types of amino acids to 20 binary bits. By considering the

complemented symbol “X,” a vector of size (20+1) bits is used to
represent a single position in the peptide sequence. For example,
the amino acid “A” is represented by “100000000000000000000,”
“Y” is represented by “000000000000000000010,” and the symbol
“X” is represented by “000000000000000000001.”

Architecture of the Machine-Learning
Models
The CNN Model With One-Hot Encoding
The CNN algorithm (Fukushima, 1980) decomposes an
overall pattern into many sub-patterns (features) through a
neurocognitive machine, and then enters the hierarchically
connected feature plane for processing. The architecture of
the CNN model with one-hot encoding (called as CNNOH)
contained four layers as follows (Figure 2A).

(i) The first layer was the input layer where peptide
sequences were represented using the one-hot
encoding approach.
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FIGURE 2 | The deep-learning architectures for CNNOH (A), CNNWE (B), and GRUWE (C).
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TABLE 1 | Performances comparison of the different classifiers for human Khib prediction.

Classifier Sn Sp Acc MCC AUC

10-fold cross-validation RFEGAAC 0.727 ± 0.015 0.682 ± 0.017 0.704 ± 0.011 0.409 ± 0.022 0.775 ± 0.011

RFEAAC 0.744 ± 0.025 0.645 ± 0.023 0.695 ± 0.010 0.391 ± 0.020 0.763 ± 0.008

RFZSCALE 0.681 ± 0.016 0.662 ± 0.018 0.672 ± 0.011 0.344 ± 0.023 0.740 ± 0.014

RFEGAAC+EAAC 0.748 ± 0.019 0.691 ± 0.023 0.719 ± 0.012 0.439 ± 0.025 0.789 ± 0.011

RFEGAAC+ZSCALE 0.726 ± 0.019 0.707 ± 0.015 0.716 ± 0.012 0.433 ± 0.025 0.794 ± 0.010

RFEGAAC+EAAC+ZSCALE 0.751 ± 0.016 0.702 ± 0.022 0.727 ± 0.013 0.454 ± 0.026 0.802 ± 0.010

GRUWE 0.821 ± 0.024 0.683 ± 0.033 0.752 ± 0.009 0.509 ± 0.018 0.830 ± 0.007

CNNWE 0.849 ± 0.035 0.722 ± 0.042 0.786 ± 0.007 0.578 ± 0.012 0.867 ± 0.005

CNNOH 0.876 ± 0.025 0.700 ± 0.026 0.788 ± 0.007 0.586 ± 0.014 0.868 ± 0.004

Independent test RFEGAAC 0.719 ± 0.006 0.676 ± 0.007 0.698 ± 0.002 0.395 ± 0.004 0.767 ± 0.002

RFEAAC 0.755 ± 0.003 0.638 ± 0.007 0.697 ± 0.003 0.396 ± 0.006 0.764 ± 0.003

RFZSCALE 0.680 ± 0.008 0.658 ± 0.009 0.669 ± 0.005 0.337 ± 0.011 0.736 ± 0.003

RFEGAAC+EAAC 0.740 ± 0.006 0.678 ± 0.005 0.709 ± 0.002 0.419 ± 0.005 0.781 ± 0.002

RFEGAAC+ZSCALE 0.728 ± 0.006 0.692 ± 0.006 0.710 ± 0.002 0.420 ± 0.005 0.787 ± 0.002

RFEGAAC+EAAC+ZSCALE 0.752 ± 0.005 0.693 ± 0.004 0.723 ± 0.002 0.446 ± 0.005 0.796 ± 0.002

GRUWE 0.806 ± 0.015 0.692 ± 0.029 0.749 ± 0.004 0.501 ± 0.007 0.824 ± 0.005

CNNWE 0.846 ± 0.035 0.719 ± 0.042 0.783 ± 0.006 0.572 ± 0.009 0.865 ± 0.004

CNNOH 0.874 ± 0.026 0.690 ± 0.035 0.782 ± 0.005 0.575 ± 0.005 0.871 ± 0.001

The data sets for 10-fold cross-validation and an independent test were described in the section “Materials and Methods.” The RF classifier with the different encoding
approach was named as RFEGAAC, RFEAAC, RFZSCALE , RFEGAAC+EAAC, RFEGAAC+ZSCALE , and RFEGAAC+EAAC+ZSCALE . The RNN/CNN classifier with the word embedding
encoding approach was named as GRUWE /CNNWE , respectively. The CNN classifier with one-hot encoding was named as CNNOH. Ten models were constructed in the
10-fold cross validation and evaluated using the ten different validation datasets and the same independent dataset. Accordingly, the value Sn, Sp, Acc, MCC, and AUC
were represented by average ± standard deviation.

FIGURE 3 | Performance comparison of 10-fold cross-validation and independent test datasets of nine different models.
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(ii) The second layer was the convolution layer that
consisted of four convolution sublayers and two max
pooling sublayers. The convolution sublayers, each
sublayer uses 128 convolution filters, the length of which
are 1, 3, 9, and 10, respectively. The two max pooling
sublayers followed the third and fourth convolution
sublayers, individually.

(iii) The third layer contained the fully connected sublayer,
which contained a fully connected sublayer with eight
neuron units without flattening, and a global average
pooling sublayer, which was adopted to correlate the
feature mapping with category output in order to reduce
training parameters and avoid over-fitting.

(iv) The last layer was the output layer that included a
single unit outputting the probability score of the
modification, calculated using the “Sigmoid” function. If
the probability score is greater than a specified threshold
(e.g., 0.5), the peptide is predicted to be positive.

The "ReLU" function (Hahnloser et al., 2000) was used
as the activation function of the convolution sublayers and
fully connected sublayers of the above layers to avoid gradient
dispersion in the training process. The Adam optimizer (Kingma
and Jimmy, 2014) was used to optimize the hyper-parameters of
this model, which include batch size, maximum epoch, learning
rate and dropout rate. The maximum training period was set as
1000 epochs to ensure the convergence of the loss function values.
In each epoch, the training data set was separated and iterated in
a batch size of 1024. To avoid over-fitting, the dropout of neurons
units in each convolution sublayer of the second layer was set 70%
and that in the full connection sublayer of the third layer was set
30% (Nitish et al., 2014), the early stop strategy was adopted and
the best model was saved.

The CNN Algorithm With Word Embedding
The CNN algorithm with word embedding (CNNWE) contained
five layers (Figure 2B). The input layer receives the sequence
of window size 37 and each residue is transformed into a five-
dimensional word vector in the embedding layer. The rest layers
are the same as the corresponding layers in CNNOH .

The GRU Algorithm With Word Embedding
The GRU algorithm (Cho et al., 2014) includes an update gate
and a reset gate. The former is used to control the extent to which
the state information at the previous moment is brought into the
current state, whereas the latter is used to control the extent to
which the state information at the previous moment is ignored.
The GRU algorithm with word embedding (GRUWE) contained

TABLE 2 | The AUC values of the CNNOH model constructed for O. sativa, P.
patens, T. gondii, and H. sapiens, respectively.

Species 10-fold cross-validation Independent test

O. sativa 0.823 0.818

P. patens 0.830 0.831

T. gondii 0.862 0.865

H. sapiens 0.868 0.871

five layers (Figure 2C). The first, the second and the last layers are
the same as the corresponding layers in CNNWE. The third layer
is the recurrent layer where each word vector from the previous
layer was sequentially inputted into the related GRU unit that
contains 32 hidden neuron units. The fourth layer was the fully
connected layer that contains 128 neuron units with "ReLU" as
the activation function.

The RF Algorithms With Different Features
The Random Forest algorithm (Breiman, 2001) contains multiple
decision trees, which remain unchanged under the scaling of
feature values and various other transformations, and the output
category is determined by the mode of the category output by
the individual tree. Each tree depends on the values of a random
vector sampled independently with the same distribution for all
trees in the forest. The number of decision trees was set 140. This
classifier was developed based on the Python module “sklearn.”

Cross-Validation and Performance
Evaluation
To evaluate the performance of Khib sites prediction, we adopted
four statistical measurement methods. They included sensitivity
(Sn), specificity (Sp), accuracy (ACC), and Matthew’s correlation
coefficient (MCC), listed as follows:

Sn =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

Acc =
TP + TN

TP + FP + TN + FN
(4)

MCC =
TP × TN − TN × FP

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(5)
In the above equations, TP is true positives, FP is false positives,
TN is true negatives, FN is false negatives. In addition, the
area under the receiver operating characteristic (ROC) curve
(AUC) values was calculated to evaluate the performance of the
prediction model.

TABLE 3 | The AUC values of different CNNOH models in terms of independent
test for five distinct organisms.

Prediction models Independent data sets

O. sativa P. patens T. gondii H. sapiens S. cerevisiae

O. sativa 0.818 0.788 0.782 0.803 0.721

P. patens 0.761 0.831 0.812 0.837 0.806

T. gondii 0.781 0.813 0.865 0.827 0.776

H. sapiens 0.778 0.818 0.832 0.871 0.785

General 0.802 0.840 0.860 0.868 0.789

The top two models with best performance are bold.
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FIGURE 4 | Sequence pattern surrounding the Khib sites, including the significantly enriched and depleted residues based on Khib peptides and non-modification
peptides from different species (P < 0.05, student’s T-test with Bonferroni correction). The pattern was generated using the two-sample-logo method (Vacic et al.,
2006).
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Statistical Methods
The paired student’s t-test was used to test the significant
difference between the mean values of the two paired populations.
As for multiple comparisons, the adjusted P value with the
Benjamini-Hochberg (BH) method was adopted.

RESULTS AND DISCUSSION

A couple of computational approaches has been developed
for the prediction of Khib sites (Ju and Wang, 2019; Wang
et al., 2020). Recently, this modification has been investigated
across five different species, ranging from single-celled organisms
to multiple-celled organisms and from plants to mammals.
Additionally, the number of reported sites has been significantly
increased. These raised our interest to develop novel prediction
algorithms and explore the characteristics of this modification.
We pre-processed the data from different species and separated
them into the cross-validation dataset and the independent test
set (see section “Materials and Methods” for detail; Figure 1).
We first took the human data as the representative to compare
different models and then applied the model with the best
performance to other species. The human cross-validation
dataset contained 15,156 samples and the independent test set
covered 3,790 samples, in each of which half were positives and
half were negatives.

CNNOH Showed Superior Performance
We constructed nine models, divided into two categories:
six traditional ML models and three DL models (see section
“Materials and Methods” for details). The traditional ML models
were based on the RF algorithm combined with different
encoding schemes. The DL models included a Gated Recurrent
Unit (GRU) model with the word-embedding encoding approach
dubbed GRUWE and two CNN models with the one-hot and
word-embedding encoding approaches named CNNOH and
CNNWE, respectively. Both encoding methods are common in
the DL algorithms (Chen et al., 2018a; Xie et al., 2018).

The RF-based models were developed with different
common encoding schemes, including EAAC, EGAAC and
ZSCALE. Among these encoding schemes, EGAAC had the
best performance followed by EAAC whereas ZSCALE was
the worst in terms of AUC and ACC for both 10-fold cross-
validation and the independent test (Table 1 and Figure 3).
For instance, EGAAC corresponded to the average AUC value
as 0.775, EAAC had the value as 0.763 and ZSCALE had the
value as 0.740 for cross validation. Because different encodings
represent distinct characteristics of Khib-containing peptides,
we evaluated the combinations of the encoding schemes. The
combinations showed better performances than individual
scheme and the combination of all the three was the best for
both cross-validation and the independent test, in terms of AUC,
MCC, and ACC (Table 1 and Figure 3). Therefore, the Khib
prediction accuracy could be improved by the integration of
different encoding schemes.

As the DL algorithms showed superior to the traditional ML
algorithms for a few PTM predictions in our previous studies
(Chen et al., 2019; Zhao et al., 2020), we examined the DL

algorithms for the Khib prediction. Traditionally, CNN is popular
for image prediction with spatial invariant features while RNN is
ideal for text prediction with sequence features. However, many
cases demonstrate that CNN also has good performance when
applied to sequence data (Sainath et al., 2013; Tahir et al., 2019).
Accordingly, we developed both RNN and CNN models for the
Khib prediction with two common encoding approaches: one-
hot and word-embedding. Expectedly, all three DL models were
significantly better than the traditional ML models constructed
above in the cross-validation and independent test (Table 1
and Figure 3). For instance, the average AUC values of the DL
models were above 0.824 whereas those of the ML models were
less than 0.802.

In these DL models, two CNN models CNNOH and CNNWE
had similar performances and both compared favorably to
GRUWE (Table 1 and Figure 3). CNNOH had the AUC value
as 0.868 for the cross-validation and its values of SN, SP, ACC
and MCC were 0.876, 0.700, 0.788, and 0.586, respectively.
Here, we chose CNNOH as the 2-Hydroxyisobutyrylation
predictor. We evaluated the robustness of our models by
comparing their performances between the cross-validation and
independent tests. As their performances between these two
tests had no statistically different (P > 0.01), we concluded that
our constructed models were robust and neither over-fitting
nor under-fitting.

Construction and Comparison of
Predictors for Other Species
We constructed nine models for the human organism and chose
CNNOH as the final prediction model. We applied the CNNOH
architecture to the other three organisms (i.e., T. gondii, O. sativa,
and P. patens). For each organism, we separated the dataset as
the cross-validation set and the independent set. Similar to the
human species, the CNNOH models for these species had similar
performances between cross-validation and independent test and
their AUC values were larger than 0.818 (Table 2). It indicates
that these constructed models are effective and robust.

As lysine 2-Hydroxyisobutyrylation is conserved across
different types of species, we hypothesized that the model built
for one species may be used to predict Khib sites for other
species. To test this hypothesis, we compared the performances
of the CNNOH models in terms of the independent data sets
of individual species. Additionally, we built a general CNNOH
model based on the training datasets integrated from all the
four species. Table 3 shows that the AUC values of these
predictions were larger than 0.761, suggesting that the cross-
species prediction had reliable performances. Specifically, given
a species, the best prediction performances were derived from

TABLE 4 | The prediction performance of CNNOH compared to iLys-Khib in terms
of the same cross-validation and independent test datasets.

Dataset Model Sn Sp Acc MCC AUC

10-fold cross-validation iLys-Khib 0.745 0.658 0.701 0.404 0.770

CNNOH 0.830 0.713 0.772 0.547 0.847

Independent test iLys-Khib 0.725 0.643 0.648 0.186 0.756

CNNOH 0.861 0.685 0.696 0.281 0.860
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FIGURE 5 | DeepKhib interface for the prediction of Khib sites with the option of organism-specific or general classifiers (A) and its application to the prediction (B).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 September 2020 | Volume 8 | Article 580217

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-580217 September 7, 2020 Time: 18:47 # 10

Zhang et al. DeepKhib: Lysine 2-Hydroxyisobutyrylation Sites Prediction

the general model and the model developed specifically for
this species. For instance, the human CNNOH model had the
best performance followed by the general model in terms
of the human independent test whereas the general model
had the best accuracy followed by the moss-specific model
for the moss independent test. These suggest that on one
hand, lysine 2-Hydroxyisobutyrylation of each species has its
own characteristics; one the other hand, this modifications
across different species share strong commonalities. Therefore,
the general model may be effectually applied to any species.
Furthermore, we evaluated the generality of the general CNNOH
model using the dataset of S. cerevisiae that contained 1,049
positive and 1,049 negative samples, which may not be enough for
build an effective DL predictor (Chen et al., 2018a). The general
model got the AUC value as 0.789, indicating the generality of this
model. In other words, the general model is effective to predict
Khib sites for any organism.

We identified and compared the significant patterns and
conserved motifs between Khib and non-Khib sequences across
the different organisms using the two-sample-logo program with
t-test (P < 0.05) with Bonferroni correction (Vacic et al., 2006).
Figure 4 shows the similarities and differences between the
species. For instance, the residues R and K at the−1 position (i.e.,
R&K@P-1) and P at +1 position (i.e., P@P+1) are significantly
depleted across the species. On the contrary, K&R@P+1 tend
to be enriched for H. sapiens but depleted for T. gondii whereas
both species have the depleted residue Serine across the positions
ranging from P-18 to P+18. These similarities between the
organisms may result in the generality and effectiveness of the
general CNNOH model.

Comparison of CNNOH With the
Reported Predictors
We assessed the performance of CNNOH by comparing it with
the existing Khib predictors KhibPred (Wang et al., 2020) and
iLys-Khib (Ju and Wang, 2019). First, we compared CNNOH
with KhibPred for individual species in terms of 10-fold cross-
validation (Wang et al., 2020). The average AUC values of
CNNOH were 0.868/0.830/0.823 for H. sapiens/P. patens/O.
sativa, respectively (Table 2). On the contrary, the corresponding
values of KhibPred were 0.831/0.781/0.825 (Wang et al., 2020).
Thus, CNNOH compares favorably to KhibPred. Second, the
model iLys-Khib was constructed and tested using 9,318 human
samples as the 10-fold cross-validation data set and 4,219 human
samples as the independent test set. We used the same datasets
to construct CNNOH and compared it with iLys-Khib. CNNOH
outperformed iLys-Khib in terms of all the measurements of
performance (e.g., Sn, Sp, Acc, MCC, and AUC) for both 10-fold
cross-validation and independent test (Table 4). For instance,
the AUC value of CNNOH was 0.860 for the independent test
whereas that of iLys-Khib was 0.756. In summary, CNNOH is a
competitive predictor.

Construction of the On-Line Khib Predictor
We developed an easy-to-use Web tool for the prediction of
Khib sites, dubbed as DeepKhib. It contains five CNNOH models,

including one general model and four models specific to the
species (i.e., H. sapiens, O. sativa, P. patens, and T. gondii).
Given a species of interest, users could select the suitable model
(e.g., the general model or the model specific to an organism)
for prediction (Figure 5A). After the protein sequences as the
fasta file format are uploaded, the prediction results will be
shown with five columns: Protein, Position, Sequence, Prediction
score, and Prediction category (Figure 5B). The prediction
category covered four types according to the prediction scores:
no (0–0.320), medium confidence (0.320–0.441), high confidence
(0.441–0.643), and very high confidence (0.643–1).

CONCLUSION

The common PTM classifiers are mainly based on the traditional
ML algorithms that require the pre-defined informative features.
Here, we applied the advanced DL algorithm CNNOH for
predicting Khib sites. CNNOH shows its superior performance,
because of the capability of the multi-layer CNN algorithm
to extract complex features and learn sparse representation in
a self-taught manner. Moreover, the general CNNOH model
demonstrates great generality and effectiveness, due to the
conservation of Khib modification from single-cell to multiple-
cell organisms. The outstanding performance of DL in the
prediction of Khib sites suggests that DL may be applied broadly
to predicting other types of modification sites.
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